
Be‑dataHIVE: a base editing database
Lucas Schneider1* and Peter Minary1*

Introduction
Base editing is a genome engineering application that utilises the CRISPR-dCas tool-
box [1]. The approach has the vast potential to transform healthcare and help cure rare
diseases. The process to design highly efficient base editors for specific gene sections is
resource intensive, and the editing outcome is often not easily predictable partly due to
a wide range of factors base editing outcomes can depend on [2]. Another complicat-
ing factor is the occurrence of off-target effects [3], which have been also observed in
traditional CRISPR-Cas9 based gene editing experiments. It was shown that the extent
of the CRISPR-Cas9 based cleavage activity not only depends on the guide RNA and
target DNA sequences but also on additional factors such as the GC content of the
context sequence surrounding the target DNA and CRISPRspec-derived energy terms
[4, 5]. These features among others were utilised when building deep learning models
for off-target cleave activity prediction [5]. Therefore, it is expected that these types of
features will also serve useful in building machine learning models for predicting base
editing efficiency rates. In addition, bystander mutations can also lead to undesired out-
comes that should be minimized. Therefore, base editing prediction models are needed
to streamline the development of individualized base editors and to estimate any adverse

Abstract

Base editing is an enhanced gene editing approach that enables the precise transfor-
mation of single nucleotides and has the potential to cure rare diseases. The design
process of base editors is labour-intensive and outcomes are not easily predictable.
For any clinical use, base editing has to be accurate and efficient. Thus, any bystander
mutations have to be minimized. In recent years, computational models to pre-
dict base editing outcomes have been developed. However, the overall robustness
and performance of those models is limited. One way to improve the performance
is to train models on a diverse, feature-rich, and large dataset, which does not exist
for the base editing field. Hence, we develop BE-dataHIVE, a mySQL database that cov-
ers over 460,000 gRNA target combinations. The current version of BE-dataHIVE con-
sists of data from five studies and is enriched with melting temperatures and energy
terms. Furthermore, multiple different data structures for machine learning were
computed and are directly available. The database can be accessed via our website
https:// be- datah ive. com/ or API and is therefore suitable for practitioners and machine
learning researchers.

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Schneider and Minary BMC Bioinformatics (2024) 25:330
https://doi.org/10.1186/s12859‑024‑05898‑0

BMC Bioinformatics

*Correspondence:
lucas.schneider@cs.ox.ac.uk;
peter.minary@cs.ox.ac.uk

1 Department of Computer
Science, University of Oxford,
Parks Road, Oxford OX1 3QD, UK

https://be-datahive.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05898-0&domain=pdf

Page 2 of 18Schneider and Minary BMC Bioinformatics (2024) 25:330

mutations. Presently there are only a handful of models for predicting efficiency rates
and bystander outcome rates (see for example [2, 3, 6–10]) that do no utilise all available
data. For those interested in individual models, a more detailed discussion can be found
in the Appendix. A unified and holistic dataset would be beneficial to build the next gen-
eration of base editing prediction models that are more robust to different experimental
setups and perform better than the current ones. Therefore, we develop BE-dataHIVE,
the first comprehensive database for base editing. The database is the biggest dataset to
date with over 460,000 data points. Additionally, the database is enriched with melting
temperatures, and energy terms that will be advantageous for building the next genera-
tion of deep learning models for predicting base editing efficiency rates and bystander
outcome rates.

The remainder of this manuscript is structured as follows. An overview of the dif-
ferent base editing metrics is detailed in Sect. "Base editing prediction tasks". Sec-
tion "Data acquisition and processing" describes the creation of the database and
covers the data acquisition and processing. Our data enrichment approach is elabo-
rated on in Sect. "Data enrichment". The computation of various data representations
for machine learning is outlined in the Sect. "Data representation", which is followed
by an overview of our technical implementation, including website, API interface,
and Python wrapper. Following, a concrete machine learning use case is illustrated.
Finally, we summarize our results. Additional insights about the database fields and
data acquisition process are reported in the supplementary data.

Materials and methods
Base editing prediction tasks

In the base editing field, there exist two main computational tasks: the prediction of
efficiency rates and bystander mutations (the latter entails the prediction of bystander
edit rates or bystander outcome rates). In the following, we will define those tasks
mathematically by using the denominations:

• E: Total number of reads
• Eedited(s, e) : Number of reads with at least one edit within the editing window

starting at position s and ending at position e (e.g., bases 3 to 10)
• Epos(i) : Number of edits at a specific position i
• Eoutcome(i, x, y) : Number of edits at a specific position i that changed the underly-

ing base x to base y
• edit(i, k) : Indicator function for an edit occurring at position i in read k, where

edit(i, k) = 1 if an edit occurred, and edit(i, k) = 0 otherwise
• outcome(i, k , x, y) : Indicator function for an outcome change at position i in read

k from base x to base y, where outcome(i, k , x, y) = 1 if such an outcome occurred,
and outcome(i, k , x, y) = 0 otherwise

• k: Individual read k, where k ranges from 1 to E

Efficiency rates (Reff(s, e)) are defined as the proportion of reads with edited outcomes
within a certain editing window, such as between bases 3 (s) and 10 (e), of the target

Page 3 of 18Schneider and Minary BMC Bioinformatics (2024) 25:330

to total reads (see for example [7]). One can think of the editing window as a subsec-
tion of the target sequence where the editing activity is the strongest.

To account for the fact that a read is counted as edited if any position within the window
is edited, we can define Eedited(s, e) as:

where edit(i, k) = 1 if there is an edit at position i in read k , and 0 otherwise.
The product term

∏e
i=s(1− edit(i, k)) evaluates to 0 if there is any position i within

the window [s, e] where edit(i, k) = 1 . If there are no edits at any position i in read k ,
the product will be 1.

Bystander edit rates (Rbystander(i)) are defined as the number of edits at a given posi-
tion (i) divided by total reads E while bystander outcome rates (Routcome(i, x, y)) are
defined as the number of edits at a specific position (i) that changed the underlying
base x to base y divided by E. Thus, for the bystander tasks, there exist two possible
forecasting targets – edit rates and outcome rates and both are typically expressed as
editing fractions.

where Epos(i) =
∑E

k=1 edit(i, k).

where Eoutcome(i, x, y) =
∑E

k=1 outcome(i, k , x, y).
Edit prediction solely provides information if a base change occurred at a certain

position (e.g., an edit at position 3), while outcome forecasts are more granular and
give insights into the resulting base change (e.g., an edit at position 3 where A → T),
taking into account unexpected nucleotide alterations [3, 6–11].

Efficiency rates and bystander edit rates are closely related to each other. Efficiency
rates are always smaller or equal to the sum of the bystander edit rates, which can be
illustrated mathematically. Using Eq. 3, the sum of bystander edit rates over the edit-
ing positions from s to e is:

Substituting Epos(i) =
∑E

k=1 edit(i, k):

(1)Reff(s, e) =
Eedited(s, e)

E

(2)Eedited(s, e) =

E
∑

k=1

[

1−

e
∏

i=s

(1− edit(i, k))

]

(3)Rbystander(i) =
Epos(i)

E

(4)Routcome(i, x, y) =
Eoutcome(i, x, y)

E

(5)
e

∑

i=s

Rbystander(i) =

e
∑

i=s

Epos(i)

E

(6)
e

∑

i=s

Rbystander(i) =

e
∑

i=s

∑E
k=1 edit(i, k)

E

Page 4 of 18Schneider and Minary BMC Bioinformatics (2024) 25:330

Rearranging the summation:

By comparing Eqs. 1, 2, and 7, one can see that
∑e

i=s edit(i, k) will always be greater or
equal to

[

1−
∏e

i=s(1− edit(i, k))
]

 . Thus, the efficiency rate will also always be less than
or equal to the sum of the bystander edit rates over the same positions:

As a more intuitive way to understand this inequality, think about Reff(s, e) as measur-
ing the occurrence of at least one edit in the window, while

∑e
i=s Rbystander(i) is the sum

of individual probabilities, which can sum to more than 1 if multiple edits are possible
in the same read. Example calculations of efficiency and bystander rates can be seen in
Sect. "Machine learning use case".

Data acquisition and processing

To ensure the inclusion of as many studies as possible and an extensive database, we
analysed 723 unique publications from the base editing field. All publications with “base
editing”, “base editor” or “base editors” in the title were retrieved from Google Scholar.
Following, the papers were analysed via Python for data sources that are reported in
the individual studies and manually screened afterwards. Additional data points were
requested for several studies to ensure a comprehensive dataset.

Figure 1 reports the available bystander data points per study in descending order.
After five publications, there is a noticeable drop in available data points. In addition,
subsequent studies often lack critical data points, such as total read counts or efficiency
rates, and present data in formats that are challenging to standardize and extract, as
these data points are usually embedded in the underlying data for tables and charts in
publications. Considering the data quality and the fact that the first five studies account
for over 98% of available data points, we establish a cut-off after the fifth article.

From a machine learning perspective, the small number of data points offered by the
subsequent studies would not have a meaningful impact on model training. Machine
learning models rely on large, high-quality datasets to generalize well. The robust dataset
from the first five articles provides a strong foundation for model development. To fur-
ther grow and diversify the database, we encourage researchers to submit their data via
our homepage.

The included studies, along with selected key metrics, are reported in Table 1.
Furthermore, stratification Table 2 shows selected metrics by base editors. Table 3
details key metrics and statistics segmented by studies.

For the data processing, we follow three steps. First, the raw data files for all stud-
ies are downloaded from the corresponding journal and unpacked using Python.
Second, the data files are mapped to a common format where the bystander data is
compressed to a single row, with editing outcomes at certain positions being rep-
resented by individual columns. Third, additional factors such as energy terms, and

(7)
e

∑

i=s

Rbystander(i) =
1

E

E
∑

k=1

e
∑

i=s

edit(i, k)

(8)Reff(s, e) ≤

e
∑

i=s

Rbystander(i)

Page 5 of 18Schneider and Minary BMC Bioinformatics (2024) 25:330

melting temperatures are incorporated in the database. All data processing was done
in Python. The data processing script can be found under https:// github. com/ Lucas
749/ be- datah ive. More details about the database format are reported in Table 1 in
the supplementary data.

Data enrichment

Physical energy terms

In line with Störtz and Minary [12], we add various interaction energies figures to
the database to enrich the dataset. Based on Alkan et al.’s [13] approximate energy
model for Cas9-gRNA-DNA binding, we compute multiple energy terms. In total, 24
energy figures are added to the database based on different parameter combinations
(see supplementary Table 2 for an overview). Furthermore, we use RNAfold [14] to
compute the minimum free energy (MFE) secondary structure of the gRNA sequence.

Although these energy metrics were originally developed for traditional Cas9 systems,
base editing leverages a modified, inactive Cas protein, known as dead Cas (dCas), which
does not cleave DNA. Despite this modification, we hypothesize that these energy terms
will still enhance the predictive power of machine learning models in the field of base
editing. The incorporation of these energy terms provides several advantages:

• Enhanced Predictive Accuracy: Energy terms offer quantitative insights into the
stability and efficiency of gRNA-DNA binding interactions, potentially allowing
models to better forecast the likelihood of successful base editing events.

Fig. 1 Available bystander data points per study in descending order

https://github.com/Lucas749/be-datahive
https://github.com/Lucas749/be-datahive

Page 6 of 18Schneider and Minary BMC Bioinformatics (2024) 25:330

• Robustness Across gRNA Variations: Energy terms help models generalize across
different gRNA sequences and target sites by providing a consistent measure
of interaction strength and stability, thereby potentially enhancing model
robustness.

Future research will further investigate the importance and impact of these energy
features on the performance of machine learning models for base editing.

Table 1 Overview of studies included in the base editing database with selected metrics

Please note that for some base editors certain metrics cannot be computed based on the underlying data and are therefore
shown as –. For example, efficiency rates cannot be calculated based on bystander data alone as one could have multiple
edits occurring at different positions within the same read (for a more detailed explanation please see Sect. "Base editing
prediction tasks")

References Guides Targets Avg.
efficiency
rates full
guide

Avg.
bystander
outcome
rate

Avg.
bystander
edit rate

Cell lines Base editors Editor
types

Arbab et al.
(2020) [6]

33,280 33,612 0.291 0.703 0.054 HEK293T,
U2OS,
mES

ABE, ABE-
CP1040,
AID, BE4,
BE4-CP1028,
CDA,
H47ES48A,
T31A,
T31AT44A,
T44DS45A,
eA3A,
evoAPOBEC

ABE, CBE

Pallaseni
et al. (2022)
[3]

26,339 26,335 0.137 0.707 0.466 HEK293T,
K562

ABE20m,
ABE8e,
ABERA,
BE4-1, BE4-2,
FNLS

ABE, CBE

Marquart
et al. (2021)
[9]

22,289 22,289 0.201 0.903 0.010 HEK293T ABE8e,
ABEmax,
CBE4max,
Target-AID

ABE, CBE

Yuan et al.
(2021) [8]

13,660 13,660 – 0.356 0.014 HEK293T A3G-CGBE,
A3G-CTD-
CGBE,
BE3-WT,
CBE4max,
YE1-FNLS-
BE3, YE1-
FNLS-CGBE,
eA3A-
FNLS-CGBE,
elegan-
A3G-CTD-
OPTI-CGBE,
elegan-A3G-
OPTI-CGBE,
elegan-
eA3A-OPTI-
CGBE, elgan-
OPTI-CGBE

CBE

Song et al.
(2020) [7]

12,210 12,210 0.141 0.960 0.007 HEK293T ABE, CBE ABE, CBE

Page 7 of 18Schneider and Minary BMC Bioinformatics (2024) 25:330

Table 2 Stratification of the database by base editors for selected metrics

 Please note that for some base editors certain metrics cannot be computed based on the underlying data and are therefore
shown as –. For example, efficiency rates cannot be calculated based on bystander data alone as one could have multiple
edits occurring at different positions within the same read (for a more detailed explanation please see Sect. "Base editing
prediction tasks")

*Calculated rate is used if no efficiency rate is reported

Base editor Unique
guides

Unique
targets

Unique
PAMS

Avg.
sequence
length

Avg. length
flanking
sequence

Avg.
efficiency
rate full
guide*

Avg.
efficiency
rate 3–10
window*

A3G-CGBE 7205 7205 38 79 59 – –

A3G-CTD-
CGBE

7022 7022 40 79 59 – –

ABE 29,179 29,179 4 49.70 29.70 0.25 0.20

ABE20m 24,994 24,990 69 79 59 0.17 –

ABE8e 28,962 28,958 69 72.04 52.04 0.22 0.27

ABE-CP1040 16,295 16,295 4 56 36 0.26 –

ABEmax 8558 8558 – 20 – 0.26 0.25

ABERA 14,776 14,776 69 79 59 0.00 –

AID 18,876 18,876 4 56 36 0.41 –

BE3-WT 8522 8522 36 79 59 – –

BE4 12,607 12,607 4 56 36 0.27 –

BE4-1 14,776 14,776 69 79 59 0.10 –

BE4-2 11,811 11,811 69 79 59 0.09 –

BE4-CP1028 13,534 13,534 4 56 36 0.21 –

CBE 10,221 10,221 4 30 10 0.08 0.07

CBE4max 16,881 16,881 31 46.46 26.46 0.18 0.14

CDA 17,306 17,306 4 56 36 0.31 –

eA3A 12,115 12,446 16 55.37 35.37 0.29 –

eA3A-FNLS-
CGBE

7106 7106 33 79 59 – –

elegan-A3G-
CTD-OPTI-
CGBE

6885 6885 39 79 59 – –

elegan-A3G-
OPTI-CGBE

7204 7204 36 79 59 – –

elegan-
eA3A-OPTI-
CGBE

7369 7369 37 79 59 – –

elgan-OPTI-
CGBE

7921 7921 35 79 59 – –

evoAPOBEC 16,733 16,733 4 56 36 0.29 –

FNLS 14,776 14,776 69 79 59 0.17 –

H47ES48A 7049 7049 4 56 36 0.33 –

T31A 827 879 16 54.06 34.06 0.22 –

T31AT44A 3089 3135 16 55.66 35.66 0.22 –

T44DS45A 1101 1101 4 56 36 0.19 –

Target-AID 10,177 10,177 – 20 – 0.13 0.05

YE1-FNLS-
BE3

8021 8021 34 79 59 – –

YE1-FNLS-
CGBE

7040 7040 33 79 59 – –

Page 8 of 18Schneider and Minary BMC Bioinformatics (2024) 25:330

Melting temperature

In addition, we add the melting temperatures of the 20nt target sequence and gRNA
to the database. The melting temperature is computed via the Biopython MeltingTemp
module [15] using the Tm_NN function which calculates the temperature based on
nearest neighbour thermodynamics and corrects amongst others for mismatches, dan-
gling ends, and salt concentration. Melting temperatures find usage in some base editing
prediction models, such as Pallaseni et al. [3] and Arbab et al. [6].

Data representation

There exist many methods to encode sequence data and process information efficiently.
Besides traditional methods, such as one-hot encoding or k-mers, novel approaches
such as BASiNET [16] and Hilbert curve encodings [17, 18] have been developed. Our
database is designed to easily integrate any type of encoding method, independently of
the underlying complexity, and can be extended with more encoding techniques.

Currently, the database supports two main encoding methods: one-hot encoding and
Hilbert curve encoding. We chose these two approaches to illustrate the flexibility and
capability of our database and to offer users one standard encoding approach (one-hot
encoding) and a more novel and complex encoding framework from the field of imaging

Table 3 Stratification of the database by studies for selected metrics

*Calculated rate is used if no efficiency rate is reported

Metric Statistic References

Arbab
et al.
(2020) [6]

Pallaseni
et al. (2022)
[3]

Marquart
et al. (2021)
[9]

Yuan et al.
(2021) [8]

Song et al. (2020)
[7]

Guide length Value 20 20 20 20 20

Mismatch guide/
sequence

Percentage 0.00 0.74 0.00 0.04 0.00

Sequence length Min 40 40 20 20 30

Average 40 40 20 20 30

Max 34 40 20 20 30

Full context
sequence

Min 35 79 20 79 30

Average 56 79 20 79 30

Max 61 79 20 79 30

Flanking sequence
length

Min 41 59 0 59 10

Average 36 59 0 59 10

Max 15 59 0 59 10

Total reads experi-
ment

Min 101 3 100 0 110

Average 4527 6353 1999 0 2422

Max 688,505 337,154 285,776 0 1,156,803

Edited count
experiment

Min 100 0 0 0 0

Average 1028 0 1419 0 517

Max 106,103 0 49,761 0 314,275

Efficiency rate full
guide*

Min 0.00 0.00 0.03 0.00 0.00

Average 0.29 0.14 0.20 0.00 0.00

Max 1.00 1.00 1.00 0.00 0.00

Efficiency Rate
3–10 Window*

Min 0.00 0.00 0.00 0.00 0.00

Average 0.00 0.00 0.15 0.00 0.00

Max 0.00 0.00 1.00 0.00 0.00

Page 9 of 18Schneider and Minary BMC Bioinformatics (2024) 25:330

(Hilbert curve encoding) that has produced promising results in machine learning mod-
els [17, 18].

One‑hot encoding

One-hot encoding is a commonly used preprocessing method to convert categorical
data into a format that can be understood by machine learning algorithms. Each cate-
gory value is converted into a new binary feature that takes a value of 1 for its respective
category and 0 for others. In a DNA sequence context, nucleotides ’A’, ’T’, ’C’, ’G’ can be
one-hot encoded as [1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1] respectively. This method effi-
ciently represents categorical data.

Hilbert curve encoding

Sequences are represented as a Hilbert curve image [19]. This imaging approach is used
in converting multi-dimensional data into one-dimensional data while preserving local-
ity, meaning that points that are close in higher dimensions remain close when mapped
to the Hilbert curve. Using Hilbert curves allows DNA sequences to be represented in
a two-dimensional space while preserving the locality of the nucleotides. Each point on
the Hilbert curve corresponds to a specific nucleotide in the sequence. The curve covers
every point in a square grid with a size of any power of 2. A practical example of the gen-
eration of a Hilbert curve encoding can be found in the Appendix. For a detailed expla-
nation on Hilbert curves and the exact construction methodology we refer to Anjum
et al. [17].

Technical implementation

The database consists of four main components, a mySQL database, a Node.js server
for REST API queries, a Python wrapper for the API, and our website https:// be- datah
ive. com/. The setup is illustrated in Fig. 2. The REST server, utilizing Node.js as runt-
ime framework, provides data for the website and can also be directly accessed from
users to serve individual queries. The website is written from scratch using CSS, HTML,
and JavaScript. API calls to the database are done via JavaScript’s asynchronous fetch
method.

Fig. 2 Illustration of the technical implementation of BE-dataHIVE

https://be-datahive.com/
https://be-datahive.com/

Page 10 of 18Schneider and Minary BMC Bioinformatics (2024) 25:330

Our setup enables highly individualized and fast data queries and offers users two
interfaces - our website and API. Furthermore, the framework is easily expandable to
accommodate and incorporate various data views, especially for machine learning
applications.

Website interface

Our website https:// be- datah ive. com/ provides a convenient way for practitioners to
look up guides, targets, and base editor efficiency rates as well as bystander outcomes
(see Fig. 3). For example, if a lab would like to investigate the bystander activity of a cer-
tain guide RNA, they can search for the specific guide but also for similar sequences via
the search feature on our web page.

The website offers the following features:

• Browsing and searching by gRNA, base editor, and cell lines
• Access to statistics and analytics for bystander and efficiency data
• Charting of data
• Direct csv download

Fig. 3 Web interface of BE-dataHIVE. Experiments can be filtered on the home screen (a) and bystander data
can be examined (b)

https://be-datahive.com/

Page 11 of 18Schneider and Minary BMC Bioinformatics (2024) 25:330

• API to interact with the mySQL database for customised data requests

Application programming interface

The database can be accessed via a REST-API that enables easy access to the underlying
data as well as a flexible way to interact with the database. The data can be directly fil-
tered and modified via the API and accessed from any programming language that sup-
ports http requests. The API will be particularly relevant for data scientists and machine
learning researchers as it provides the flexibility to filter and retrieve the desired data
directly from the server without any intermediary steps. The API documentation can be
found under https:// be- datah ive. com/ docum entat ion. html.

Python API wrapper

To provide a simple way to obtain data directly in Python, a widely used programming
language for machine learning, we wrote the Python library be_datahive that han-
dles all API requests and data handling. Data can be retrieved directly via the package.
Furthermore, the wrapper implements some basic machine learning data handling rou-
tines, such as the creation of a labelled dataset. be_datahive is available on GitHub
and PyPi. Detailed usage examples are showcased on our GitHub.

Machine learning use case

Base editing features two types of prediction tasks, namely efficiency rate and bystander
predictions. The former predicts the overall editing efficiency while the latter aims at
predicting bystander edit rates or the more informative bystander outcome rates (as
defined above). Easy access to training data for both types of prediction tasks can be
facilitated by BE-dataHIVE. The required machine learning ready data can simply be
obtained and multiple feature encodings are available out-of-the-box. Python users can
use our Python API wrapper that returns the requested data in a few lines of code. Prac-
tical coding examples for training machine learning models with our database are avail-
able on our Python wrapper GitHub. The following section illustrates the structure of
one data point based on a specific example to make it easier for readers to grasp the data
format. Assuming that one labelled data point has the format (X, y), where y is the pre-
diction target one aims to predict based on X, which typically denotes the features. Data
points for efficiency rate, bystander edit rate and bystander outcome rate differ in terms
of y so here we give an example data point for each rate that shares the same X illustrated
in Eq. 9. Using our database, we retrieve 33 features for X, such as melting tempera-
tures, energy terms, and gRNA. One-hot and Hilbert curve encodings are available for
all nucleic acid sequence fields.

https://be-datahive.com/documentation.html

Page 12 of 18Schneider and Minary BMC Bioinformatics (2024) 25:330

Efficiency rate prediction task

The efficiency data can be obtained by calling the endpoint “efficiency” in our API or
Python wrapper. In the efficiency rate prediction task, we are forecasting a single number,
which for our example (X) is

Bystander edit rate prediction task

Endpoint “bystander” yields bystander edit and outcome data (see below). For bystander
edit rate prediction the target matrix is of size 1×m , containing editing fractions (number
of edits divided by total reads) for every position. In our data point m = 42 and positions
are determined relative to the start of the gRNA, meaning that position −1 would indicate
the base immediately before the start of the gRNA sequence (see Eq. 11). In the case that
only a single edit per base occurs per sample, we could simply sum up the vector to calcu-
late the efficiency rate. However, multiple edits can occur at different positions within the
same read, weaking this link between efficiency and bystander edit rate (see Eq. 8).

Bystander outcome rate prediction task

Bystander outcome forecasts have as target a matrix of size n×m , containing editing frac-
tions (number of edits divided by total reads) for position and outcome combinations. m
refers to the editing positions around the target sequence while n represents the possible
editing outcomes A, T, C, or G for outcome predictions. Therefore, the matrix has four
rows (n = 4). Equation 12 shows the example, y for editing outcomes, which is a 4 × 42
matrix. Based on the example data, we can see that in 0.18% of the total reads the base at
position − 9 is edited to an A nucleotide.

(9)

X =

gRNA
Pam Sequence
Full Context Sequence Padded
gRNA Sequence Match
Cell
Base Editor
Melt Temperature gRNA
Melt Temperature Target
Energy 1
...
Energy 24
Free Energy

=

GGACCGTCGAAAATGGGCCT
GGG
NTCCAATATC...
TRUE
K562
BE4 - 1
56.96
56.96
0
...
27
−4.6

(10)y =
[

Efficiency Full gRNA Reported
]

=
[

0.9840
]

(11)

(12)

Page 13 of 18Schneider and Minary BMC Bioinformatics (2024) 25:330

To demonstrate the utility of our database and the significance of newly incorporated
features, such as energy terms and melting temperatures, we train a machine learn-
ing model to predict efficiency rates using various feature combinations. We employ a
Gradient Boosting Regression model with a learning rate of 0.1, maximum depth of 3,
and 100 boosting stages. The model is trained on 80% of the dataset based on a five-fold
cross-validation approach with Spearman correlation as the loss function. We use the
same model and training approach while varying feature combinations. We create the
following feature groups and test all four combinations:

1. Baseline Includes only one-hot encoded gRNA and full context sequence.
2. Energy Terms Includes all physical energy terms for the sequence and gRNA.
3. Melting Temperature Includes all melting temperatures for the sequence and gRNA.

Figure 4 shows the improvement of different feature combinations over the baseline
model using Spearman correlation to assess performance. Models with an enhanced
feature set outperform the baseline across ABEs and CBEs. The greatest performance
improvements—6.0% higher Spearman correlation for ABEs and a 4.2% increase for
CBEs compared to the baseline—are achieved using both energy terms and melting tem-
peratures. Using energy terms alone improves performance for ABEs and CBEs by 4.9%
and 3.0% , respectively. Melting temperatures increase the correlation by 0.3% for ABEs
and 0.2% for CBEs. Overall, incorporating energy terms and melting temperatures into
the feature set results in a substantial increase in Spearman correlation across ABE and
CBE base editors. This systematic case study highlights the potential of the newly added
features in our database to enhance the predictive power of base editing models.

Results and discussion
We devise a base editing database that consists of over 460,000 individual data points,
covering 32 distinct base editors and over 98,000 unique guides. BE-dataHIVE addresses
multiple issues in the computational pipeline for base editing prediction models.

We create the first baseline dataset for base editing prediction tasks. The data is
standardized and enriched with additional metrics from various data sources. Our

Fig. 4 Percentage improvement of the Spearman correlation over the baseline feature set with respect to
various feature combinations

Page 14 of 18Schneider and Minary BMC Bioinformatics (2024) 25:330

dataset can be easily used by non-domain experts, significantly lowering the entry
barrier for computer scientists and machine learning researchers to work on base
editing outcome predictions. Similar to how standardized datasets like the Protein-
Protein Interactions (PPI) [20] or MNIST [21] datasets facilitated advancements
in their respective fields, we hope that our data will serve this crucial role for base
editing.

In addition to compiling the first comprehensive collection of data points for base
editing, we further enhance the underlying data with energy terms and melting tem-
peratures that will allow more robust machine learning models.

Furthermore, our interactive web interface provides analytics for single data points
that give researchers the possibility to look up relevant gRNA and target combina-
tions as well as understand the underlying data points.

Moreover, our dataset is easily accessible via our web interface and API that allows
flexible data queries for researchers to directly integrate base editing data into their
studies. With our Python wrapper, users can create machine learning models with
a few lines of code and access machine readable encodings (please see our Python
wrapper GitHub for examples). Those generated encodings alone have a size of
72GB.

We hope the database will contribute to the literature to produce stronger base
editing prediction models that are more robust and help streamline the efficient
development of base editing systems to ultimately cure rare diseases caused by point
mutations. We highly encourage laboratories and practitioners to reach out and sub-
mit base editing data to grow the database further and advance the field together.

Appendix
Base editing prediction models

In this section, we delve deeper into the current systems used to forecast base edit-
ing outcomes. There are seven core studies (see Table 4). While most publications
utilise a machine learning framework, Dandage et al. [10] is the oldest and only
article that relies on a deterministic workflow to estimate efficiency rates. From the
machine learning models, neural networks are the most popular architecture types –
four of the six publications build neural networks while the other two use tree based
models. Most of the machine learning models focus on simple architectures, such as
gradient boosted trees or logistic regressions [3, 6, 11]. Marquart et al. [9] is the only
publication that enriches their own dataset with some of the data from Arbab et al.
[6] and Song et al. [7]. Noticeable is that some models utilise different architectures
within itself for different base editing prediction tasks. For example, the BE-Hive
model uses gradient boosted trees for efficiency forecasts but a two-layer neural net-
work for bystander predictions. Amongst the publications, there seems to be a slight
bias towards predicting CBE outcomes as 100% of articles cover those, while solely
71% support ABEs. However, most studies incorporate ABEs and CBEs. Overall,
academia developed six models for base editing outcome predictions, namely bedi-
tor, BE-Hive, DeepBaseEditor, BE-SMART, BE-DICT, and FORECasT-BE.

Page 15 of 18Schneider and Minary BMC Bioinformatics (2024) 25:330

Table 4 Overview of the state-of-the-art prediction models in the literature

References Year Task Model
approach

Architecture Model Model
details

ABE
support

CBE
support

Dandage
et al. [10]

2019 Efficiency Determin-
istic

N/A beditor Computa-
tional scor-
ing system
that
uses the
Burrows-
Wheeler
aligner to
determine
mis-
matches
and apply
different
penalty
scores if a
mismatch
is near
the PAM,
genic or
intergenic

✓ ✓

Arbab et al.
[6]

2020 Efficiency Machine
learning

Decision tree BE-Hive Gradient
boosted
regression
trees

✓ ✓

Bystander Neural net-
work

Deep con-
ditional
autore-
gressive
machine
learning
model
with
encoder/
decoder.
Encoder
has two
hidden
layers
and the
decoder
exhib-
its five
hidden
layers. The
network is
fully con-
nected

Song et al.
[7]

2020 Efficiency
and
bystander

Machine
learning

Neural net-
work

DeepBa-
seEditor
(DeepABE/
DeepCBE)

Two to
three
hidden
layer deep
neural net-
work with
convolu-
tion and
dropouts

✓ ✓

Koblan et al.
[11]

2021 Efficiency
and
bystander

Machine
learning

Neural net-
work, regres-
sion, decision
tree

Mixed BE-Hive,
logistic
regression,
gradient
boosted
regression
trees

✗ ✓

Page 16 of 18Schneider and Minary BMC Bioinformatics (2024) 25:330

Hilbert curve encoding example

In this section, we will construct a practical example of the Hilbert curve encoding
based on a sequence of nucleotides. Assume we want to encode the sequence “ATG
CAT CAG”. In order to fit the full sequence of length 9 into a matrix, we need at least
the dimension 4 × 4. First, we start with the simplest 2 × 2 Hilbert curve that has the
following shape (see Fig. 5).

Table 4 (continued)

References Year Task Model
approach

Architecture Model Model
details

ABE
support

CBE
support

Yuan et al.
[8]

2021 Bystander Machine
learning

Neural net-
work

BE-SMART Deep
neural
network
model
with
dropout

✗ ✓

Marquart
et al. [9]

2021 Efficiency Machine
learning

Neural net-
work

BE-DICT Attention-
based
deep
neural
network
with an
encoder
block that
has a self-
attention
layer, layer
normaliza-
tion and
residual
connec-
tions, and
a feed
forward
network

✓ ✓

Bystander Extension
of the
efficiency
model.
Encoded
block
of the
efficiency
module
feeds
into an
encoder-
decoder
attention
layer
together
with
positional
embed-
dings

Pallaseni
et al. [3]

2022 Efficiency
and
bystander

Machine
learning

Decision tree FORECasT-
BE

Gradient
boosted
regression
trees

✓ ✓

Page 17 of 18Schneider and Minary BMC Bioinformatics (2024) 25:330

Based on the 2 × 2 Hilbert curve we can expand the grid to a 4 × 4 matrix (see Fig. 6).
The nucleotides can now be placed into the grid in the Hilbert curve order.

The individual letter can be further encoded, with for example one-hot encoding. This
transforms the 4 × 4 matrix into a three dimensional matrix of the shape 4 × 4 × 4 that
is preserving the locality of the data. The Hilbert curves are constructed in line with
Anjum et al. [17], which build a CNN model for enhancer predictions utilising this
graphical representation. For a detailed explanation on Hilbert curves and the exact con-
struction methodology we refer to Anjum et al. [17].

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 024- 05898-0.

Supplementary Material 1.

Author contributions
L.S. and P.M. conceived and designed the study. L.S. constructed the database, performed data analysis, and led the writ-
ing of the manuscript. P.M. supervised the project. Both authors reviewed and revised the manuscript.

Funding
Not applicable.

Availability of data and materials
The BE-dataHive database is available at https:// be- datah ive. com/. Users are not required to log in to access any of the
database features.

Declarations

Ethics approval and consent to participate.
Not applicable.

Fig. 5 Illustration of a 2 × 2 Hilbert curve

Fig. 6 Mapping of sequence “ATG CAT CAG” to a 4 × 4 Hilbert curve. Left shows the ordering of the Hilbert
curve across the 4 × 4, while the right depicts the example sequence inside the grid

https://doi.org/10.1186/s12859-024-05898-0
https://be-datahive.com/

Page 18 of 18Schneider and Minary BMC Bioinformatics (2024) 25:330

Competing interests
The authors declare that they have no competing interests.

Received: 4 February 2024 Accepted: 13 August 2024

References
 1. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without

double-stranded DNA cleavage. Nature. 2016;533(7603):420–4.
 2. Göknur G, Saima I, Herold Marco J, Papenfuss AT. A systematic review of computational methods for designing

efficient guides for CRISPR DNA base editor systems. Brief Bioinform. 2023;24(4):bbad205.
 3. Pallaseni A, Peets EM, Koeppel J, Weller J, Vanderstichele T, Ho UL, Crepaldi L, van Leeuwen J, Allen F, Parts

L. Predicting base editing outcomes using position-specific sequence determinants. Nucleic Acids Res.
2022;50(6):3551–64.

 4. Mak JK, Störtz F, Minary P. Comprehensive computational analysis of epigenetic descriptors affecting crispr-cas9
off-target activity. BMC Genom. 2022;23:805.

 5. Störtz F, Mak J, Minary P. picrispr: Physically informed deep learning models for crispr/cas9 off-target cleavage
prediction. Artif Intell Life Sci. 2023;3:100075.

 6. Arbab M, Shen MW, Mok B, Wilson C, Matuszek Z, Cassa CA, Liu DR. Determinants of base editing outcomes from
target library analysis and machine learning. Cell. 2020;182(2):463-480.e30.

 7. Song M, Kim HK, Lee S, Kim Y, Seo S-Y, Park J, Choi JW, Jang H, Shin JH, Min S, Quan Z, Kim JH, Kang HC, Yoon S,
Kim HH. Sequence-specific prediction of the efficiencies of adenine and cytosine base editors. Nat Biotechnol.
2020;38(9):1037–43.

 8. Yuan T, Yan N, Fei T, Zheng J, Meng J, Li N, Liu J, Zhang H, Xie L, Ying W, Li D, Shi L, Sun Y, Li Y, Li Y, Sun Y, Zuo E.
Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods.
Nat Commun. 2021;12(1):4902.

 9. Marquart KF, Allam A, Janjuha S, Sintsova A, Villiger L, Frey N, Krauthammer M, Schwank G. Predicting base editing
outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens. Nat
Commun. 2021;12(1):5114.

 10. Dandage R, Després PC, Yachie N, Landry CR. Beditor: a computational workflow for designing libraries of guide
RNAs for CRISPR-mediated base editing. Genetics. 2019;212(2):377–85.

 11. Koblan LW, Arbab M, Shen MW, Hussmann JA, Anzalone AV, Doman JL, Newby GA, Yang D, Mok B, Replogle JM,
Albert X, Sisley TA, Weissman JS, Adamson B, Liu DR. Efficient C ·G-to-G· C base editors developed using CRISPRi
screens, target-library analysis, and machine learning. Nat Biotechnol. 2021;39(11):1414–25.

 12. Störtz F, Minary P. crisprSQL: a novel database platform for CRISPR/Cas off-target cleavage assays. Nucleic Acids Res.
2021;49(D1):D855–61.

 13. Alkan F, Wenzel A, Anthon C, Havgaard JH, Gorodkin J. CRISPR-Cas9 off-targeting assessment with nucleic acid
duplex energy parameters. Genome Biol. 2018;19(1):177.

 14. Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL. The Vienna RNA websuite. Nucleic Acids Res.
2008;36:W70–4.

 15. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, de
Hoon MJL. Biopython: freely available Python tools for computational molecular biology and bioinformatics.
Bioinformatics. 2009;25(11):1422–3.

 16. Ito EA, Katahira I, da Rocha Vicente FF, Pereira LFP, Lopes FM. BASiNET—biological sequences NETwork: a case study
on coding and non-coding RNAs identification. Nucleic Acids Res. 2018;46(16):e96–e96.

 17. Anjum MM, Asadullah TI, Sohel RM. CNN model with hilbert curve representation of DNA sequence for enhancer
prediction. bioRxiv. 2019. https:// doi. org/ 10. 1101/ 552141.

 18. Mingyang Z, Yujia H. Epishilbert Min Zhu. Prediction of enhancer-promoter interactions via Hilbert curve encoding
and transfer learning. Genes. 2021;12(9):1385.

 19. Hilbert D. über die stetige abbildung einer linie auf ein flächenstück. Math Ann. 1891. https:// doi. org/ 10. 1007/ BF011
99431.

 20. Hamilton William L, Ying R, Leskovec J. Inductive representation learning on large graphs. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS’17, Red Hook, NY, USA, Curran Associates
Inc.; 2017. p 1025–1035.

 21. Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE.
1998;86(11):2278–324.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1101/552141
https://doi.org/10.1007/BF01199431
https://doi.org/10.1007/BF01199431

	Be-dataHIVE: a base editing database
	Abstract
	Introduction
	Materials and methods
	Base editing prediction tasks
	Data acquisition and processing
	Data enrichment
	Physical energy terms
	Melting temperature

	Data representation
	One-hot encoding
	Hilbert curve encoding

	Technical implementation
	Website interface
	Application programming interface
	Python API wrapper

	Machine learning use case
	Efficiency rate prediction task
	Bystander edit rate prediction task
	Bystander outcome rate prediction task

	Results and discussion
	Appendix
	Base editing prediction models
	Hilbert curve encoding example

	References

