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Abstract 

Background:  Visualization approaches transform high-dimensional data from single 
cell RNA sequencing (scRNA-seq) experiments into two-dimensional plots that are 
used for analysis of cell relationships, and as a means of reporting biological insights. 
Yet, many standard approaches generate visuals that suffer from overplotting, lack 
of quantitative information, and distort global and local properties of biological pat-
terns relative to the original high-dimensional space.

Results:  We present scBubbletree, a new, scalable method for visualization of scRNA-
seq data. The method identifies clusters of cells of similar transcriptomes and visualizes 
such clusters as “bubbles” at the tips of dendrograms (bubble trees), correspond-
ing to quantitative summaries of cluster properties and relationships. scBubbletree 
stacks bubble trees with further cluster-associated information in a visually easily 
accessible way, thus facilitating quantitative assessment and biological interpretation 
of scRNA-seq data. We demonstrate this with large scRNA-seq data sets, including one 
with over 1.2 million cells.

Conclusions:  To facilitate coherent quantification and visualization of scRNA-seq data 
we developed the R-package scBubbletree, which is freely available as part of the Bio-
conductor repository at: https://​bioco​nduct​or.​org/​packa​ges/​scBub​bletr​ee/
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Introduction
Single cell RNA sequencing (scRNA-seq) data can convey an unprecedented richness 
of biological information, which has led to an explosion of scRNA-seq experiments [1]. 
However, the complexity of scRNA-seq data makes analysis also notoriously difficult: the 
transcriptome of each cell is characterized by a high-dimensional vector of gene expres-
sions, and we have many cells and hence many vectors. How can we visually present 
such complex data so that essential biological information becomes easily accessible? 
Standard workflows perform reduction of the high-dimensional transcription data into 
printable two dimensional scatterplots [2, 3] with each cell corresponding to one dot and 
the geometric arrangement of the dots reflecting aspects of transcriptional similarity of 
cells. While this approach works reasonably well for small samples, visualization of large 
and complex samples runs into the well-known problem of overplotting [4], i.e. massive 
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piling up of dots on top of each other severely hampers user’s ability to identify patterns 
in the plotted data. This issue is compounded by distortions in the sample’s distance 
structure that arise as we squeeze high-dimensional transcription data into two dimen-
sions [5–7]. Thus, visuals produced with the standard workflow are in general inept for 
presenting quantitative information, including also transcriptional similarity.

Here we present scBubbletree, a method for quantitative visual exploration of scRNA-
seq data. When designing scBubbletree our guiding question was: Which properties 
of scRNA-seq data should be visualized? We identified three classes of properties: (i) 
local and global transcriptional structure, (ii) cell density distribution and (iii) cell attrib-
utes (marker gene expressions, biological condition, cell type labels, etc.). Furthermore, 
scalability was an important factor in the design of scBubbletree, i.e. our method was 
developed to avoid overplotting. These goals were achieved by integrating in scBubble-
tree state-of-the-art methods for clustering of scRNA-seq data and for visualization. 
scBubbletree is available as an R-package that is open-source, easy-to-use and simple to 
integrate with popular approaches for scRNA-seq data analysis.

We demonstrate the added value of visual exploration with scBubbletree compared to 
popular methods, such as UMAP and t-SNE, by analyzing two public datasets.

Results
scBubbletree is implemented as an R package that provides an easy-to-use workflow for 
visual exploration of single cell RNA-seq data. A typical application, as presented here 
with two scRNA-seq samples (studies A and B), runs in less than one hour on a standard 
personal computer. Furthermore, scBubbletree can be integrated seamlessly with the R 
package Seurat [8], a popular tool for scRNA-seq analysis. In the next we describe the 
implementation of scBubbletree in detail.

Input

The pipeline takes as first input a matrix An×f  that represents a low-dimensional projec-
tion of the high-dimensional scRNA-seq data, with n rows as cells and f columns as low-
dimensional features. scBubbletree works directly with An×f  and is agnostic about the 
initial data processing protocol. For the generation of the low-dimensional projection, 
we recommend the use of linear techniques that approximately conserve pairwise dis-
tances between cellular transcriptome vectors. Example techniques are principal com-
ponent analysis (PCA) [9], non-negative matrix factorization [10], or multi-dimensional 
scaling [11]. Non-linear dimensionality reduction techniques, such as t-SNE [3] and 
UMAP [2], should be avoided as these approaches tend to distort long-range distances 
[12]. In the present work we used PCA for the low-dimensional projection.

Algorithm

In short, the algorithm of scBubbletree identifies clusters of transcriptionally similar 
cells, and then visualizes these clusters as leaf-nodes (bubbles) of a hierarchical dendro-
gram (bubbletree). The workflow comprises four steps (Fig. 1A): 1. determining the clus-
tering resolution, 2. clustering, 3. hierarchical cluster grouping, and 4. visualization. We 
explain each step in the following.
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Determining the clustering resolution with gap statistic

scBubbletree can cluster scRNA-seq data in two ways, namely by graph-based commu-
nity detection (GCD) algorithms such as Louvain [13] or Leiden [14], and by k-means 
[15]. Benchmarking studies have demonstrated that approaches for GCD, such as Lou-
vain, perform well with scRNA-seq data and have relatively short runtimes [16]. These 
findings were independently verified by our benchmarking study of the impact of clus-
tering algorithm on biological cluster homogeneity (Supplementary Section  1). We 
recommend using the original Louvain algorithm for clustering of large scRNA-seq 
datasets. For smaller and simpler scRNA-seq datasets k-means generates comparable 
results.

Each clustering approach requires a resolution as input. In k-means, the clustering 
resolution is specified by the parameter k ( k ∈ N ) that determines the number of clusters 
in the data, whereas Louvain (or Leiden) uses a resolution parameter r ( r ∈ R>0 ), where 
higher r lead to more clusters and lower r lead to fewer clusters. Hence, r can be mapped 
onto a number k ′ of communities, with a range of r values of mapping onto the same 
value of k ′ . The choice of k and r should be guided primarily by the sample heterogene-
ity: the higher the cellular diversity in the sample, the higher the clustering resolution 
needed to resolve that diversity. The choice of k and r is also impacted by the research 
objective, for instance, high clustering resolution might be necessary to identify e.g. rare 
T cell subsets in a large sample of immune cells, whereas lower clustering resolution 
might be sufficient to characterize canonical immune subsets of that sample.

Fig. 1  scBubbletree analysis of dataset A. A scBubbletree workflow with main and alternative inputs shown 
with red and green labels, respectively. B Gap statistic for clustering solutions generated by the Louvain 
method with varying clustering resolutions. Vertical error bars are 95% confidence intervals of the gap 
statistic. C WGI for clustering solutions in panel B and the predicted cell lines of dataset A. D bubbletree 
(tree structure) annotated with a (E) heatmap displaying as rows the within-bubble relative frequencies of 
different cell lines. The bubbletree has five bubbles (white points) shown as leaves. Bubble radii scale linearly 
with the number of cells in the bubbles. Bubble identities, absolute and relative cell frequencies are shown 
as labels between bubbletree and heatmap. Gray branch labels are branch bootstrap support values. Rows in 
the heatmap integrate to 100%. F Mean normalized expression of five marker genes (x-axis) in each bubble 
(y-axis). G Density distribution of five marker gene (column panels) with normalized expressions of the cells in 
each bubble shown as violins. Numbers in heatmap tiles are rounded to the nearest tenth
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To determine k and r, scBubbletree relies on the gap statistic method [17] as imple-
mented in the R-package cluster (function clusGap, version 2.1.2). This functionality is 
implemented in scBubbletree’s functions get_k and get_r. The gap statistic compares the 
within cluster sum of squares (WCSS) to its expectation under an appropriate null refer-
ence distribution for different values of k and r. To estimate k and r we need to examine 
the gap curve for a) clear maximum or b) an ‘elbow’ (a bend in the curve from high to 
low slope). The functions get_k and get_r report the average gap and its 95% confidence 
interval for each clustering resolution computed based on Bgap simulations.

Many complementary approaches for determining the clustering resolution are avail-
able in the literature [18], and these can be used alongside the gap statistic. To avoid 
under- or over-clustering, which leads to the failure to detect rare populations or the 
false discovery of novel populations, respectively, we recommend that the estimated k ′ 
(associated with r) and k be compared against prior biological knowledge about the cel-
lular composition based on data from e.g. the human protein atlas (https://www.protein-
atlas.org) or from relevant publications. The estimated k ′ and k can also be compared 
against the clustering resolution inferred by the clustering approach sc-SHC [19], which 
has built-in hypothesis testing to automatically identify hierarchically organized clusters 
representing distinct populations, preventing both under-clustering and over-clustering.

Determining the clustering resolution with Gini impurity

For some scRNA-seq datasets it is possible to assess the subtypes of individual cells by 
mapping their transcriptional profiles onto reference atlases [20]. scBubbletree quanti-
fies the homogeneity (or ‘purity’) of individual clusters i of ni cells in terms of the their 
composition of subtype labels with the Gini impurity (GI) index:

where L is the total number of subtype labels, and πij the relative frequency of label j in 
cluster i. In homogeneous clusters, GI takes on a small value close to zero, and in mixed 
clusters GI can approach 1− (1/L) . Given a clustering result with k clusters, get_gini also 
computes the weighted Gini impurity (WGI) index by calculating the weighted average 
of the GIs:

with n =
∑

i ni . We expect low WGIs for clustering results at optimal clustering resolu-
tions, and higher WGIs for clustering results at insufficient resolutions. Hence, the WGI 
can be used like the gap statistic to identify appropriate resolutions.

Clustering

For clustering, scBubbletree uses as main inputs matrix An×f  , a clustering algorithm, 
and the clustering resolution (k or r) estimated from the previous step of this work-
flow. Four algorithms for GCD are available via the function get_bubbletree_graph, 
including, the original Louvain algorithm [13], the Louvain algorithm with multilevel 

(1)GIi =

L
∑

j=1

πij(1− πij),

(2)WGI =

k
∑

i=1

GIi
ni

n
,
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refinement (LMR) [21], the smart local moving (SLM) algorithm [22], and the Leiden 
algorithm [14]. In addition to this, k-means [15] clustering can be performed with the 
function get_bubbletree_kmeans. Auxiliary input parameters can be used to employ 
a specific variant of the clustering algorithms and to fine-tune their performance. To 
perform GCD, scBubbletree first constructs a shared nearest neighbor (SNN) graph 
using the function FindNeighbors (R-package Seurat, version 4.1.0). GCD is applied 
with Seurat’s function FindClusters and k-means clustering by the function kmeans 
(R-package stats, version 4.2).

The output of the clustering step is a vector c = (c1, c2, . . . , cn) of cluster assignments 
for the n cells, with ci ∈ {1, 2,..., k} . The clustering result allows us to partition An×f  
into k data subsets Cn1×f

1 ,C
n2×f
2 , . . . ,C

nk×f
k  , with ni as the number of cells in cluster i 

and n =
∑

i ni . These matrices are used to compute inter-cluster distances in the next 
step of this workflow.

To facilitate the use of novel clustering approaches [23], scBubbletree provides the 
function get_bubbletree_dummy, which allows the user to provide as input matrix 
An×f  and vector c of cluster assignments (Fig. 1A, green input) and proceed with hier-
archical grouping of the clusters. This enables seamless integration of scBubbletree 
with computational pipelines that employ other clustering approaches, such as Phe-
noGraph [24], TooManyCells [25], sc-SHC [19] or Dirichlet process mixture models 
[26].

Hierarchical grouping of clusters

Clusters of cells are arranged in a dendrogram by performing agglomerative hierar-
chical clustering with average linkage [27] (function hclust, R-package stats, version 
4.2). Starting at the lowest level with k clusters (or communities) of cells, the cluster-
ing procedure selects pairs of clusters with the smallest inter-cluster Euclidean dis-
tance and groups them at the next higher level of the hierarchy. This is repeated until 
a complete dendrogram is built with only one cluster at the highest level that contains 
the full data. Other commonly used linkage functions and the Manhattan distance 
metric are also implemented in scBubbletree.

The distance between clusters i and j can be computed by estimating the average 
Euclidean distance between all pairs of cells in Cni×f

i  and Cnj×f

j  . Hence, the com-
plete hierarchical clustering procedure has time complexity O(n2) and requires 
approximately �(n2) memory to store the resulting distance matrix. Assuming that 
each matrix cell takes up 8 bytes of memory, for a dataset of 106 cells this operation 
requires 7,450 gigabytes of memory, and considerable computational cost.

To avoid such high memory demands scBubbletree employs a bootstrapping 
approach with B iterations (Supplementary Algorithm 1). In iteration b, the algorithm 
draws with replacement a random subset with n′i = min(ni,Neff) and n′j = min(nj ,Neff) 
number of cells from cluster i and j, respectively, where Neff  is a user-defined param-
eter that controls the maximum number of cells to be drawn from each cluster. The 
algorithm computes the average distance between cluster i and j based on n′in

′
j inter-

cell Euclidean distances, and stores the result in distance matrix Dk×k
b :
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where Xn′i×f  and Y n′j×f  are subsets drawn from Cni×f
i  and Cnj×f

j  , respectively, and x and 
y are cell transcriptome features (row vectors) from each matrix. At the end of bootstrap 
iteration b, the distance matrix Dk×k

b  is provided as input for hierarchical clustering with 
average linkage to generate the dendrogram Hb.

From the collection of B distance matrices we compute an average distance matrix 
( D̂k×k ), and use D̂k×k to generate a consensus hierarchical dendrogram (bubbletree; 
Ĥ ) by hierarchical clustering with average linkage. The collection of bootstrap dendro-
grams are used to assess the robustness of the bubbletree topology by quantifying the 
number of times each branch in Ĥ was found among the topologies of the bootstrap 
dendrograms (function prop.clades, R-package ape, version 5.6.2). Branches can have 
variable degrees of support ranging between values close to 0 (no support) and B (com-
plete support). Distances between individual bubbles are visualized quantitatively as 
sums of branch lengths in root-to-leaf direction between these bubbles. In a horizontally 
arranged bubbletree, the vertical dimension has no significance and is only used to visu-
ally lay out the tree with the bubbles evenly spaced.

Visualization of the bubbletree

The main visual output of scBubbletree is a bubbletree (Figs. 1D and 2C). The bubbles 
represent clusters of cells of similar transcriptomes, and the tree describes hierarchi-
cal relationships and distances between the bubbles. Bubbletrees are visualized with 
ggtree (R-package, version 3.2.1), which offers a rich syntax for visualization of dendro-
grams [28]. ggtree extends the flexible ggplot2 (R-package, version 3.3.5) visualization 
framework [29], and thereby allows multiple layers of annotations to be attached to the 
bubbletree.

scBubbletree scales the bubble radii linearly as the number of cells in the correspond-
ing bubbles. As linear increase in bubble radii leads to quadratic increase in bubble 
areas, this scaling visually emphasizes bubbles with higher numbers of cells. Each bubble 
is labeled with an identifier and its absolute and relative numbers of cells.

In summary, a bubbletree gives a quantitative visual summary of scRNA-seq data in 
terms of transcriptome cluster sizes and relationships.

Visualization of cell attributes

To make bubbles biologically interpretable, bubbletrees facilitate addition of further 
information, including numeric cell attributes, such as expression levels of marker genes, 
number of unique molecular identifiers (UMIs), or prevalence of UMIs from mitochon-
drial genes; or categorical cell attributes, such as predicted subtype labels, treatment 
groups (cancer vs. control cell), sample name, or cell cycle phase. For visualization of 
numeric and categorical cell attributes scBubbletree relies on the R-package ggplot2. 
Assembly of plots from multiple cell attributes is done with the R-package patch-
work (version 1.1.1), which enables attaching of user-generated ggplot2 figures to the 
bubbletree.

(3)
D
ij
b =

1

n′in
′
j

∑

∀x ∈ X
∀y ∈ Y

√

(x − y)2,
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scBubbletree provides three functions for visualization of numeric cell attributes: the 
function get_num_tiles computes statistical summaries (mean, median, sum, number of 
zero/nonzero values, etc.) of numeric cell attributes in each bubble and visualizes them 
with tile plots (heatmaps); the function get_num_violins visualizes the distributions of 
numeric cell attributes in each bubble with violin plots; the function get_num_cell_tiles 

Fig. 2  scBubbletree analysis of dataset B. A Gap statistic for clustering solutions generated by Louvain 
clustering algorithm with varying clustering resolutions. Vertical error bars are 95% confidence intervals of 
the gap statistic. B WGI index for clustering solutions by Louvain algorithm and the cell type annotation sets 
l1 (gray points and lines) and l2 (black points and lines). C bubbletree with 24 bubbles (white points) shown 
as leaves. Bubble radii scale linearly with the number of cells in the bubbles. Bubble identities, absolute (in 
thousands) and relative cell frequencies are shown as labels. Gray branch labels are branch bootstrap support 
values. Clades of lymphocytes and monocytes are labeled with symbols ‘a’ and ‘b’. D Within-bubble relative 
frequencies (%) of cell types (l1; x-axis) rounded to the nearest tenth. Rows integrate to 100% (up to rounding 
error)
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visualizes numeric attributes of individual cells in each bubble using heatmaps, with the 
cells ordered by the magnitude of their numeric attributes.

Categorical cell attributes are visualized using a matrix of tiles in which columns rep-
resent specific attribute categories. Tile colors and annotations can be configured for 
two types of interpretation using the logical parameter integrate_vertical. For integrate_
vertical=T the tiles will show the relative frequencies of each attribute label across the 
different bubbles, which answers questions such as: are cells carrying a specific label (e.g. 
‘T cell’ or sample label ‘S1’) enriched in a particular set of bubbles? Alternatively, for 
integrate_vertical=F the tiles will show the within-bubble relative frequencies of differ-
ent labels. With this information we can answer questions such as: what is the label com-
position in a particular bubble?

Evaluation of scBubbletree using publicly available data

scBubbletree was evaluated with two publicly available scRNA-seq datasets, which we 
call A and B; for detailed descriptions of datasets and workflow see Supplementary 
Section 2.

Dataset A contains 3,918 cell transcriptomes from five human lung adenocarcinoma 
cell lines (HCC827, H1975, A549, H838 and H2228) [30]. The predicted cell line labels 
for each cell are available as part of the meta data. Dataset B contains transcriptomes 
of 161,764 peripheral blood mononuclear cells (PBMCs) from eight healthy volunteers 
enrolled in an HIV vaccine trial [8]. PBMC subtype predictions are available for each 
cell at two levels of resolution: annotation set l1 and l2 with 8 and 31 subtype categories, 
respectively.

In both datasets we saw that the first 15 principal components capture most of the 
variance in the data, and the proportion of variance explained by each subsequent prin-
cipal component was negligible (Supplementary Fig. S1A-B). Thus, we used the single 
cell projections in 15-dimensional feature space, A3,918×15 and A161,764×15 , as input of 
scBubbletree.

To assess scBubbletree’s versatility in analyzing scRNA-seq data from solid tumors, 
we studied scRNA-seq samples from glioblastoma tissues. A detailed description of the 
datasets and workflow is available in Supplementary Section 3.

Results
Study A: exploring sample of five cancer cell lines

Generating the bubbletree

We know that dataset A contains a mixture of five cancer cell lines. Hence, we expect 
k = 5 cell clusters or communities. To verify this we computed the gap statistic for the 
Louvain method with resolution parameter r = 10R , where R was initialized using a 
sequence of values from −4 to 1 in increments of 0.1. At each resolution r we recorded 
the number k ′ of identified communities (Supplementary Fig. S2A). WGIs were com-
puted based on the cluster assignments and the vector of predicted cell line labels.

The gap curve had a distinct ‘elbow’ at k ′ = 5 ( r ∈ [0.003, 0.1] ) (Fig. 1B). In line with 
these observations, we saw a steep drop in the WGIs to a value close to 0 at k ′ = 5 
( r = 0.003 ) (Fig. 1C) These results suggested that there is little benefit in using clustering 
resolutions that yield more than five communities.
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In the next step of the scBubbletree workflow we applied clustering with the origi-
nal version of Louvain [13] (function get_bubbletree_graph) and resolution parameter 
r = 0.003 ( k ′ = 5 ). For input, we constructed a SNN graph based on A3,918×15 , where 
each vertex (cell) was connected to its 50 nearest neighbors. Clustering was performed 
with 20 random starts and up to 100 iterations in each run. The clusters were organized 
in a bubbletree by hierarchical clustering with average linkage (tree in Fig. 1D). We ran 
B = 1000 bootstrap iterations and drew samples with up to Neff = 200 cells from each 
cluster to estimate inter-cluster distances and their robustness.

Examining the bubbles

Bubble sizes range from the smallest (bubble 4, 437 cells, 11.2% of the sample cells) to 
the largest (bubble 0, 1,253 cells, 32% of the sample cells). By visualizing the cell lines 
as categorical attributes, we saw clear mapping between different cell lines and bubbles 
(heatmap in Fig. 1E), i.e. cells from a specific cell lines were enriched in specific bubbles. 
For instance, 100% of the cells in bubble 0 and 4 belonged to cell line A549 and H1975, 
respectively, and between 99.5% and 99.8% of the cells in bubbles 1, 2 and 3 belong to 
cell lines H838, H2228 and HC827, respectively.

By visualizing in each bubble the mean (normalized) expression (Fig.  1F) and the 
expression distributions (Fig. 1G) of five marker genes (one per cell line), we were able 
to confirm that bubble 0 was not only enriched with cells from cell line A549, but also 
had high ALDH1A1 expression which is a known A549 marker [31]. Similarly, bubble 
4 had high expression of CT45A2 which is a marker of H1975 [32]. Bubbles 1, 2, and 3 
were associated with high expression of SLPI, S100A9, and PIP4K2C, respectively, and 
based on data from the Cancer Dependency Map Portal (https://depmap.org; accessed 
23.06.2022) we were able to confirm that these genes are typically over-expressed in cell 
lines H838, H2228, and HCC827, respectively.

Examining the tree

The distance between bubble 3 and 4 was smaller than that of any other pair of bub-
bles in the bubbletree (Fig. 1D). This hinted at relatively higher transcriptional similarity 
between the corresponding cell lines HCC827 and H1975. Furthermore, bubble 3 and 4 
were in a robust sub-tree that was found in all 1,000 bootstrap dendrograms. The sub-
tree of bubbles 0, 3, and 4 was less robust (932 of 1,000 bootstrap dendrograms).

The robust sub-tree of bubbles 3 (cell line HCC827) and 4 (cell line H1975) with the 
relatively short distance between these bubbles indicates transcriptional similarity of 
these cell lines. We checked this aspect of the tree by comparison with a set of inde-
pendently measured transcriptional profiles of 69 adenocarcinoma cell lines from the 
Cancer Cell Line Encyclopedia [33], including HCC827 and H1975 (Supplementary 
Section 4). Euclidean distances were computed between the vectors of normalized gene 
expressions of all pairs of cell lines. The distance between HCC827 and H1975 was the 
6th lowest among 2,346 pairwise comparisons (Supplementary Fig. S3), whereas the 
distances between the remaining cell lines of dataset A fell well within the general dis-
tribution of distances between the different adenocarcinoma cell lines. This result is con-
sistent with the structure of the bubbletree, especially the robust closeness of bubbles 3 
and 4.
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Dataset A had been measured with an artificially mixture of five distinct cell line pop-
ulations, which explains the simple structure of the resulting bubbletree. The recovery 
of the ground truth of five cell lines (Fig. 1), was a sanity check for scBubbletree. In this 
simple case, even UMAP and t-SNE were able recover aspects of the overall structure 
(Supplementary Fig. S4A,B). The advantage of bubbletrees over these standard methods 
was the quantitative visualization of tree structure and cluster sizes. However, scBubble-
tree has been developed for the analysis of more complex scRNA-seq data that are typi-
cally observed with real tissue samples, as in the following study B.

Study B: exploring a sample of human PBMCs

Clustering resolution

To determine the clustering resolution of dataset B we computed the gap statistic for 
the Louvain method with resolution parameter r = 10R , where R was initialized using a 
sequence of values from −4 to 1 in steps of 0.1 (Fig. 2A). At each resolution we recorded 
the number k ′ of identified communities (Supplementary Fig. S2B).

The gap increased rapidly between k ′ = 1 and k ′ = 11 , followed by a dip at k ′ = 12 and 
a further ascend to about 4 at k ′ = 24 ( r ≈ 0.79 ), and a much slower, approximately lin-
ear increase at higher k ′ (Fig. 2A). The increase in the gap between k ′ = 22 and k ′ = 24 
was about two-fold larger than that in the interval between k ′ = 22 and k ′ = 57 , even 
though only two communities were added in the first interval and 23 communities 
(about 10-fold more) were added in the second interval. This suggested that there is little 
benefit in using values of r larger than 0.794 ( k ′ = 24).

The value of k ′ = 24 is close to the number of 18 canonical cell populations identified 
in PBMCs in the Human Protein Atlas (HPA) database (https://​www.​prote​inatl​as.​org/​
human​prote​ome/​immune+​cell).

Clustering resolution analysis based on WGI

To compute WGI curves we used as inputs the PBMC subtype labels from annotation 
set l1 and l2 and the Louvain clustering assignments generated for the gap analysis. 
We saw that annotation set l1 (Fig. 2B) was associated with lower WGIs compared to 
l2. The relatively lower WGIs of l1 are likely due to the fact that l1 contains labels of 8 
major PBMC subtypes that have distinct transcriptional profiles. Hence, in each bubble 
of dataset B we expect a low degree of mixing in terms of different l1 labels (Fig. 2D). In 
contrast to this, annotation set l2 contains labels of 31 PBMC subtypes including, for 
instance, 13 T cell subtypes with comparable transcriptional profiles. Hence, we expect 
relatively higher degree of mixing of different l2 labels in common clusters in compari-
son to the l1 labels.

The WGI curve converged to low WGIs at k ′ ≈ 20 for both annotation sets. This is 
similar to the clustering resolution of k ′ = 24 identified with the gap curve.

Clustering and generating the bubbletree

For clustering of dataset B we chose the original Louvain method and a resolution 
parameter r = 0.794 ( k ′ = 24 ). First, we constructed a SNN graph based on A161,764×15 , 
where each vertex (cell) in the SNN graph was connected to its 50 nearest neighbors. 
Clustering was performed with 20 random starts and up to 100 iterations in each run. 

https://www.proteinatlas.org/humanproteome/immune+cell
https://www.proteinatlas.org/humanproteome/immune+cell
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The clusters were organized in a bubbletree using hierarchical clustering with average 
linkage (Fig. 2C). For this we used B = 1000 bootstrap iterations and drew samples with 
up to Neff = 200 cells from each cluster to compute inter-cluster distances.

The resulting bubbletree (Fig. 2C) had 24 bubbles with sizes ranging from 19,600 cells 
(12%, cluster 0) down to 300 cells (0.2%, cluster 23). The bubbletree had two major clades 
and two small outgroup bubbles (Fig. 2C). Clade ‘a’ contained 15 bubbles that accounted 
for about 65% of the cells in the sample, whereas clade ‘b’ contained seven bubbles that 
accounted for about 32% of the cells in the sample. Nearly all branches in the bubbletree 
were completely robust. The branch between bubble 4 and 7 had lower branch support 
as it was found in only 909 out of 1000 bootstrap dendrograms. A biological interpreta-
tion of the different clades and their within-clade branching patterns are provided in the 
following.

Bubbletree evaluation with annotation set l1 with 8 canonical PBMC subtypes

To determine which PBMC subtypes are enriched in each bubble we visualized the 
within-bubble relative frequencies of 8 major PBMC subtypes from annotation set l1 
(heatmap in Fig. 2D). Note that Figs. 2C, D demonstrate that bubbletrees (Fig. 2C) can 
be easily and coherently stacked with additional quantitative information (Fig. 2D), thus 
facilitating biological interpretation (Supplementary Fig. S5 for more extensive stacking).

Figure 2D shows that most bubbles are enriched with cells from either one PBMC sub-
type or a combination of related subtypes (e.g. CD4+ and CD8+ T cells). Furthermore, 
bubbles enriched with cells from related PBMC subtypes are close to each other in the 
bubbletree; for instance, bubbles 10, 11, and 23 are enriched with B cells and constitute a 
robust subclade of the bubbletree. Similarly, bubbles 5, 3, 1, 12, 19, 13 and 16 form clade 
‘b’ and are enriched with monocytes and dendritic cells (DCs).

The bubbles of clade ‘a’ are mostly enriched with lymphocytes, and robust subclades 
within clade ‘a’ are formed by sets of bubbles that are enriched with specific lymphocyte 
subtypes, including T cells, B cells, and NK cells. The small outgroup bubble 21 con-
tains a mixture of different lymphocytes. Clade ‘b’ has seven bubbles that are enriched 
in monocytes and DCs. The branches in that clade form a ladder-like topology in con-
trast to the more complex nested topology of clade ‘a’. The simpler topology in ‘a’ may be 
due to the lower heterogeneity of circulating monocytes compared to lymphocytes, with 
classical monocytes constituting about 85% of all circulating monocyte pool in humans 
[34].

Clearly separated from clades ‘a’ an ‘b’ is the small outgroup of bubbles 20 of DCs and 
18 consisting of a mixture of cells (‘other’).

Supplementary Section  5 contains a bubbletree analysis based on the more detailed 
annotation set l2, revealing enrichment of specific PMBC subtypes in the different 
bubbles.

Comparison with known approaches

We compared scBubbletree with UMAP, t-SNE and other popular methods for scRNA-
seq data visualization with respect to visualization clarity, conservation of local and 
global data structure.
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Conservation of local structure: qualitative analysis

In the following we compare the ability of the Louvain method to conserve local struc-
ture with those of UMAP and t-SNE. For this analysis we generated conventional UMAP 
and t-SNE figures for datasets A and B (Supplementary Fig. S4A–D).

In each figure, the different bubbles in dataset A and B were represented by heavily 
overplotted groups of dots in 2D UMAP and t-SNE space so that group size cannot be 
discerned from the figure. To our surprise, some cell lines from dataset A were split by 
UMAP and t-SNE into multiple subclusters; for instance, the cell line H1975 (bubble 4) 
had three distinct subclusters. The apparent distances between these subclusters in the 
drawing plane was more pronounced in t-SNE space (Supplementary Fig. S4B). Simi-
larly, cell lines A549 (bubble 0) and H838 (bubble 1) were split into at least two subclus-
ters of cells (Supplementary Fig. S4A–B). We realized that the cells from the smaller 
subclusters of A549 and H838 had systematically lower numbers of detected RNA mol-
ecules compared to the cells from the larger subclusters (Supplementary Fig. S6C–F). 
In contrast to this, the three subclusters in H1975 had comparable numbers of detected 
RNAs (Supplementary Fig. S6A–B), i.e. the subcluster structure of cell line H1975 could 
not be explained by differences in the number of detected RNA molecules. By using 
higher clustering resolution as input of Louvain we recovered these subclusters (data not 
shown). However, this was associated with negligible improvement in the gap and WGI 
(Fig. 1B–C).

Several conclusions can be drawn from this qualitative analysis. First, visualization of 
the local structure of scRNA-seq data with UMAP and t-SNE can be challenging even 
for relatively small samples. Second, UMAP and t-SNE are prone to generating clearly 
separated visual clusters despite few underlying biological differences [7]. Furthermore, 
UMAP and t-SNE use a number of hyperparameters, which can have severe impact on 
the 2D projection [2, 7] (Supplementary Fig. S7). Taken together, it is difficult to ascer-
tain whether the subclusters in dataset A represent biologically distinct subpopulations 
of the main cell lines or technical artifacts resulting from biological/technical noise.

Conservation of distance structure

Users of conventional methods such as UMAP or t-SNE are tempted to interpret dis-
tances between dots or apparent clusters as indicators of transcriptional similarity of the 
corresponding cells. Yet, several studies [2, 35] have warned that while both, UMAP and 
t-SNE, consistently conserve distances on a small-scale, accurate conservation of large-
scale distances is not always guaranteed.

To highlight the challenge in conserving large-scale distances with conventional meth-
ods, we analyzed UMAP and t-SNE plots of a dataset with over 1.3 million mouse brain 
cells (Supplementary Fig.  S8A–B). The UMAP and t-SNE plots suffer from excessive 
overplotting, which hinders visual evaluation of the distances between cells and clusters. 
In addition to this, we see large spread (indicated by the wide and overlapping error bars 
in Supplementary Fig. S8C–D) in the distances between cells in 20D PCA space over the 
entire range of distances in 2D UMAP and t-SNE space, which indicates ambiguous map-
ping of distances in 2D UMAP and t-SNE space relative to distances in 20D PCA space. 
We saw similar patterns in the 2D UMAP and t-SNE plots of dataset B (Supplementary 
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Fig. S4G–H), even though dataset B is about one order of magnitude smaller than the 
dataset of mouse brain cells. As currently available workflows for scRNA-seq are able 
to generate data at similar scale and complexity as in these examples, we conclude that 
inference of transcriptional relationships between cells and clusters from UMAP and 
t-SNE will in general not be reliable.

Bubbletrees by construction should better reflect distances in PCA space in the den-
drogram distances. In fact, Supplementary Figs. S4I–J and S9B demonstrate that bubble-
tree distances are consistent with the average distances in PCA space between cells from 
the corresponding bubbles. This was true for distances on all scales except for intra-bub-
ble distances, which correspond to bubbletree distance = 0 (distances between bubbles 
to themselves). For bubbletree distances equal to 0 we saw consistently small average dis-
tances between cells in PCA space. It is noteworthy that the spread of distances between 
dots in PCA space was not uniform over all pairs of bubbles, presumably because the 
underlying clusters deviate more or less from homogeneous spherical shapes in PCA 
space, leading to the dispersion of inter-bubble cell distances.

Visualization clarity

We assessed the visualization clarity of scBubbletree with respect to two aspects: (1) 
scalability: the ability to handle large RNA-seq datasets; (2) flexibility: the ease of incor-
porating diverse cell attributes as part of the main visuals.
Scalability We investigated scalability in the context of the overplotting problem. A 

high degree of overplotting was observed in the 2D UMAP and t-SNE maps generated 
based on dataset A and B (Supplementary Fig. S4A–D). The overplotting was particu-
larly excessive in the 2D UMAP and t-SNE maps of dataset B, where individual dots 
(cells) were barely visible and clusters of cells appeared as colored blobs. There are sev-
eral consequences of such massive overplotting: 1. failure to grasp data’s local and global 
structure; 2. inadequate description of cluster homogeneity in terms of different cell 
attributes; 3. loss of information about the density of cells across the different clusters; 
and 4. visual biases, i.e. users can deliberately or inadvertently emphasize or de-empha-
size specific cell attributes by assigning the corresponding cells to the top of the cell piles 
[36].

Various techniques have been proposed to mitigate the overplotting problem, such 
as, reducing the size of the dots, adding an alpha channel for point transparency, data 
subsetting [37], hexagonal cell binning [36], applying density-conserving dimensional-
ity reduction [38] or exploring the data with interactive graphical tools [39]. However, 
as the scale of scRNA-seq datasets continues to increase these countermeasures are of 
limited help, and most of them even have a negative impact on the clarity of the resulting 
figures.

Instead of visualizing individual cells, scBubbletree uses a high-level abstraction 
(bubbletree) to summarize scRNA-seq datasets and thereby avoids the overplotting 
problem. To demonstrate the high degree of scalability of scBubbletree in comparison to 
UMAP and t-SNE, we visualized with each approach a dataset of over 1.3 million mouse 
brain cells (Supplementary Fig. S8A–B and S9A). While both visuals are complex, the 
bubbletree approach at least offers an opportunity to understand the dataset, whereas 
the UMAP and t-SNE visuals lump all cell clusters into densely packed areas, making it 
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impossible to understand the structure of the data. scBubbletree is not the only approach 
that employs trees to visualize scRNA-seq data, i.e. approaches such as TooManyCells 
[25] and clustree [40] use similar strategies to mitigate the overplotting problem.
Flexibility The flexibility of scBubbletree was compared with that of UMAP, t-SNE, 

TooManyCells and clustree. Specifically, we assessed the ease with which each tool is 
able to integrate and combine multiple cell attributes. It is important to note that while 
these tools are functionally related to scBubbletree, there are inherent differences in the 
tasks they aim to solve. Therefore, a direct comparison of their results was not possible.

Cell attributes are visualized in UMAP and t-SNE plots by color-coding each point 
according the value of a particular attribute (e.g. expression level of a marker gene). For 
simultaneous visualization of two or more cell attributes, it is current practice to gen-
erate multiple and often small copies of the UMAP or t-SNE plots in which the indi-
vidual attributes are visualized [41]. Although this method of integrating and presenting 
scRNA-seq data is widely used, it suffers from the same and even more shortcomings 
than individual UMAP and t-SNE plots.

TooManyCells is more flexible as it uses multiple facets to visualize cell attributes 
alongside its dendrogram e.g. by adjusting the color-code or the widths of its branches to 
for visual summaries (e.g. averages) of continuous cell attributes. TooManyCells can also 
attach pie charts to each leaf-node to visualize the within-leaf composition of a categori-
cal attribute. Plots that encode information in such a diverse set of visual elements make 
it difficult for the viewer to decode and discover relationships.

The clustree algorithm visualizes cell attributes as part of its main dendrogram by 
adjusting the different visual elements such as colors, sizes, shapes and labels of the leaf-
nodes. However, clustree is less flexible than TooManyCells as only few cell attributes 
can be integrated simultaneously alongside the main dendrogram. One of the key advan-
tages of clustree is that it allows users to explore relationships between clusterings at 
multiple resolutions, which can be used determining the optimal number of clusters. 
Similar functionality is implemented in scBubbletree’s function compare_bubbletrees, 
which enables comparison of pairs of bubbletrees generated from the same scRNA-seq 
data but with different input parameters such as e.g. clustering resolutions.

With scBubbletree we have therefore limited the number of types of visual elements 
(dendrogram, bubbles, and annotations) but made it easy to attach to the tree simple, 
matrix-like plots (heatmaps, violins) with one matrix row for each bubble (e.g. Figs. 1D 
or 2D). So the tree can be virtually read from left to right or top to bottom in a consistent 
way. Several of these matrix-like elements can be combined without hampering analysis 
by visual overloading (Supplementary Fig. S5).

Discussion
To avoid some of the common problems associated scRNA-seq data visualization, we 
designed scBubbletree to convey key properties of cells in ways that are visually easily 
accessible and scalable. These properties include quantitative information about local 
and global similarity of transcription patterns and cell density. The properties can be flex-
ibly linked to stacks of visually easily accessible additional information, e.g. on marker 
gene expression, cell type, or information from multiomics experiments such as immune 
cell receptors, surface-protein expression or methylation levels. The quantitative nature 
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of its output lends scBubbletree to applications not only to research but also to quality 
control (Supplementary Section 2.4).

Yet, scBubbletree has clearly limitations. For instance, as a part of computing the den-
drogram, the user has to choose a resolution. Although scBubbletree provides tools that 
support this choice, some familiarity with the underlying clustering concepts is required 
which precludes use of scBubbletree in a black-box manner. Furthermore, estimating 
the clustering resolution with get_k and get_r can be challenging in terms of computing 
times and memory for datasets of millions of cells, as these functions perform repeti-
tive clustering simulations for a set of clustering resolutions. While the computational 
burden can be mitigated by parallelization, scBubbletree does not yet implement data 
representations that minimize memory requirements. In terms of its visualization capa-
bilities, the current version of scBubbletree provides only the most essential functions 
for visualization of cell attributes. Future developments of the code will enrich its visu-
alization repertoire in accordance with new developments in single-cell multiomics.

Conclusions
scBubbletree improves quantitative exploration of scRNA-seq data in several ways. First, 
in contrast to UMAP or t-SNE, the expressiveness and accessibility of scBubbletree out-
put is robust against increasing number of cells, a feature that is becoming more and 
more important. Second, scBubbletree directly conveys quantitative information. Third, 
scBubbletree allows stacking of various types of information in easily accessible form. 
For instance, scBubbletree allows seamless integration of scRNA-seq data with other 
omics-modalities (e.g. genomic, transcriptomic, or epigenomic data). This feature is flex-
ibly customizable and makes the analysis of the rich data available in current experi-
ments straightforward.
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