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Background 
Uniform manifold approximation and projection (UMAP) [1] has been widely used 
for visualization and nonlinear dimensionality reduction in single-cell RNA expression 
datasets [2], and has also been utilized in population genetics to study population struc-
ture [3]. However, the application of UMAP in single-cell DNA data analysis remains 
notably limited. Here, we developed a new program named Mugen-UMAP to apply 

Abstract 

Background: The application of Uniform Manifold Approximation and Projection 
(UMAP) for dimensionality reduction and visualization has revolutionized the analysis 
of single-cell RNA expression and population genetics. However, its potential in single-
cell DNA sequencing data analysis, particularly for visualizing gene mutation informa-
tion, has not been fully explored.

Results: We introduce Mugen-UMAP, a novel Python-based program that extends 
UMAP’s utility to single-cell DNA sequencing data. This innovative tool provides 
a comprehensive pipeline for processing gene annotation files of single-cell somatic 
single-nucleotide variants and metadata to the visualization of UMAP projections 
for identifying clusters, along with various statistical analyses. Employing Mugen-UMAP, 
we analyzed whole-exome sequencing data from 365 single-cell samples across 12 
non-small cell lung cancer (NSCLC) patients, revealing distinct clusters associated 
with histological subtypes of NSCLC. Moreover, to demonstrate the general utility 
of Mugen-UMAP, we applied the program to 9 additional single-cell WES datasets 
from various cancer types, uncovering interesting patterns of cell clusters that warrant 
further investigation. In summary, Mugen-UMAP provides a quick and effective visuali-
zation method to uncover cell cluster patterns based on the gene mutation informa-
tion from single-cell DNA sequencing data.

Conclusions: The application of Mugen-UMAP demonstrates its capacity to provide 
valuable insights into the visualization and interpretation of single-cell DNA sequenc-
ing data. Mugen-UMAP can be found at https:// github. com/ tengc hn/ Mugen- UMAP
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UMAP innovatively to single-cell DNA sequencing data for the analysis and visualiza-
tion of gene mutation information (e.g., in single-cell somatic mutations). Furthermore, 
we demonstrate the application of UMAP algorithm [1] to analyze single-cell whole-
exome sequencing (WES) data from 12 non-small cell lung cancer (NSCLC) patients 
[4], using gene mutation information from detected somatic mutations, revealing dis-
tinct cell clusters corresponding to the various histological subtypes of NSCLC. We also 
applied Mugen-UMAP to the additional 9 single-cell WES datasets across six different 
cancer types, uncovering interesting cluster patterns that may merit further exploration. 
This approach provides valuable insights into the identification of clusters and interpre-
tation of single-cell DNA sequencing data.

Materials and methods
Implementation

Mugen-UMAP is implemented in Python with three main features (Fig. 1). (i) convert, 
allows users to convert their somatic single-nucleotide variants (SNVs) annotation files 
and the metadata file into AnnData format [5], which stores a data matrix of genes by 

Fig. 1 The diagram of Mugen-UMAP workflow. A Single-cell somatic mutations annotated by ANNOVAR, 
coupled with corresponding patient information, were converted into the AnnData format. Subsequently, 
UMAP projections colored according to (B) Patient ID, C histology type, E diagnostic stage, F metastatic 
status, G Leiden algorithm, and D the Venn diagram were generated, along with various statistical analyses, 
utilizing the single-cell DNA sequencing data. The numbers in the Venn diagram represent the counts of 
mutated genes shared among the different histological subtypes of NSCLC, including adenocarcinoma, 
squamous cell carcinoma, large cell carcinoma, and spindle cell carcinoma
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cells. Each entry in the matrix represents the number of mutations per gene for each cell. 
The input can be either a ZIP file or a directory containing the annotated mutation files 
of each cell, generated by ANNOVAR [6] through the annotation of related mutations in 
the Variant Call Format (VCF). The metadata file should contain the patient ID or sam-
ple ID in the first column, along with other related information, such as the type (histol-
ogy type), stage (diagnostic stage), and relevant numerical data (e.g., number of cells). 
Our program will automatically select the non-numerical columns for subsequent plot-
ting steps. (ii) umap, allows users to plot UMAP projections (e.g., for clinical subjects, 
colored by Patient ID, histology type, or diagnostic stage) by integrating and adjusting 
the common workflow of Scanpy [7] (includes (1) removing genes that are mutated in 
less than 3 cells, (2) excluding cells with less than 30 mutated genes, (3) excluding outlier 
cells with mutated gene counts that exceed 98% of all samples, (4) normalizing counts in 
each cell followed by logarithmization, (5) selecting the top 3000 highly variable genes, 
and regressing out the effects of total counts per cell), and to generate Venn diagram 
using Venny4Py (https:// github. com/ timye rg/ venny 4py), coupled with various summary 
reports. Moreover, visualizations for each filtering step (along with the correspond-
ing cutoff values) will be generated (e.g., Fig. S1 for the NSCLC dataset), which allow 
users to assess the impact of the filtering steps and facilitate the optimization of filtering 
parameters specific to their studies. Furthermore, two clustering algorithms, Leiden [8] 
and Louvain [9], were provided for detecting cell clusters or patterns. (iii) all, execute the 
full pipeline, including both the convert and umap functions in sequence.

Application of Mugen‑UMAP to example datasets

To demonstrate the capabilities of Mugen-UMAP, we applied it to a dataset comprising 
365 single-cell samples isolated from the primary tumors of 12 NSCLC patients (with 
a median of 23 cells per patient, ranging from 7 to 71), coupled with one correspond-
ing normal bulk tissue for each patient [4] (Table 1). Whole exome sequencing was per-
formed for all samples using the Illumina platform, achieving an average coverage depth 
of 198.1X for normal bulk tissues (median depth of 163.8X) and 101.5X for tumor sin-
gle cells (median depth of 100.1X). Somatic SNVs were detected individually for each 
tumor single cell sample against the matched normal bulk sample by VarScan v2.4.3 [10], 
with the default parameters except increasing the minimum read coverage to at least 10 
reads in both tumor and matched normal samples. Then, somatic SNVs located within 
the repeat region (as annotated by RepeatMasker) on the UCSC Table Genome Browser 
[11] and those falling outside the exon target regions were excluded. To avoid potential 
low-quality somatic SNV calling, SNVs were retained if these sites could be genotyped 
by GATK HaplotypeCaller [12] in at least 70% of all samples for each patient.

Furthermore, to showcase the broad applicability of Mugen-UMAP, we obtained 9 
single-cell WES datasets from various studies [13–18] (Table  2), encompassing 332 
single-cell samples from six different cancer types (including bladder, blood, breast, 
colon, kidney, and lung). Each dataset represents an individual patient, except for Wu-
CRC0827 and WuCRC0827-polyps, which are from the same patient. The pipeline for 
processing SNV calling of these 9 datasets was described in Borgsmüller et al. [19]. For 
both example datasets, the mutations in the VCF files of each cell were then annotated 
using ANNOVAR [6] with the Catalogue of Somatic Mutations in Cancer (COSMIC) 

https://github.com/timyerg/venny4py
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database [20], and only non-synonymous SNVs were retained for subsequent analysis. 
However, for the  9 additional single-cell WES datasets, because the total number of 
mutated genes remaining after filtering was only 1002, we retained all of these genes for 
subsequent analysis.

Results and discussion
We employ the all function in Mugen-UMAP, inputting these annotation files and 
patient information metadata (Tables 1, 2), with the default value to plot UMAP pro-
jections for visualizing and identifying cell clusters. Additionally, the Venn diagram was 
generated to visualize the shared and unique mutated genes among four different groups 
of patients (Figs. 1, 2).

Table 1 12 non-small cell lung cancer (NSCLC) patients information

Information for these patients, previously described in Li et al. (2021), has been updated with additional information from 
single‑cell somatic mutation analysis

Dx diagnosis, M male, F female, AC adenocarcinoma, SCC squamous cell carcinoma, LCC large cell carcinoma, SpCC spindle 
cell carcinoma, NM non‑metastasis

*Patient 16,031 had a wedge resection with completion lobectomy for a positive suture line tumor; the patient is now non‑
recurrent for more than 3 years following the resection of the residual tumor
a Recurrence‑free duration for the non‑metastasis NSCLC patients are as of their last clinic visit
b The mean non−synonymous SNVs have been filtered to exclude genes mutated in less than 3 cells, as well as cells with 
less than 30 mutated genes
c The number of mutated genes that passed all filtering steps, retaining only those genes mutated in at least two cells per 
patient, were subsequently used to generate the Venn diagram

Patient 
ID

Age 
at Dx

Stage 
at Dx

Histology Statusa Tumor 
cells

Filtered 
cells

Normal 
Bulk

Mean non‑
synonymous 
 SNVsb

Mutated 
 genesc

16,011 40–49 IB AC NM for 
45 months

18 15 1 1595.9 3047

16,031 70–79 I SCC NM 
for > 3 years*

14 4 1 1986.3 NA

17,004 70–79 IA SCC NM for 
40 months

71 66 1 194.0 1247

17,005 70–79 IA SCC NM for 
32 months

27 24 1 374.2 1244

17,008 50–59 IA AC NM for 
18 months

23 21 1 661.0 2030

17,011 60–69 IB AC NM for 
14 months

20 14 1 271.8 659

17,012 80–89 IIA AC NM for 
15 months

23 23 1 306.4 1166

17,017 60–69 IIB LCC Metastasis 
to Lymph 
nodes, Now 
deceased

46 33 1 82.7 402

17,028 70–79 IA AC NM for 
27 months

59 48 1 97.2 586

17,029 60–69 IV SpCC Metastasis to 
Spine, Now 
deceased

47 36 1 152.6 605

17,030 60–69 IB AC NM for 
36 months

7 6 1 563.7 589

18,001 70–79 IIB AC Metastasis 
to Lymph 
nodes

10 7 1 155.7 183
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For the dataset comprising 12 NSCLC patients (Patient-16031 was excluded because 
no cells passed our filtering criteria) (Table 1), our results revealed four distinct cell clus-
ters corresponding to the different histological subtypes of adenocarcinoma, squamous 
cell carcinoma, large cell carcinoma and spindle cell carcinoma (Fig.  1C), rather than 
being based on patient ID, diagnostic stages, or survival status (Fig. 1B, E, F). Moreo-
ver, among these groups, adenocarcinoma and squamous cell carcinoma appeared to be 

Table 2 9 published single-cell whole-exome sequencing (WES) cancer datasets

a Each of these 9 single‑cell WES datasets represents individual patients, with the exception of Wu‑CRC0827 and 
WuCRC0827‑polyps, which are from the same patient. The WuCRC0827‑polyps dataset corresponds to the colorectal 
adenomatous polyps from the same patient as the Wu‑CRC0827 dataset
b,c The annotation is the same as for Table 1

Dataseta Tissue Cells Filtered cells SNVs Mean non‑
synonymous 
 SNVsb

Mutated 
 genesc

Li [13] bladder 55 54 885 37.5 73

Hou [14] blood 82 71 1387 133.9 249

Wang-ER +  [15] breast 47 46 355 38.8 66

Wang-TNBC [15] breast 16 15 1472 215.3 312

Wu-CRC0827 [16] colon 50 50 652 58.2 116

WuCRC0827-polyps [16] colon 19 19 379 NA NA

Wu-CRC0907 [16] colon 50 49 574 46 96

Xu [17] kidney 20 20 747 56.3 90

Ni [18] lung 8 8 340 NA NA

Fig. 2 UMAP visualization and Venn diagram of 9 additional cancer datasets. UMAP projections colored 
according to (A) single-cell dataset, B cancer tissue, and C Leiden algorithm, coupled with the (D) Venn 
diagram showing the number of overlapping mutated genes among different cancer types (breast, blood, 
colon, and kidney)
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more closely located in UMAP space compared to the other two groups. This observa-
tion was further supported by the evidence that these two groups shared a higher num-
ber of mutated genes with each other than with the large cell and spindle cell carcinomas 
(Fig. 1D). These results suggest that gene mutations may be associated with the histo-
logical subtypes of NSCLC, as evidenced by certain gene mutations that are considered 
pathognomonic for specific histological subtypes [21]. For example, alterations in EGFR, 
KRAS, SMARCA4, STK11, and KEAP1 are almost exclusively detected in adenocarci-
noma [21], which were also evident in our study  (see Supplementary file 3). However, 
our results may potentially be influenced by the limited sampling, with only one patient 
each representing large cell carcinoma and spindle cell carcinoma, which could be 
attributed to the relative rarity of these two subtypes in NSCLC. Additionally, both the 
Leiden and Louvain algorithms displayed similar clustering patterns, identifying 9 and 7 
cell clusters, respectively (Fig. 1G, S2), which partially support our observations that the 
clusters are associated with the histological subtypes of NSCLC.

For the additional 9 single-cell WES cancer datasets (two of which were excluded 
because no cells passed our filtering criteria) (Table  2), the results demonstrated six 
distinct cell clusters in a non-overlapping fashion based on the Leiden algorithm [8] 
(Fig.  2C). By color-coding the cancer tissues on the UMAP, these clusters separated 
according to different cancer types, with the exception of the datasets Wu-CRC0827 and 
Wu-CRC0907, both from colon cancer, which exhibited spatial separation and thus may 
warrant further investigation to explain why such separation is apparent (Fig. 2B). This 
observation was further supported by the Venn diagram (Fig. 2D), which indicated that 
there are no overlapping mutated genes shared among the cancer types of blood, breast, 
colon, and kidney, with most mutated genes being unique to their respective cancer 
types.

Conclusions
Mugen-UMAP, a Python package, extends the application of UMAP to single-cell DNA 
sequencing data, focusing on the visualization and identification of cell clusters based 
on gene mutation information. By applying this tool to two different example single-cell 
WES datasets—one comprising 12 NSCLC patients and another from 8 patients with 
various cancer types—Mugen-UMAP revealed distinct cell clusters corresponding to 
different histological subtypes and cancer types, respectively. This pioneering application 
of UMAP in single-cell WES data analysis offers a new way for visualization, clustering, 
and interpretation of single-cell DNA sequencing data. In conclusion, Mugen-UMAP is 
a useful tool for applying UMAP to enhance the analysis and visualization of gene muta-
tion information in single-cell DNA sequencing data.

Abbreviations
UMAP  Uniform manifold approximation and projection
WES  Whole-exome sequencing
NSCLC  Non-small cell lung cancer
SNV  Single-nucleotide variant
COSMIC  Catalogue of somatic mutations in cancer
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Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 024- 05928-x.

Supplementary Figure 1. Visualizations of the Mugen-UMAP filtering steps in the NSCLC dataset. A Distribution of 
mutated cells per gene, with a cutoff line indicating that genes mutated in less than 3 cells will be removed. B Distri-
bution of mutated genes per cell, showing the lower cutoff for excluding cells with less than 30 mutated genes and 
the upper cutoff for excluding cells with mutated gene counts exceeding 98% of all samples. C Dispersion of highly 
variable genes, with the black dots representing the top 3000 highly variable genes selected for subsequent analysis.

Supplementary Figure 2. UMAP projections of the Louvain clustering algorithm applied to the NSCLC dataset.

Supplementary file 3. AnnData format of the 12 NSCLC patients dataset.
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