
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

SOFTWARE

Santiago and Shrestha BMC Bioinformatics (2024) 25:335
https://doi.org/10.1186/s12859-024-05924-1

BMC Bioinformatics

DNA-protein quasi-mapping for rapid
differential gene expression analysis
in non-model organisms
Kyle Christian L. Santiago1,2 and Anish M. S. Shrestha1,2*

From International Conference on Genome informatics GIW XXXI/ISCB-Asia V 2022
Tainan, Taiwan. 12-14 December 2022.

Abstract

Background: Conventional differential gene expression analysis pipelines for non-
model organisms require computationally expensive transcriptome assembly. We
recently proposed an alternative strategy of directly aligning RNA-seq reads to a pro-
tein database, and demonstrated drastic improvements in speed, memory usage,
and accuracy in identifying differentially expressed genes.

Result: Here we report a further speed-up by replacing DNA-protein alignment
by quasi-mapping, making our pipeline > 1000× faster than assembly-based approach,
and still more accurate. We also compare quasi-mapping to other mapping techniques,
and show that it is faster but at the cost of sensitivity.

Conclusion: We provide a quick-and-dirty differential gene expression analysis
pipeline for non-model organisms without a reference transcriptome, which directly
quasi-maps RNA-seq reads to a reference protein database, avoiding computationally
expensive transcriptome assembly.

Keywords: Quasi-mapping, DNA-protein alignment, RNA-seq, Non-model organism,
Differential gene expression analysis

Background
Due to decreasing cost of sequencing, RNA-seq has become a mainstay of gene expres-
sion studies on a wide variety of organisms spanning the tree of life. A vast majority
of these organisms do not have well-annotated reference genomes or transcriptomes,
which are required by standard RNA-seq data analysis pipelines. A conventional work-
around for such “non-model” organisms has been to assemble a transcriptome sequence
from the RNA-seq reads, which is then used as reference. Functional inference of differ-
entially expressed genes are done by aligning the assembled contigs to reference protein
databases to find orthologs.

*Correspondence:
anish.shrestha@dlsu.edu.ph

1 Bioinformatics Lab, Advanced
Research Institute for Informatics,
Computing, and Networking, De
La Salle University Manila, 2401
Taft Avenue, Manila, Philippines
2 Department of Software
Technology, College
of Computer Studies, De La
Salle University Manila, 2401 Taft
Avenue, Manila, Philippines

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05924-1&domain=pdf
http://orcid.org/0000-0002-9192-9709

Page 2 of 14Santiago and Shrestha BMC Bioinformatics (2024) 25:335

In some applications of RNA-seq in non-model organisms, transcriptome assembly,
which requires massive computational resources, tends to be an overkill. This is espe-
cially the case when the main aim is to identify over or under-expressed genes, and not,
say, to discover novel transcripts. In such cases there is no direct interest nor enough
sequencing depth to reconstruct good quality transcript sequences. Apart from being
resource hungry, transcriptome assembly is also known to introduce errors such as over-
extension, mis-assembly, etc [1, 2].

In our prior work, we proposed the novel pipeline SAMAR [3], which directly aligns
RNA-seq reads to a protein database—the one that would have been after-all used by the
assembly-based approach for functional analysis—to measure expression and for sub-
sequent differential expression analysis. Another recently proposed software tool Seq-
2Fun [4] also uses nucleotide-to-protein alignment for gene abundance quantification
and functional profiling of RNA-seq data. An obvious outcome of this direct alignment
approach is the drastic reduction of computational costs compared to the assembly-
based approach. More interestingly, we showed that this approach has significantly
higher precision and recall than assembly-based approach in identifying differentially
expressed genes.

Here we sought to further speed up SAMAR, by exploiting the fact that gene expres-
sion levels can be estimated based on just the knowledge of which reference sequence(s)
each read maps to, without the need to compute alignments. For the problem of map-
ping RNA-seq reads to a reference transcriptome, this idea of replacing traditional align-
ment by faster mapping techniques is known to provide significant speed-ups [5–7].
We adapted to our case of mapping RNA-seq reads to a reference protein database, one
such mapping technique, called quasi-mapping, the main idea of which is to determine
the mapping by rapid look-ups of sub-strings of a query sequence. We incorporated
our quasi-mapping technique into a pipeline for differential analysis. We show that our
pipeline is > 1000× faster while remaining to be more accurate than assembly-based
approach. Compared against other alignment/mapping strategies, we show that our
method is fastest at the cost of sensitivity.

An implementation of our pipeline SAMAR-lite is available at https:// github. com/
bioin fodlsu/ samar_ lite

Methods
Notations

For a string S, we use S[i : j] to denote the substring of S starting at position i and ending
at position j. We use |S| to denote the length of S.

Reference index construction

In the first stage of our method, we construct an index of the reference set of proteins
to allow quick sub-string searches. We describe the data-structures below with the aid
of an example shown in Fig. 1. We concatenate the reference sequences into a string C,
separating the individual sequences by the special character $. We construct the suffix
array SA of C, which is an array containing the indices of the sorted suffixes of C, and
allows for fast sub-string searches using binary search. We augment SA with a hash table
HT which maps a k-mer S present in C to HT(S) which is an interval in SA containing

https://github.com/bioinfodlsu/samar_lite
https://github.com/bioinfodlsu/samar_lite

Page 3 of 14Santiago and Shrestha BMC Bioinformatics (2024) 25:335

suffixes that have S as prefix. The role of HT is to allow faster searches in SA by reduc-
ing the search area of binary search. This idea has been explored in greater detail in [8].
Additionally, we construct a bit vector B of the same length as C containing 1 at each
position corresponding to the special character $ and 0 elsewhere. A rank query rankB(i)
takes a position i of SA as input and returns the number of 1s up to position i in B,
essentially identifying the protein sequence in C corresponding to position i in the suffix
array. A rank query can be accomplished in constant time by representing B using a suc-
cinct data-structure. A rank query can be generalized to rankB([i, j]) , where it takes an
interval [i, j] of SA and returns the corresponding set of proteins.

Quasi‑mapping

In the second stage, we map each RNA-seq read to protein sequence(s) likely to be the
translation product of the transcript from which the read originates. Our method closely
follows the quasi-mapping technique of [6]. The core idea is to determine the mapping
based on the set of k-mers and extended k-mer matches that are found rapidly using the
data-structures described above.

In more detail, for each read, we first translate it into six amino acid sequences, one
for each possible reading frame. Let T be one such translation. We iterate through the
positions of T, performing at a position pos, the actions described below and also in the
psuedo-code in Algorithm 1. If the k-mer starting at pos is a key in HT, we obtain its
corresponding suffix array interval sai. We next attempt to extend the match by adding
the amino acid at pos + k to the current k-mer and performing a binary search within
sai. We repeat this extension process until no matches can be found. At the end of the
extension process, let k ′ be the length of the extended k-mer and sai′ be the maximal suf-
fix array interval containing suffixes whose prefix is T [pos : pos + k ′]. Let P be the set of
protein sequences whose sub-strings are in the interval sai′ . For each P ∈ P , we record
that there was a k ′-length substring match. The next iteration begins at pos + k ′ , or at
pos + 1 if the k-mer at pos was not in HT to begin with.

Fig. 1 Example of the reference index data-structures for the set of sequences MVVAV, VAVNV, VAAVV .
C is the concatenated string, B is the bit-vector, SA suffix array, and HT is a hash table mapping a 2-mer to a
suffix array interval containing suffixes whose prefix is the 2-mer

Page 4 of 14Santiago and Shrestha BMC Bioinformatics (2024) 25:335

This mapping procedure is run six times, once for each possible reading frame. As
the final mapping output, we return all protein sequences whose coverage, which is
the total length of sub-string matches found, is larger than a pre-specified threshold,
for any of the reading frames.

Algorithm 1 Quasi-mapping of one translation of a read. This process is repeated for all possible 6 frames.

Counting

The mappings generated from the previous step are used to measure expression levels
to be used for differential expression analysis. As in SAMAR, we follow the count-
ing strategy of rescuing multi-mapping reads [9]. The counting is done in two passes.
First, for each sequence P in the reference, we count the number of reads mapping
uniquely to it, and normalize the count by |P|. Let this normalized count be nP . Sec-
ond, for each multi-mapping read, we update the count of each sequence P it multi-
maps to, in proportion to nP . That is, we add to nP the value nP/

∑
nQ , where the

summation is over all Qs to which the read maps. If the denominator is zero, we dis-
tribute the count evenly among the proteins the read multi-maps to.

Implementation details

We implemented the quasi-mapping method in the Rust programming language [10]
using the RustBio library [11] for the suffix array and succinct representation of the
bit vector for efficient rank queries. We incorporated the mapping step, the counting
step, and DESeq2 [12] for differential analysis into a Snakemake [13] pipeline. The
software is available at https:// github. com/ bioin fodlsu/ samar_ lite.

https://github.com/bioinfodlsu/samar_lite

Page 5 of 14Santiago and Shrestha BMC Bioinformatics (2024) 25:335

Results
Read simulation

For benchmarking, we used an RNA-seq read dataset that simulates a typical small-
sample-size and low-coverage whole-genome gene expression experiment from our
prior work [3]. The dataset was generated using Polyester [14] from the protein-
coding transcriptome (BDGP6.28) of D. melanogaster obtained from Ensembl Genes
101 and containing 28,692 transcripts of 13,320 genes. We simulated two groups of
read sets, with three replicates in each group. For the first group, we set the mean
expression levels to be proportional to the FPKM values from an arbitrary poly-A+
enriched real RNA-seq data (ArrayExpress E-MTAB-6584). In the second group,
around 30% of the transcripts were simulated to be differentially expressed with dif-
ferent levels of up-regulation and down-regulation. The transcripts were chosen by
randomly selecting genes and setting only the highest expressing isoform to be dif-
ferentially expressed. Each read set had roughly 20 million pairs of 100 bp reads with
mean fragment length of 250 bp.

Mapping performance and run time

Reference proteomes used

We first evaluated the performance of our method in the task of mapping the reads to
four reference proteomes at varying levels of evolutionary divergence from the read
source. The D. melanogaster proteome (Uniprot ID UP000000803) provides a baseline
for performance comparison. The proteomes of D. ananassae (UP000007801) and D.
grimshawi (UP000001070) were used to study the effect of mapping to the proteome of
close relatives. Additionally, the proteome of Anopheles gambiae (UP000007062) was
used to study the effect of mapping to a distant relative. Phylogenetic studies place D.
melanogaster closer to D. ananassae, with a separation of 10-20 MY, than D.grimshawi,
with separation of around 40 MY (see e.g. [15, 16]). According to one estimate, the line-
ages of D. melanogaster and A. gambiae separated roughly 250 MYA, and the average
sequence identity at amino acid level in orthologous exons is only around 61.6% [17].

Tools compared

We compared our mapping performance against several existing tools for DNA-pro-
tein alignment/mapping of large data: LAST [18] (version 1060), DIAMOND [19]
(version 2.0.12), and Kaiju [20] (version 1.9.0). We selected LAST as it was the align-
ment tool used in SAMAR [3]. We selected DIAMOND because it is a widely used
DNA-protein alignment tool for big sequence data, although mainly focusing on
metagenomic data. Kaiju, which employs maximum exact matches (MEM) to com-
pute mappings, was originally proposed for metagenomic data, but it has recently
been used by Seq2Fun [4] for RNA-seq dataset profiling. The commands used to run
each tool is provided in the Appendix.

Evaluation metric

We evaluated mapping correctness as follows. Consider a read r from a transcript
of D. melanogaster gene g. Let Mg be the set of protein products of g. When using

Page 6 of 14Santiago and Shrestha BMC Bioinformatics (2024) 25:335

D. melanogaster proteome as reference, r was defined to be correctly mapped if at
least one of the proteins it was mapped to, is in Mg . When using the other references,
we determined correctness using pre-computed orthology maps between D. mela-
nogaster–D. ananassae and D. melanogaster–D. grimshawi and D. melanogaster – A.
gambiae pairs, which were obtained from InParanoid [21]. We defined r as being cor-
rectly mapped if at least one of the proteins it was mapped to is in an ortholog group
containing a protein from Mg . A read with no mappings reported is not counted as
correct or incorrect.

Mapping performance and running times are plotted in Figs. 2 and 3, respectively.

Differential expression analysis performance

Next, we fed the alignments/mappings produced by each tool to downstream differ-
ential expression analysis and compared their performance in identifying differen-
tially expressed genes.

Fig. 2 Mapping performance of the different aligners/mappers when using different reference proteomes.
For DIAMOND, different points correspond to the different available presets: normal, fast, mid-sensitive,
sensitive, more-sensitive, very-sensitive, and ultra-sensitive. For Kaiju, the points correspond to setting the
mode to greedy and MEM. For LAST, the maximum mismap probability was set to 0.95,0.9, and 0.8. For our
method, we used the k-mer size of 7 and coverage threshold was varied among 40, 50, and 60

Page 7 of 14Santiago and Shrestha BMC Bioinformatics (2024) 25:335

Pipelines compared

Of the possible parameters for each tool, we used the normal preset for DIAMOND,
greedy for Kaiju, maximum mismap probability of 0.95 for LAST, and k-mer 7 with
coverage threshold 40 for our method. The mappings were counted using the method
described in the Methods section. For LAST, we used a slightly different variation
offered in SAMAR, in which the counts are normalized by the length of the regions that
have reads mapping to them rather than the entire length of the protein. The counts are
then passed to DESeq2 [12] for differential expression analysis.

Additionally, to mimic the case of a non-model organism, we pretended that D.
melanogaster reference transcriptome doesn’t exist; and we ran a typical assembly-
based pipeline consisting of: Trinity [22] for de-novo transcriptome assembly, fol-
lowed by Bowtie2 [23] for mapping the reads to the assembly, RSEM [24] for counting,
tximport [25] for gene-level aggregation using the gene-to-transcript mapping provided
by Trinity, and finally DESeq2 [12] for differential analysis. Dammit was used for anno-
tating the assembled contigs against the D. ananassae and D. grimshawi proteomes.
Since the annotation process produces many short local alignments, we keep only those
alignments covering at least 50% of the length of the contig as evidence of homology.
Commands used for assembly are described in the Appendix.

Evaluation metric

We evaluated each pipeline based on their precision and recall in predicting differ-
entially expressed genes. Let Mg be the set of protein products of a D. melanogaster
gene g. When using the D. melanogaster reference, an actual up-regulated (down-reg-
ulated) gene g is defined as correctly predicted if at least one protein in Mg (defined
in previous section) was predicted to be up-regulated (down-regulated). When using
the proteome of a relative as reference, g is defined as correctly predicted if at least
one protein in an ortholog group containing Mg was predicted to be up-regulated
(down-regulated). We define precision as the proportion of predicted differentially

Fig. 3 Comparison of mapping run times for a typical sample containing roughly 21 million pairs reads
of length 100 bp each. Each tool was run on a single thread and with the following settings: normal for
DIAMOND, greedy for Kaiju, maximum mismap probability of 0.95 for LAST, and k-mer 7 with coverage
threshold 40 for our method

Page 8 of 14Santiago and Shrestha BMC Bioinformatics (2024) 25:335

expressed genes that are actually differentially expressed, and recall as the proportion
of actual differentially expressed genes that were correctly predicted to be differen-
tially expressed.

The results are shown in Fig. 4.

Discussion
Our method is > 1000× faster than assembly‑based approach while being more accurate

We set out to build a quick-and-dirty differential gene expression analysis pipeline by
avoiding transcriptome assembly and replacing a slower alignment step with quasi-map-
ping. As can be seen from the D. grimshawi and D. ananassae plots in Fig. 4, even when
replacing sensitive full alignment step with the quasi-mapping step, our pipeline for
identifying differentially expressed genes outperforms assembly-based approach. This
gain comes with dramatic speed-up. Transcriptome assembly of a dataset containing a
total of roughly 120 million pairs of reads, with 4 cores and 8 threads engaged took more
than 7 days to complete. Our mapping takes less than 10 minutes for handling the same
data, making it more than 100 times faster.

Fig. 4 Precision-recall curves for differential gene expression analysis using different tools for the mapping
step and when using different reference proteomes. The three shape markers in each curve correspond to
setting the false discovery rates in DESeq2 to the values of 0.01, 0.05, and 0.1

Page 9 of 14Santiago and Shrestha BMC Bioinformatics (2024) 25:335

When compared to other aligners/mappers, our method provides a trade‑off

between speed and sensitivity

As seen in the run-time plot of Fig. 3, our method runs the fastest among all the tools –
being > 2.5× faster than the next fastest Kaiju, > 4× faster than DIAMOND, and > 100×
faster than LAST. This might not be surprising as DIAMOND and LAST compute align-
ments using seed-and-extend approach, and LAST additionally computes appropriate
alignment scoring scheme as well as alignment column probabilities. On the other hand,
our method and Kaiju rely on finding exact matches. However, our speed-up comes at
the cost of lesser mapping accuracy. As can be seen in Fig. 4, for the case of using the
proteome of close relatives D. ananassae or D. grimshawi as reference, our method is
overall less sensitive and precise than LAST and DIAMOND, while performing roughly
similar as Kaiju. When using the proteome of the distant relative A. gambiae, the perfor-
mance of our method worsens to the greatest degree compared to other aligners/map-
pers. The results of Fig. 4 essentially capture the differences in mapping performance
shown in Fig. 2. There is a stark performance gap compared to LAST and DIAMOND,
with our method correctly mapping 10–15% fewer reads than LAST or DIAMOND.
Compared to Kaiju, the difference in mapping performance is not too apparent for close
relatives, but Kaiju performs better when the reference becomes more distant.

We note that while we chose various reference proteomes to demonstrate the effect of
varying levels of evolutionary divergence, a part of the differences we see in Figs. 2 and 4
might be attributed to the differences in the assembly and annotation pipeline employed
to generate those reference sequences.

Reduced alphabet

We implemented quasi-mapping on the reduced amino-acid alphabet proposed
by DIAMOND: {K,R,E,D,Q,N}, {C}, {G}, {H}, {I,L,V}, {M}, {F}, {Y}, {W}, {P}, {S,T,A},
where characters in the same set are treated to be equivalent. The results are shown
in Fig. 5. We observed that for the reduced alphabet, coverage threshold value of 40

Fig. 5 Comparing the performance of our method on the full amino acid alphabet versus a reduced one of
size 11. For each curve, the three points from left to right correspond to coverage thresholds of 60, 50, and 40,
respectively

Page 10 of 14Santiago and Shrestha BMC Bioinformatics (2024) 25:335

– corresponding to rightmost points in each curve – result in a substantial increase in
incorrect mappings compared to the non-reduced alphabet. At the coverage thresh-
old of 50, k = 11 for reduced alphabet is close to the performance of k = 7 for non-
reduced alphabet, while being almost 2.5× faster.

Effect of reference proteome

The availability of an accurate reference protein database is key to the performance of
all methods evaluated in this paper, but more so for our method which relies on exact
k-mer matches. This is seen, perhaps unsurprisingly, in our evaluations, where our
method seems to be most sensitive to evolutionary divergence. Another factor that
could affect performance is the presence of large number of highly similar sequences
in the reference. This could be as a result of high level of recent gene/genome dupli-
cations, high amount of repetitive sequences in transcripts due to transposable ele-
ments, or because the reference spans multiple species and contains orthologs (e.g.
UniProtKB). For all methods, it would be interesting to investigate the extent of per-
formance degradation due to these factors at the level of mapping and in downstream
functional analysis. As a practical remedy for the case of multi-species reference, it
might be better to first reduce redundancy by running sequence clustering tools (e.g.
CD-HIT [26] or MMSeq [27]) or find orthogroups (e.g. using OrthoFinder [28]).

Future directions

It would be interesting to reduce the gap in sensitivity compared to traditional seed-
and-extend methods without raising computational cost. Some promising direc-
tion include using spaced k-mers [29], syncmers [30], and minimally overlapping
words [31]. Using spaced k-mers, for example, has been shown to be more sensitive
than contiguous ones in other alignment-free sequence comparison applications [32],
and are in fact also implemented in DIAMOND and LAST.

We also note that we chose the augmented suffix array data structure with memory
usage not in mind, especially since our method uses negligible memory compared to
de-novo transcriptome assembly. It might be interesting to explore other compact
text indexes for cases where memory requirement is a concern.

Conclusions
We have implemented a quick-and-dirty differential gene expression analysis pipe-
line for non-model organisms without a reference transcriptome. It uses quasi-map-
ping to rapidly map RNA-seq reads to a reference protein database, followed by a
simple counting step the result of which can be fed to standard differential analysis
tools like DESeq2. It is computationally super light-weight compared to the conven-
tional approach of first building a transcriptome assembly. The quasi-mapping step
itself is fast compared to other alignment/mapping techniques, but there is room for
improvement in its sensitivity.

Page 11 of 14Santiago and Shrestha BMC Bioinformatics (2024) 25:335

Appendix 1: Commands used for benchmarking aligners/mappers
All aligners/mappers were run on a system with an Intel i7-4710 CPU with 4 cores and 8
threads, and 32GBytes of RAM.

Our method (SAMAR‑lite)

The reference index was constructed using:
ref-align reference.fa 7

where 7 is the k-mer size. This was followed by mapping with a specified coverage
threshold, e.g. 40 below :
alignr reference_7.json query.fastq 40 output

This is followed by counting:
python seq_count.py reference.fa input output

This ends with DESeq2, which performs differential expression analysis on the counts:

LAST 1060

The reference index was constructed using:
lastdb -p index reference.fa

This was followed by aligment scoring scheme training:

 where sample.fa contains 6 amino-acid sequences (one each for a translation
frame) per read of a sample of the input reads in fastq format.

This was followed by alignment:

This was followed by counting taken from the SAMAR [3] pipeline and DESeq2.

DIAMOND 2.0.12

The reference index was constructed using:
diamond makedb –in reference.fa -d reference

This was followed by the alignment:
diamond blastx -q query.fa -d reference -o out.tsv

Page 12 of 14Santiago and Shrestha BMC Bioinformatics (2024) 25:335

This was followed by counting, similar to the counting of our method, and DESeq2.

Kaiju 1.9.0

The reference index was constructed using:

 Where n is the number of threads, a is the alphabet, and o is the output Burrows-
Wheeler transform to be converted to an FM-index in the next command.

This was followed by mapping:
kaijux -f reference -i query.fastq -o output.kaiju

This was followed by counting, similar to the counting of our method, and DESeq2.

Appendix 2: Commands used for benchmarking an assembly‑based pipeline
Assembly‑based approach

De-novo transcriptome assembly was computed from all the reads in the dataset using
Trinity (version 2.8.5):

 The reads were aligned to the assembled transcripts using Bowtie2 (version 2.4.1):

 Counting was done using RSEM:

 Transcript-level counts were aggregated at the gene level using tximport, based on the
gene-transcript map constructed by Trinity, and finally differential expression analysis
was performed using DEseq2.

Annotation was done against the reference proteome using Dammit.

Page 13 of 14Santiago and Shrestha BMC Bioinformatics (2024) 25:335

dammit annotate Trinity.fasta –quick –user-databases dro_me_

ref.fa -e 1e-10

Of the alignments that were reported in Trinity.fasta.x.dro_me_ref.
fa.crbl.csv, we kept only those that cover at least 50% of the contig length.

Abbreviations
SA Suffix array
HT Hash table
FPKM Fragments per kilobase million

Acknowledgements
Kyle Santiago is thankful to the Department of Science and Technology and the Engineering Research and Development
for Technology (ERDT) scholarship program for funding his Master of Science in Computer Science.

About this supplement
This article has been published as part of BMC Bioinformatics, Volume 25 Supplement 2, 2024: The Applications of Bio-
informatics in Genome Research. The fullcontents of the supplement are available at https:// bmcbi oinfo rmati cs. biome
dcent ral. com/ artic les/ suppl ements/ volume- 25- suppl ement-2.

Author Contributions
AS planned the study. KS wrote the software. AS and KS performed the benchmarking study. All authors wrote, read, and
approved the manuscript.

Funding
KS was partially funded by the Department of Science and Technology (DOST) Engineering Research and Development
for Technology (ERDT) scholarship program. The funders had no role in study design, data collection and analysis, deci-
sion to publish, or preparation of the manuscript.

Availibility of data and materials
Project name: Samar-lite, Project home page: https:// github. com/ bioin fodlsu/ samar_ lite, Operating system(s): Linux,
macOS, Programming Language: Rust, Other requirements: Snakemake, Conda, License: MIT Licence, Any restrictions
to use by non-academics: None, Datasets for benchmarking were obtained from public repositories: transcripts of
protein-coding genes were obtained from the fruit fly assembly BDGP6.28 in Ensembl Genes 101; reference proteomes
of D. melanogaster (UP000000803), D. grimshawi (UP000001070), D. ananassae (UP000007801), and A. gambiae
(UP000007062) were obtained from UniProt.

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests

Received: 28 October 2022 Accepted: 5 September 2024

References
 1. Vijay N, Poelstra JW, Künstner A, Wolf JBW. Challenges and strategies in transcriptome assembly and differen-

tial gene expression quantification a. comprehensive in-silico assessment of RNA-seq experiments. Mol Ecol.
2012;22(3):620–34.

 2. Hsieh P-H, Oyang Y-J, Chen C-Y. Effect of de novo transcriptome assembly on transcript quantification. Sci Rep.
2019;9(1):8304.

 3. Shrestha AMS, Guiao JEB, Santiago KCL. Assembly-free rapid differential gene expression analysis in non-model
organisms using DNA-protein alignment. BMC Genom. 2022;23(1):97.

 4. Liu P, Ewald J, Galvez JH, Head J, Crump D, Bourque G, Basu N, Xia J. Ultrafast functional profiling of RNA-seq data for
nonmodel organisms. Genome Res. 2021;31(4):713–20.

 5. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript
expression. Nat Methods. 2017;14(4):417–9.

 6. Srivastava A, Sarkar H, Gupta N, Patro R. RapMap: a rapid, sensitive and accurate tool for mapping RNA-seq reads to
transcriptomes. Bioinformatics. 2016;32(12):192–200.

 7. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol.
2016;34(5):525–7.

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-25-supplement-2
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-25-supplement-2
https://github.com/bioinfodlsu/samar_lite

Page 14 of 14Santiago and Shrestha BMC Bioinformatics (2024) 25:335

 8. Grabowski S, Raniszewski M. Compact and hash based variants of the suffix array. Bull Pol Acad Sci Tech Sci.
2017;65(4):407–18.

 9. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by
RNA-seq. Nat Methods. 2008;5(7):621–8.

 10. Matsakis ND, Klock FS. The rust language. ACM SIGAda Ada Lett. 2014;34(3):103–4.
 11. Köster J. Rust-bio: a fast and safe bioinformatics library. Bioinformatics. 2015;32(3):444–6.
 12. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.

Genome Biol. 2014;15(12):1–21.
 13. Mölder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V, Lee S, Twardziok SO, Kanitz A, Wilm A, Holt-

grewe M, Rahmann S, Nahnsen S, Köster J. Sustainable data analysis with snakemake. F1000Res. 2021. https:// doi.
org/ 10. 12688/ f1000 resea rch. 29032.2.

 14. Frazee AC, Jaffe AE, Langmead B, Leek JT. Polyester: simulating RNA-seq datasets with differential transcript expres-
sion. Bioinformatics. 2015;31(17):2778–84.

 15. Bhutkar A, Russo SM, Smith TF, Gelbart WM. Genome-scale analysis of positionally relocated genes. Genome Res.
2007;17(12):1880–7.

 16. Haubold B, Pfaffelhuber P. Alignment-free population genomics: an efficient estimator of sequence diversity. G3
Genes|Genomes|Genet. 2012;2(8):883–9.

 17. Bolshakov VN, Topalis P, Blass C, Kokoza E, Torre A, Kafatos FC, Louis C. A comparative genomic analysis of two
distant diptera, the fruit fly, drosophila melanogaster, and the malaria mosquito, anopheles gambiae. Genome Res.
2002;12:57–66.

 18. Yao Y, Frith MC. Improved DNA-versus-protein homology search for protein fossils. In: Algorithms for computational
biology, Cham: Springer; 2021. pp. 146–158.

 19. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12(1):59–60.
 20. Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun.

2016;7(1):11257.
 21. Sonnhammer ELL, Östlund G. Inparanoid 8: orthology analysis between 273 proteomes, mostly eukaryotic. Nucl

Acids Res. 2014;43(D1):D234–9.
 22. ...Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, Mac-

Manes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD,
Friedman N, Regev A. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for refer-
ence generation and analysis. Nat Protoc. 2013;8:1494–512.

 23. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to
the human genome. Genome Biol. 2009;10(R25):1–10.

 24. Li B, Dewey CN. Rsem: accurate transcript quantification from RNA-seq data with or without a reference genome.
BMC Bioinform. 2011;12(323):1–16.

 25. Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level
inferences. F1000Research. 2015. https:// doi. org/ 10. 12688/ f1000 resea rch. 7563.2.

 26. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences.
Bioinformatics. 2006;22(13):1658–9.

 27. Steinegger M, Söding J. Clustering huge protein sequence sets in linear time. Nat Commun. 2018;9(1):2542.
 28. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol.

2019;20(1):1–14.
 29. Ma B, Tromp J, Li M. PatternHunter: faster and more sensitive homology search. Bioinformatics. 2002;18(3):440–5.
 30. Edgar R. Syncmers are more sensitive than minimizers for selecting conserved k-mers in biological sequences. PeerJ.

2021;9:e10805.
 31. Frith MC, Noé L, Kucherov G. Minimally-overlapping words for sequence similarity search. Bioinformatics.

2020;36(22–23):5344–50.
 32. Boden M., chöneich M, Horwege S, Lindner S, Leimeister C-A, Morgenstern B. Alignment-free sequence comparison

with spaced k-mers. Germ Conf Bioinformat. 2013;2013.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.12688/f1000research.7563.2

	DNA-protein quasi-mapping for rapid differential gene expression analysis in non-model organisms
	Abstract
	Background:
	Result:
	Conclusion:

	Background
	Methods
	Notations
	Reference index construction
	Quasi-mapping
	Counting
	Implementation details

	Results
	Read simulation
	Mapping performance and run time
	Reference proteomes used
	Tools compared
	Evaluation metric

	Differential expression analysis performance
	Pipelines compared
	Evaluation metric

	Discussion
	Our method is > 1000× faster than assembly-based approach while being more accurate
	When compared to other alignersmappers, our method provides a trade-off between speed and sensitivity
	Reduced alphabet
	Effect of reference proteome
	Future directions

	Conclusions
	Appendix 1: Commands used for benchmarking alignersmappers
	Our method (SAMAR-lite)
	LAST 1060
	DIAMOND 2.0.12
	Kaiju 1.9.0

	Appendix 2: Commands used for benchmarking an assembly-based pipeline
	Assembly-based approach

	Acknowledgements
	References

