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Abstract 

Background:  Selecting informative genes or eliminating uninformative ones 
before any downstream gene expression analysis is a standard task with great impact 
on the results. A carefully curated gene set significantly enhances the likelihood 
of identifying meaningful biomarkers.

Method:  In contrast to the conventional forward gene search methods that focus 
on selecting highly informative genes, we propose a backward search method, 
DenoiseIt, that aims to remove potential outlier genes yielding a robust gene set 
with reduced noise. The gene set constructed by DenoiseIt is expected to capture bio-
logically significant genes while pruning irrelevant ones to the greatest extent possible. 
Therefore, it also enhances the quality of downstream comparative gene expression 
analysis. DenoiseIt utilizes non-negative matrix factorization in conjunction with isola-
tion forests to identify outlier rank features and remove their associated genes.

Results:  DenoiseIt was applied to both bulk and single-cell RNA-seq data collected 
from TCGA and a COVID-19 cohort to show that it proficiently identified and removed 
genes exhibiting expression anomalies confined to specific samples rather 
than a known group. DenoiseIt also showed to reduce the level of technical noise 
while preserving a higher proportion of biologically relevant genes compared to exist-
ing methods. The DenoiseIt Software is publicly available on GitHub at https://​github.​
com/​cobi-​git/​Denoi​seIt
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Introduction
Gene expression analysis is a fundamental aspect of transcriptomic research, providing 
valuable insight into various biological processes and disease mechanisms. Especially, 
the differentially expressed genes (DEG) between two or more groups are of interest. 
It is a common practice to perform DEG analysis on a set of genes that are manually 
curated or collected by some gene selection method. In most cases, a gene selection 
method is used to compose a baseline gene set. The simple but effective Principal Com-
ponent Analysis (PCA) is a prevalently used gene selection method where highly vari-
ably expressed genes are selected. However, the presence of noisy or outlier genes can 
significantly disrupt the integrity of such analysis, leading to inaccurate results. This 
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becomes more problematic when the number of samples is small since the gene expres-
sion variance of a population may not be well captured leading to poor gene selection 
decisions. As a gene set is input to many downstream analysis, it has non-trivial impact 
on their results.

Bulk and single-cell RNA sequencing has emerged as a pivotal tool in transcriptomic 
analysis and has seen significant improvements in accuracy. However, it is not devoid 
of challenges, particularly related to technical noise embedded in the data. Technical 
noise can arise from various factors such as RNA-seq library preparation, amplification, 
sequencing biases, or even random hexamer priming during the sequencing reaction. 
In the case of technical noise, a common approach for its mitigation involves removing 
genes that have predominantly low or zero values across the majority of samples. Biolog-
ical noise is another source of variability in gene expression data arising from inherent 
stochasticity and complexity in biological systems. Unlike technical noise, which origi-
nates from experimental or technical factors, biological noise emerges from the natural 
fluctuations and variability in cellular processes. Biological noise can attribute to fac-
tors such as genetic regulatory mechanisms, cell-to-cell variability and environmental 
influences. In gene expression data, biological noise manifests as fluctuations in expres-
sion levels of genes even within a homogeneous population of cells. Researchers often 
grapple with both technical and biological noise when analyzing gene expression data. 
Statistical methods and computational techniques are employed to distinguish between 
these two sources of noise and to extract meaningful biological insight from the data. 
There is yet no standard procedure for removing both technical and biological noise and 
it remains to be improved.

There are a number of methods for removing noise from gene expression data prior 
to downstream analysis. Some examples are, applying log-transformation followed by 
techniques such as z-scoring or quantile normalization, removing anomalous sample 
data, and imputing missing values in single-cell RNA-seq data. While these strate-
gies effectively mitigate noise, they often do not place significant emphasis on gene 
removal. Particularly in the case of sample removal, the importance of individual 
patient data in real-world applications makes it a challenging decision since valuable 
sample resources are not being utilized. Before taking such drastic steps of remov-
ing an entire sample, we can consider removing outlier genes first as it is possible to 
enhance the similarity between samples within the same group and thereby poten-
tially preserving valuable samples and strengthening the overall power of statisti-
cal analysis. A substantial number of methods using statistical or machine learning 
methods were developed for the purpose of qualitative gene selection. The methods 
can be categorized into forward, backward and bi-directional search based on their 
direction of the gene selection process. In the forward search, the search starts with 
an empty set where informative genes are added to it [1]. In the backward search, 
uninformative genes are removed from the whole gene set until some criteria is met 
[2]. At last, the bi-directional search performs both forward and backward search 
in an iterative manner [3, 4]. The majority of gene selecting methods belong to the 
forward search category that includes the well known Principal Component Analy-
sis (PCA) based gene selection method. While the gene set from forward search is 
conclusive, the backward search is used to remove unwanted noise on which forward 
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search can be applied for improving the quality of the baseline gene set. In this study, 
we focused on the backward search where uninformative genes are deemed as noise 
or uninformative.

Besides the directional search property, the gene selection methods can also be cat-
egorized into three types: wrapper, embedded, and filtering based. They differ from the 
directional gene selection methods in terms of being more machine learning based. 
Wrapper methods involve the use of models to evaluate the relevance of individual 
genes. These methods typically employ evaluation criteria such as cross-validation and 
prediction accuracy to assess the performance of selected gene subsets. Embedded 
methods, on the other hand, perform gene selection during the model training process. 
Evaluation criteria in embedded methods are directly related to the model’s learning 
and generalization capabilities, including performance metrics and model complexity. 
Gene filtering stands as a distinct approach. In gene filtering, genes are selected based 
on predefined statistical or information-theoretic criteria, often involving methods like 
t-tests or ANOVA to determine the relevance of genes in relation to a specific condition 
or disease. For the gene filtering methods, various approaches exist for gene selection 
through unsupervised techniques or the removal of genes suspected to be outliers. Sev-
eral methods have been developed to address noise in gene-level data generated during 
experiments. To reduce the impact of low-expressed genes and mitigate sample variance, 
techniques like noisyR [5], threshold-based gene removal [6], and MGSACO [7] elimi-
nate these genes during data preprocessing. Another approach, OutSingle [8], employs 
Singular Value Decomposition (SVD) to calculate outlier scores for genes, identifying 
those with unusual behavior within the dataset. Principal Component Analysis (PCA) 
is used in the PCAUFE method [9] to compute p-values for gene selection. Addition-
ally, gene clustering-based methods like kVirtuals [10] have been used for gene selec-
tion. However, current techniques primarily focus on eliminating low-expression genes 
and do not effectively identify and eliminate noisy genes specific to certain samples or 
patients. These noisy genes, often referred to as sample-biased genes, do not represent 
consistent expression patterns across the same sample group. The presence of such sam-
ple specific genes can hinder the accurate identification of biologically meaningful pat-
terns and relationships, underscoring the importance of developing more sophisticated 
methods to discern and remove these potential sources of noise.

In this study, we propose a novel approach for removing such outlier genes to enhance 
the robustness of gene expression pattern analyses. Here, we propose a novel unsuper-
vised backward search based gene removal method, DenoiseIt. The DenoiseIt method 
builds on the hypothesis that samples belonging to a common group, in terms of clini-
cal or biological characteristics, should exhibit similar gene expression patterns. Here, 
we also assume that the group label of each sample are given, while they are only used 
for performance evaluation and not used during the gene removal process. To achieve 
this, we employ the non-negative matrix factorization (NMF) algorithm to first group 
patients with similar gene expression profile based on the rank features. Subsequently, 
genes that are specific to a single sample are removed from the candidate gene set using 
the isolation forest method. The isolation forest [11] method constructs a tree to iden-
tify such outliers genes. This procedure can be applied for multiple iterations. From the 
isolation trees, we can identify samples that deviate from their respective groups and 
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pinpoint the genes responsible for such discrepancy and thus remove them from the 
gene set.

To evaluate the performance of DenoiseIt, we utilized both bulk and single-cell RNA-
seq data to assess its biological effectiveness. Furthermore, the gene removal perfor-
mance of DenoiseIt was compared with three ranking based gene filtering methods 
(i.e., MGSACO, OutSingle, PCAUFE), two threshold based gene filtering methods (i.e., 
noisyR, kVirtuals) and the case where gene filtering was not performed. Furthermore, 
two wrapper based methods (i.e., SVM-RFE [12], SAFS [13]) were also included in our 
performance evaluation. As a result, we showed that DenoiseIt was able to improve the 
identification of cancer subtype specific genes in four cancer types. Also, it preserved 
more biologically meaningful genes specific to the level of severity when applied to a 
total of 456 single-cell RNA-seq samples from a COVID-19 cohort. It also showed 
robust results when the number of samples between the groups were unbalanced.

Materials and methods
Data

Our analysis incorporates two datasets: The Cancer Genome Atlas (TCGA) public data-
set [14] and the COVID-19 dataset [15]. The TCGA public dataset is a well-established 
and widely used resource for cancer genomics research. Here, we utilized the gene 
expression profiles of four cancer types, which are COAD (Colon adenocarcinoma, 
n =  222), STAD (Stomach adenocarcinoma, n =  305), BRCA (Breast invasive carci-
noma, n =  595) and LUAD (Lung adenocarcinoma, n =  180) that were initially com-
prised of 56,000 genes. Genes with less than an average expression count of five were 
excluded, resulting in 24852, 24913, 25428 and 24913 genes in the COAD, STAD, BRCA 
and LUAD datasets, respectively.

The COVID-19 dataset is a multi-omics dataset that includes gene expression profiles 
of peripheral blood mononuclear cells (PBMCs) from COVID-19 infected patients in 
South Korea. The COVID-19 dataset encompasses single-cell RNA-seq data from 456 
samples comprised of 20212, 20875, 20541, 19541 and 16874 genes in each of the CD4 
T, CD8 T, Monocyte, Natural Killer (NK) and B cell type, respectively. To objectively cat-
egorize the severity of each sample, the World Health Organization score (WHO [16]) 
was utilized as our metric. The maximum WHO score attained by each sample during 
their hospital stay served as the benchmark for labeling severity. Specifically, samples 
with a maximum WHO score exceeding 5 were classified as “Severe”(n =  92), while 
those with a maximum score of 5 or below were designated as “Moderate”(n =  364). 
This stratification methodology was implemented to ensure a uniform and fair assess-
ment of sample severity across the cohort. The COVID-19 dataset was preprocessed by 
first annotating the cell type of each scRNA-seq sample using Azimuth [17], then aggre-
gating each cell type’s single-cell RNA-seq sample into a single pseudobulk sample. At 
the cell type level 1 of the Azimuth reference dataset, six cell types are present: CD4 T, 
CD8 T, NK, B, Monocyte and dendritic cells. Among those, the dendritic cell type exhib-
ited less than three cell counts in all the samples, and thus was not considered for fur-
ther analysis. A total of 1,364,590 cells remained, that were distributed as follows: CD4 
T = 160,646, CD8 T = 174,239, B = 145,866, NK = 157,844 and Monocyte = 599,344. 
Finally, each cell type specific pseudobulk sample was subject to trimmed mean of 
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M-values (TMM) normalization. A pseudobulk sample was made by the aggregated sum 
of the gene expression counts for each cell type. For the further evaluation, simulated 
gene expression count data were generated. We created samples that follow the negative 
binomial distribution for 20,000 genes varying sample sizes of n = 25, 50, 75, 100, 150, 
200, 300, and 400. All the simulated samples were structured into two groups to reflect 
two distinct conditions where genes were differentiated based on their ability to distin-
guish between these groups, characterized by a true log fold change (logFC) value. The 
average expression count of genes was set to 4 with a variance of 5. In addition, simula-
tion data with no variance (i.e., no noise) between the samples within each group were 
generated to observe how many genes are retained by the various gene removal meth-
ods. For such purpose, the variance was set to 1, and the average expression count was 
set to 4.

Performance evaluation

Technical evaluation was performed on the noise removed gene set output from 
DenoiseIt by comparing it with various unsupervised gene filtering methods, noisyR, 
PCAUFE, OutSingle, MGSACO and kVirtuals. For both TCGA and COVID-19 datasets, 
here the evaluation criteria was how well the noise removed gene set of each method 
was able to discriminate the cancer subtypes or the severity of COVID-19 patients per 
cell type, respectively. Below, a brief description of three gene selection methods are 
described that are used for the performance evaluation. The methods were further com-
pared for biological correctness via DEG and pathway analysis. DEG analysis was per-
formed on each method’s output gene set to investigate how well the DEGs from each 
gene set captured dataset related pathways. DESeq2 and edgeR were used for the DEG 
analysis.

Threshold based gene filtering method

The noisyR is a backward search method that reduces the impact of low-abundance 
genes on differential expression analysis. It uses read count values to determine the 
similarity between samples and applies a threshold to filter out genes that contribute to 
noise. kVirtuals is a forward search method selecting only small number of genes based 
on gene clustering using Normalized Mutual Information (NMI). Both method had their 
own threshold for filtering genes. PCAUFE is a PCA based unsupervised gene selec-
tion method. From the PCAUFE results, PC1 and PC2 were used to select genes with an 
adjusted p-value below 0.05.

Gene ranking based filtering method

OutSingle provides gene selections based on p-value, while MGSACO outputs genes by 
specifying the desired number of genes to be retained. To ensure a fair comparison, we 
selected the same number of genes as DenoiseIt for each dataset.

Wrapper method

Wrapper methods iteratively add or remove features to optimize the model’s perfor-
mance. Similarly, SAFS performs iterative clustering to enhance the clustering quality 
by adding or removing genes from the dataset. Unlike other methods, SVM-RFE is a 
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supervised method, thus it is not specifically applicable for gene selection or filtering 
when sample labels are unknown. Nevertheless, it was included to observe its perfor-
mance in comparison to the other unsupervised methods.

No gene filtering

To evaluate the methods performance compared to the case without any gene filtering, 
we employed the full set of genes available in the datasets. Genes with expression values 
of zero across all samples were removed. Subsequently, the remaining data underwent 
log2 transformation, normalization and then min-max scaling to ensure consistency and 
to mitigate potential biases in the data. The TCGA expression data were quantile nor-
malized, whereas TMM was used for single-cell data.

Workflow of DenoiseIt

DenoiseIt is a novel approach for removing outlier genes from gene expression data. The 
rationale behind DenoiseIt is grounded in the hypothesis that samples within a same 
group should display similar expression patterns. Here, a group refers to a set of patients 
or samples with similar phenotypic background. Using NMF [18], we can easily observe 
whether the sample groups are well captured by the rank features. More importantly, by 
observing the rank features we can identify samples that deviate from their respective 
groups, along with the genes responsible for such discrepancies.

DenoiseIt is comprised of three stages: (1) NMF analysis, (2) outlier score computa-
tion and (3) outlier detection and removal (Fig. 1). In the first stage, the gene expression 
data is subject to NMF. The output of NMF are two matrices which serve as the input for 
the subsequent steps. In the second stage, outlier scores are computed using the loading 
and basis matrices from the NMF output. Here, isolation forests are generated on the 
decomposed ranks in H to compute the outlier scores, which effectively quantifies the 
likelihood of a rank being an outlier. In the last stage, genes associated to outlier ranks 
are identified using W and removed. This approach can also be applied for identifying 
outlier rank associated samples and prune any outlier samples instead of genes.

Stage 1: NMF analysis

First, genes with an average read count value of less than 5 were removed. The expres-
sion levels of the remaining genes were then log2 transformed and quantile normalized. 
Consider the gene expression dataset as a n×m matrix K, where n and m refer to the 
number of genes and samples in matrix K respectively. Each column in K corresponds 
to a sample sj for j = 1, 2, ...,m , and each row corresponds to a gene gi for i = 1, 2, ..., n . 
After performing NMF on matrix K, two non-negative matrices W ( n× q matrix) and H 
( q ×m matrix) are obtained, where q is the number of ranks, which are denoted as rt for 
t = 1, 2, ...q , such that K ≈ WH . Here, W and H represent the basis (gene component) 
and the coefficient (sample component) matrices, respectively.

Stage 2: Outlier score computation

For each rank feature t, we utilize the Isolation Forest algorithm [11] to calculate an out-
lier score for each sample. Isolation Forest is an ensemble method that generates binary 
trees to isolate instances considered as outliers. The core idea behind the Isolation Forest 
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is that anomalous data points are easier to isolate than inlier data points. The algorithm 
randomly selects a feature and randomly sets a split value between the maximum and 
minimum values of the selected feature. This process is repeated until the data points 
are isolated or the maximum number of tree depths is reached. The algorithm then com-
putes an outlier score for each instance based on the average path length from the root 
node to the outlier node in all trees.

The output of the Isolation Forest algorithm is the outlier score matrix S = q ×m . 
Here, an isolation tree Tl is constructed for each rank t using H. A total of p number of 
trees, l = 1, 2, ..., p , are constructed for a single rank t to compute an outlier score for 
each sample j, which is denoted as St,j . The computation of an outlier score of Sr,s can be 
encapsulated as follows:

Fig. 1  DenoiseIt consists of three stages. First, it processes the gene expression data and decomposes it into 
basis and loading matrices using NMF. In the second step, each rank feature from the decomposed result 
are used to generate isolation trees to compute its outlier score. Finally, ranks are labeled as either inliers 
and outliers where genes associated to outlier ranks are removed. The remaining genes are used as input to 
various downstream analysis
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Let’s assume a randomly selected subset of samples s′ is used to construct a tree Tl for 
rank t. The nodes of Tl are samples. Starting from the root, a split point x is randomly 
selected between the range of min(Ht) and max(Ht) to split the samples in tree Tl . The 
selection of split point x is done for each split w. The splitting continues until each sam-
ple is a leaf node or the maximum tree depth d is reached. The maximum tree depth is 
set to d = ⌈log2(|s

′|)⌉ to ensure that all samples can be isolated if they were the only ones 
in their leaves.

If a sample j is frequently located near to the root while other samples are evenly dis-
tributed within the tree in all trees, then the distance from sample j to the root against 
the average distance of other samples to the root will be statistically significant. Such 
property implies that samples such as j have very different rank values than the other 
samples and thus is a candidate for being an outlier. The distance of sample j to the root 
in tree l is defined as L(Tl)

sj  . Then, the average distance of sj to the root in all trees is At,j 
and defined as follows:

The average distance is normalized in respect to the maximum distance from the root 
to a leaf node, which gives us the final outlier score of a sample j in rank t, St,j , as below.

Here, min(A) and max(A) represent the minimum and maximum anomaly scores over 
all the samples, trees and ranks. Since we aim to identify outlier ranks, this normaliza-
tion ensures that the outlier scores are comparable across the ranks.

Stage 3: Outlier identification and gene removal

Once the outlier scores have been calculated, the next step is to identify and remove out-
lier ranks. Here, the one sample t-test is used to check whether the average outlier score 
of a sample j for a given rank t significantly deviates from the average outlier score across 
all rank features in S. For a rank t, the hypothesis and null hypothesis are

where µSt is the average outlier score for the rank t, and µSall is the average outlier score 
across all ranks. If the p-value is significant (i.e,. < 0.05), we reject the null hypothesis 
and consider the rank t as an outlier. Once the outlier ranks are identified, we proceed 
with the gene removal process. Here, each gene in the W is assigned to a single rank 
with maximum rank value. The primary gene candidates for removal are those that are 

(1)SPLITw =

{

sj ∈ s′ : Ht,j < xw , if sj in left child node
sj ∈ s′ : Ht,j ≥ xw , if sj in right child node

(2)At,j =
1

p

p
∑

l=1

L(Tl)
sj

(3)St,j =
At,j −min(A)

max(A)−min(A)

(4)H0 : µSt =µSall

(5)Ha : µSt �=µSall
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assigned to the outlier ranks. Given that the genes exhibit a unique expression pattern 
only within a particular set of samples, their removal could help improve the overall 
robustness and reliability of the analysis by reducing the gene expression variance within 
a sample group.

Results
Technical performance evaluation

Our primary objective was to demonstrate the effectiveness of DenoiseIt in achieving 
more accurate and biologically meaningful clustering results compared to other existing 
models.

In Fig. 2 and Supplementary Figure S1, we compared clustering performance of each 
method using Adjusted Rand Index (ARI) [19] and silhouette score [20]. Here, the task 
was to cluster cells of the same cell type and cancer samples of the same subtype. The 
ARI is calculated between the predicted labels obtained by performing K-means clus-
tering and the actual labels of each sample in the dataset, which are the molecular sub-
types in the cancer datasets and the severity groups in the COVID-19 dataset. Given N 
number of samples and multiple number of sample clusters, the silhouette coefficient 
is calculated as follows: for each sample i, let c1(i) be the average distance between 

Fig. 2  The comparison of the Adjusted Rand Index (ARI) of A the TCGA, B COVID-19 dataset achieved 
through 20 iterations of random sampling, coupled with K-means clustering, initialized three times
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sample i and all other samples in the same cluster, and let c2(i) be the average distance 
between sample i and the samples in the nearest neighboring cluster. Once the silhou-
ette coefficient is computed for all the samples, the mean of these coefficients provides 
the silhouette coefficient representing each dataset as shown in Eq.  6. Additionally, 
using the COVID-19 dataset, we balanced the number of samples of the severity groups 
and assessed the performance all the gene selection methods by randomly selecting 20 
healthy and 20 severe patients. The result of the performance comparison between the 
tools are provided in Supplementary Figure S2.

Cell type annotation was conducted using a reference single-cell dataset of PBMCs, and 
cells with a prediction score exceeding 0.6 were retained through the Seurat [21]. The 
classical K-means clustering was used. To preserve robustness, we randomly sampled 
80% of the samples and computed the ARI for 20 times. Our results consistently showed 
that DenoiseIt outperforms other methods across all datasets in terms of ARI, empha-
sizing its superior and robust capability in identifying biologically meaningful clusters. 
These results further corroborate the superiority of DenoiseIt over other gene filtering 
methods in achieving more accurate clustering of samples. To ensure that the filtered 
genes do not negatively impact the performance of predicting subtypes, we conducted 
a 10-fold cross-validation test on both datasets. These tests were aimed at predicting 
cancer subtypes in TCGA and severity levels in COVID-19 datasets, as detailed in Sup-
plementary Tables S1, S2. For these predictions, we employed logistic regression and 
random forest classifiers for each dataset. Using the expression data of the remaining 
genes, we predicted the subtype and severity labels for each sample. It was observed that 
all of the methods demonstrated similar performance, with no significant variation in 
values.

Biological performance evaluation

Here, we aimed to evaluate the effectiveness of DenoiseIt in retaining biologically mean-
ingful genes, particularly DEGs, after the gene filtering process, compared to other 
methods. To do this, we first conducted a differential expression analysis using the entire 
genes in the dataset. DEG analysis was carried out using both the DESeq2 and edgeR 
methods for each subtype within the dataset, comparing them in a pairwise manner. 
Genes were identified as DEGs if they had an absolute log fold change ( |logFC| ) value 
greater than 1 and a False Discovery Rate (FDR) value of less than 0.05.

The key aspect of our evaluation was to determine how well each gene filtering 
method retains these identified DEGs. This is crucial because while gene filtering is 
essential for reducing noise and enhancing computational efficiency, preserving DEGs 
is important due to their likely substantial biological relevance to the phenotypes under 
study. Thus, the percentage of genes shared between the noise removed gene sets and 
the DEGs identified using the entire gene set was measured. Figure 3 and Supplemen-
tary Figure S3 illustrates the average percentage of overlapping genes between the DEGs 
and the genes retained by each method across various datasets. The percentage is calcu-
lated as the number of DEGs retained divided by the total number of genes remaining 

(6)meansilhouettescore =

∑i=1
N

c1(i)−c2(i)
max(c1(i),c2(i))

N
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after filtering (Retained DEGs/Retained Genes). This metric provides a direct measure 
of each method’s ability to maintain biologically significant genes. Our results show that 
DenoiseIt, in particular, effectively retains a significant proportion of DEGs, indicating 
its efficiency not only in reducing dataset dimension but also in preserving crucial bio-
logical information.

We further compared the performance between the methods in terms of how many 
essential, or unnoisy, genes were retained across samples in the simulated bulk gene 
expression datasets with varying sample sizes of n = 25, 50, 75, 100, 150, 200, 300, and 
400. For this assessment, we performed the evaluation under the assumption that genes 
demonstrating an absolute real log fold change greater than 1 between conditions, and 
those with variation less than or equal to 3, are DEG candidates and thus should not be 
eliminated from the dataset. Consequently, the efficacy of each method was compared 
based on the overlap between the genes retained by each method and the presumed can-
didate DEGs, as illustrated in Table 1.

In case if no noise exists in a dataset, it is natural to test each gene for significant 
gene expression difference and thus a gene removal method should retain all genes. 

Fig. 3  The percentage of DEGs retained by the output of each gene filtering method per dataset that 
intersect with the DEGs identified without any gene filtering. While the performance of SVM-RFE is high, 
it must be noted that it is the only supervised based gene filtering method, which should not be directly 
compared to the other unsupervised methods

Table 1  Gene filtering results across all genes and calculated the proportion of genes retained after 
this process

The method with best performance, or portion of retained DEG candidates, is highlighted for each n

Sample size n = 25 n = 50 n = 75 n = 100 n = 150 n = 200 n = 300 n = 400

DenoiseIt 0.9738 0.8835 0.8843 0.9144 0.8927 0.8461 0.8561 0.7843
PCAUFE 0.8351 0.8392 0.8381 0.8957 0.8779 0.8524 0.8427 0.7392

noisyR 0.3587 0.4062 0.4324 0.4144 0.5321 0.5682 0.5078 0.5794

Outsingle 0.9381 0.8451 0.8432 0.8909 0.8810 0.8446 0.8491 0.7412

MGSACO 0.9372 0.8731 0.8551 0.8883 0.7931 0.7823 0.8358 0.7339
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So, additionally, simulation gene expression data devoid of noise were generated, to 
ascertain the extent to which each method succeeds in preserving the most number 
of genes. The result of this evaluation are presented in Table 2. We only used gene fil-
tering methods to ensure they do not filter useful genes. Since the Outsingle method 
does not provide a threshold for gene filtering it was not included in this evaluation.

To further demonstrate the effectiveness of each gene filtering method, including 
DenoiseIt, we performed downstream analyses using the gene sets that were output 
from each tool. One of the most common downstream analyses in transcriptomics is 
pathway analysis, which involves identifying enriched biological pathways from the 
list of DEGs. In this context, it is critical that the gene filtering method retains not 
just a large number of DEGs, but specifically those DEGs that are members of biologi-
cally meaningful pathways. The kVirtuals method is constrained to output 1000 or less 
genes, and thus was not included in this evaluation. Pathway enrichment analysis was 
performed using the Reactome [22] and Gene Ontology databases [23]. Also we used 
ImmuneSigDB [24] for COVID-19 dataset. The overlap between the list of DEGs and 
the genes in each enriched pathway was quantified using the Fisher’s exact test. The 
percentage provides a measure of how much the set of retained genes overlaps with 
the DEGs in each enriched pathway. To assess the efficacy with which the remaining 
genes represent the pathway, we introduced a new score [5], which we inverted for 
better visualization. This ‘P-score’ compares the overlap of genes with a p-value less 
than 0.05 and an absolute log fold change (logFC) greater than 1, derived from the 
remaining genes, against the genes in the pathways using a hypergeometric test. This 
comparison aids in understanding the involvement of overlapping genes in the path-
ways. The P-score is calculated using the following equation, where F is the number of 
pathways with a p-value under 0.05. The comparison of the P-scores among different 
methods for the COAD, STAD and BRCA datasets is shown in Fig. 4. For the COVID-
19 dataset, DenoiseIt showed robust performance in every cell type (Supplementary 
Figure S4). As shown, DenoiseIt consistently demonstrates robust and better perfor-
mance in terms of preserving genes that are biologically relevant to the phenotypes of 
interest, thereby leading to more meaningful and interpretable results in downstream 
pathway analysis especially with ImmuneSigDB. This further showed that DenoiseIt 

(7)P-score =
1

F

F
∑

i=1

1

− log2

(

overlap genesi
len(DEG)

)

Table 2  Percentage of remained genes simulated datasets with low variance

The method with best performance, or portion of retained DEG candidates, is highlighted for each n

Sample size n = 25 n = 50 n = 75 n = 100 n = 150 n = 200 n = 300 n = 400

DenoiseIt 1.0 1.0 0.9948 1.0 0.9959 0.9785 0.9608 0.9998
PCAUFE 0.9732 0.9351 0.9151 0.9001 0.9204 0.9005 0.8892 0.9532

noisyR 0.3023 0.3047 0.3069 0.3095 0.4575 0.3532 0.3612 0.4389

MGSACO 0.7539 0.7351 0.7532 0.8301 0.7533 0.7433 0.7535 0.7884
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provides an effective balance between noise reduction and biological signal preserva-
tion. PCAUFE showed better performance in the COAD dataset.

To investigate on the iterative adaptation of DenoiseIt, we conducted an exhaustive 
evaluation across multiple iterations. At the end of each iteration, we applied quan-
tile normalization to the remaining genes, followed by the same gene-filtering pro-
cess used in the previous steps. A total of six iterative gene filtering was performed 
for each data. The ARI was calculated after each iteration to measure the quality of 
clustering and thereby assess the robustness of the gene removal. The ARI of each 
iteration for each of dataset is shown in Fig. 5, where the remaining number of genes 
after filtering are shown in Table  3. We observed a general increase in ARI values, 

Fig. 4  The P-score of GO and pathway analysis using the refined gene sets of the methods using the TCGA 
dataset

Fig. 5  Representation of the results of applying DenoiseIt for gene filtering across multiple iterations and the 
subsequent calculation of the ARI using A the COVID-19 and B TCGA dataset



Page 14 of 19Jeon et al. BMC Bioinformatics          (2024) 25:271 

predominantly in the first 2-3 iterations, which suggests that the method becomes 
more robust with incremental refinement. However, the trend showed to be data spe-
cific in a few cases. By our experience, the results were generally satisfactory when 
the gene removal process was repeated up to three iterations. For instance, in the 
case of the COVID-19 single cell RNA-seq dataset, a continuous increase in ARI 
was observed even beyond the 3rd iteration. This was in contrast to the TCGA data, 
where the ARI tended to stabilize sooner. This discrepancy could be attributed to the 
higher noise levels in the single-cell data, where the iterative nature of DenoiseIt was 
particularly beneficial in progressively filtering out noisy genes. To dissect the role of 
gene filtering versus sample removal, we executed four iterations, removing 5 sam-
ples in each iteration based on their outlier ranks as determined by DenoiseIt. For 
this analysis, all genes were retained to isolate the effect of sample removal. Mean-
while, the impact of gene filtering was observed with the usual iterative process of 
DenoiseIt, where genes were selectively retained or removed. The samples in the case 
of sample removal were chosen based on their outlier rank in DenoiseIt, ensuring that 
we remove those with the highest outlier scores as shown in Fig. 6.

We found that while both gene filtering and sample removal have impacts on 
the final clustering and downstream analyses, their impacts vary in magnitude and 

Table 3  Number of remaining genes per iteration with DenoiseIt

Dataset Type gene count 
(iter=1)

gene count 
(iter=2)

gene count 
(iter=3)

gene count 
(iter=4)

gene count 
(iter=5)

gene 
count 
(iter=6)

COVID-19 B 6332 4337 2835 2184 1712 1308

CD4 T 8710 7000 5343 2984 1485 651

CD8 T 6836 4964 3372 2883 2232 1747

Monocyte 8057 5288 3705 2564 1835 1355

NK 6149 4801 3795 3047 2617 2072

TCGA​ COAD 13,329 8710 5343 2984 1485 651

STAD 13,500 7517 3952 2099 379 379

BRCA​ 7867 6710 5343 2984 197 84

LUAD 1,1026 6828 4109 2569 1187 484

Fig. 6  The comparison between the effects of sample filtering and gene filtering utilizing the Adjusted Rand 
Index (ARI) in A the COVID-19 and B TCGA dataset



Page 15 of 19Jeon et al. BMC Bioinformatics          (2024) 25:271 	

quality. The effect of sample removal was more pronounced in terms of the clustering 
metrics, suggesting that removing outlier samples can have immediate consequences 
on the clustering results. Collectively, gene filtering by DenoiseIt provided more 
improvement in capturing biologically relevant information, especially over multiple 
iterations. In the case of normalization, we observed that the iterative gene filtering 
process inherently led to more stable normalization statistics across the iterations. 
This suggests that by reducing the dimension and variability of the data, DenoiseIt 
indirectly aids in effective normalization.

In addition to comparing the performance of different gene selection tools, we also 
conducted a time comparison to evaluate their efficiency. For this comparison, we used 
a dataset consisting of 400 samples and restricted the computation to a single CPU to 
ensure a standardized testing environment (Supplementary Figure S5). The time taken 
by each tool to complete its process was measured in seconds. This approach allowed 
us to assess not only the effectiveness of the tools in selecting genes but also their com-
putational efficiency, which is crucial for practical applications, especially when dealing 
with large datasets. Among the tools evaluated, PCAUFE and DenoiseIt demonstrated 
notably faster performance.

Discussion
In this study, we propose DenoiseIt, a novel approach for removing outlier genes lever-
aging NMF and the Isolation Forest algorithm, which outperformed competing methods 
in identifying and eliminating outlier genes, enhancing the reliability and interpretation 
of gene expression pattern analyses. Its performance was not only validated through 
comparative analyses, as depicted by ARI, but are also substantiated through its adept 
capability in preserving biologically significant genes that are intrinsic to specific cell 
types and conditions.

DenoiseIt offers several key advantages, including the ability to systematically identify 
outlier genes, enhance the robustness of gene expression pattern analyses, and mitigate 
the risk of inaccuracies in downstream analysis. Moving forward, our method holds the 
potential to be extended to outlier sample detection and removal, further enhancing the 
cleansing of gene expression datasets. By fostering more accurate and reliable analyses, 
our approach contributes to the advancement of biomedical research and our under-
standing of complex biological systems. DenoiseIt showcased its meticulousness in the 
context of the COVID-19 dataset, where it maintained marker genes corresponding to 
specific cell types, a feature vital for understanding the biological underpinnings and 
variances among different cells. This percentage in retaining cell-type specific marker 
genes is crucial as it aids in delineating the heterogeneous cellular landscape and com-
prehending the nuanced interplay of cells in disease conditions, like COVID-19. The 
approachâ€™s adaptability in refining gene selection iteratively, especially in datasets 
with varying noise levels and characteristics, underscores its versatile applicability in 
diverse research settings. In the case of BRCA, DenoiseIt uniquely retained around 1566 
genes that were not preserved by other methods like noisyR or other methods (Fig. 7). 
Intriguingly, a substantial number of these uniquely retained genes were found to be 
closely associated with BRCA, and thus providing more room for investigating pro-
found insights into the molecular mechanisms and pathways involved in breast cancer. 



Page 16 of 19Jeon et al. BMC Bioinformatics          (2024) 25:271 

More specifically, genes such as YWHAZ, LDHC, SYPL1P2, ABCB4, ZSCAN1, and oth-
ers emerged as notable genes. For instance, YWHAZ showed a significant increase in 
BRCA and appeared to be less crucial in other cancers [25]. Silencing of LDHC in breast 
cancer cell lines significantly highlighted the presence of giant cells [26], demonstrat-
ing its importance in understanding the cellular dynamics in breast cancer. SYPL1P2 
expressed universally across all analyzed cancer libraries but remained absent in nor-
mal tissues, suggesting its role as a potential marker for malignancy [27]. ABCB4’s over-
expression was related to acquired doxorubicin resistance in breast cancer cells in vitro 
[28], and ZSCAN1 played a role as a novel stemness-related tumor suppressor, target-
ing TAZ in breast cancer [29]. The presence of these genes, particularly when analyzed 
using DenoiseIt, provides a more in-depth understanding of the molecular architecture 
and genetic variations in BRCA, offering new perspectives and avenues for research 
in unraveling the complex nature of breast cancer and possibly other related cancers. 
We compared the remaining genes of DenoiseIt with those retained by other meth-
ods by evaluating their clustering performance which results are provided in Supple-
mentary Table S3. In the case of the COVID-19 dataset, the number of genes retained 
by each method was relatively small. Therefore, we compared the percentage of over-
lapping genes with the DEGs identified before gene filtering (adjusted p-value < 0.05, 
|logFC| > 1 ). The preservation of such significant genes exemplifies DenoiseItâ€™s capa-
bility in not just reducing noise and dimensionality but also in extracting and preserving 
biologically relevant information, enhancing the depth and breadth of the subsequent 
analyses.

Fig. 7  The Venn diagram comparing the remaining genes identified by four different methods. This 
illustration provides a visual representation of the unique and shared genes retained by each method, 
highlighting the distinctiveness and overlap between them
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We acknowledge the limitations of our proposed method and have outlined several 
directions for future research. A notable issue is the randomness that arises each time 
NMF is performed due to the randomly initialized basis and loading factors, as well 
as the challenge of rank selection, which are important parameters that impact the 
quality of the results. As any NMF based application, the user needs to test a range 
of ranks and decide to choose a optimal or sub-optimal number of ranks based on 
the significance of the biological downstream analysis. This also applies for selecting 
the number of trees in the isolation forest analysis step. However, for a dataset with 
sufficiently large number of samples (i.e., ≥ 100), a rank of 180 and 20 trees for NMF 
and isolation forest was shown to be sufficient for robust results as shown in Supple-
mentary Figure S6. For future research, DenoiseIt may be extend to true scRNA-seq 
samples, instead of the pseudobulk samples, or even to the recently increasing spa-
tial scRNA-seq samples to improve cell typing and any related downstream analysis. 
Especially, since each cell in the single cell data is a sample, and there are thousands of 
cells for each cell type, DenoiseIt may be effective to capture outlier cells and remove 
those entirely instead of genes. Overall, we observed and conclude that gene filtering 
is effective in improving the robustness and quality of the downstream DEG and path-
way enrichment analysis of both bulk and single-cell transcriptome samples.

Conclusion
In conclusion, DenoiseIt is an adaptable tool for the denoising gene expression data, 
effectively reducing noisy genes while the preserving biologically informative genes as 
much as possible. Its performance on four different cancer types from TCGA and a 
large COVID-19 cohort dataset demonstrates its capacity to retain phenotypical con-
text associated genes that are vital for understanding specific cell types and disease 
conditions. Furthermore, the iterative gene set refinement procedure of DenoiseIt 
makes it a robust tool, suitable for a more qualitative downstream analysis. Looking 
ahead, DenoiseIt holds the potential to be extended beyond gene filtering to detect 
and exclude outlier samples, and possibly applied to scRNA-seq based spatial tran-
scriptomics. As such, DenoiseIt is expected to aid in a more robust analysis of cohort 
based complex biological experiments and also serve as a tool to acquire a reliable 
gene set prior to any related downstream analysis.
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