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Introduction
Base editing is a genome engineering application that utilises the CRISPR-dCas tool-
box [1]. The approach has the vast potential to transform healthcare and help cure rare 
diseases. The process to design highly efficient base editors for specific gene sections is 
resource intensive, and the editing outcome is often not easily predictable partly due to 
a wide range of factors base editing outcomes can depend on [2]. Another complicat-
ing factor is the occurrence of off-target effects [3], which have been also observed in 
traditional CRISPR-Cas9 based gene editing experiments. It was shown that the extent 
of the CRISPR-Cas9 based cleavage activity not only depends on the guide RNA and 
target DNA sequences but also on additional factors such as the GC content of the 
context sequence surrounding the target DNA and CRISPRspec-derived energy terms 
[4, 5]. These features among others were utilised when building deep learning models 
for off-target cleave activity prediction [5]. Therefore, it is expected that these types of 
features will also serve useful in building machine learning models for predicting base 
editing efficiency rates. In addition, bystander mutations can also lead to undesired out-
comes that should be minimized. Therefore, base editing prediction models are needed 
to streamline the development of individualized base editors and to estimate any adverse 
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mutations. Presently there are only a handful of models for predicting efficiency rates 
and bystander outcome rates (see for example [2, 3, 6–10]) that do no utilise all available 
data. For those interested in individual models, a more detailed discussion can be found 
in the Appendix. A unified and holistic dataset would be beneficial to build the next gen-
eration of base editing prediction models that are more robust to different experimental 
setups and perform better than the current ones. Therefore, we develop BE-dataHIVE, 
the first comprehensive database for base editing. The database is the biggest dataset to 
date with over 460,000 data points. Additionally, the database is enriched with melting 
temperatures, and energy terms that will be advantageous for building the next genera-
tion of deep learning models for predicting base editing efficiency rates and bystander 
outcome rates.

The remainder of this manuscript is structured as follows. An overview of the dif-
ferent base editing metrics is detailed in Sect. "Base editing prediction tasks". Sec-
tion "Data acquisition and processing" describes the creation of the database and 
covers the data acquisition and processing. Our data enrichment approach is elabo-
rated on in Sect. "Data enrichment". The computation of various data representations 
for machine learning is outlined in the Sect. "Data representation", which is followed 
by an overview of our technical implementation, including website, API interface, 
and Python wrapper. Following, a concrete machine learning use case is illustrated. 
Finally, we summarize our results. Additional insights about the database fields and 
data acquisition process are reported in the supplementary data.

Materials and methods
Base editing prediction tasks

In the base editing field, there exist two main computational tasks: the prediction of 
efficiency rates and bystander mutations (the latter entails the prediction of bystander 
edit rates or bystander outcome rates). In the following, we will define those tasks 
mathematically by using the denominations:

•	 E: Total number of reads
•	 Eedited(s, e) : Number of reads with at least one edit within the editing window 

starting at position s and ending at position e (e.g., bases 3 to 10)
•	 Epos(i) : Number of edits at a specific position i
•	 Eoutcome(i, x, y) : Number of edits at a specific position i that changed the underly-

ing base x to base y
•	 edit(i, k) : Indicator function for an edit occurring at position i in read k, where 

edit(i, k) = 1 if an edit occurred, and edit(i, k) = 0 otherwise
•	 outcome(i, k , x, y) : Indicator function for an outcome change at position i in read 

k from base x to base y, where outcome(i, k , x, y) = 1 if such an outcome occurred, 
and outcome(i, k , x, y) = 0 otherwise

•	 k: Individual read k, where k ranges from 1 to E

Efficiency rates ( Reff(s, e) ) are defined as the proportion of reads with edited outcomes 
within a certain editing window, such as between bases 3 (s) and 10 (e), of the target 
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to total reads (see for example [7]). One can think of the editing window as a subsec-
tion of the target sequence where the editing activity is the strongest.

To account for the fact that a read is counted as edited if any position within the window 
is edited, we can define Eedited(s, e) as:

where edit(i, k) = 1 if there is an edit at position i in read k , and 0 otherwise.
The product term 

∏e
i=s(1− edit(i, k)) evaluates to 0 if there is any position i within 

the window [s, e] where edit(i, k) = 1 . If there are no edits at any position i in read k , 
the product will be 1.

Bystander edit rates ( Rbystander(i) ) are defined as the number of edits at a given posi-
tion (i) divided by total reads E while bystander outcome rates ( Routcome(i, x, y) ) are 
defined as the number of edits at a specific position (i) that changed the underlying 
base x to base y divided by E. Thus, for the bystander tasks, there exist two possible 
forecasting targets – edit rates and outcome rates and both are typically expressed as 
editing fractions.

where Epos(i) =
∑E

k=1 edit(i, k).

where Eoutcome(i, x, y) =
∑E

k=1 outcome(i, k , x, y).
Edit prediction solely provides information if a base change occurred at a certain 

position (e.g., an edit at position 3), while outcome forecasts are more granular and 
give insights into the resulting base change (e.g., an edit at position 3 where A → T), 
taking into account unexpected nucleotide alterations [3, 6–11].

Efficiency rates and bystander edit rates are closely related to each other. Efficiency 
rates are always smaller or equal to the sum of the bystander edit rates, which can be 
illustrated mathematically. Using Eq. 3, the sum of bystander edit rates over the edit-
ing positions from s to e is:

Substituting Epos(i) =
∑E

k=1 edit(i, k):

(1)Reff(s, e) =
Eedited(s, e)

E

(2)Eedited(s, e) =

E
∑

k=1

[

1−

e
∏

i=s

(1− edit(i, k))

]

(3)Rbystander(i) =
Epos(i)

E

(4)Routcome(i, x, y) =
Eoutcome(i, x, y)

E

(5)
e

∑

i=s

Rbystander(i) =

e
∑

i=s

Epos(i)

E

(6)
e

∑

i=s

Rbystander(i) =

e
∑

i=s

∑E
k=1 edit(i, k)

E
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Rearranging the summation:

By comparing Eqs. 1, 2, and 7, one can see that 
∑e

i=s edit(i, k) will always be greater or 
equal to 

[

1−
∏e

i=s(1− edit(i, k))
]

 . Thus, the efficiency rate will also always be less than 
or equal to the sum of the bystander edit rates over the same positions:

As a more intuitive way to understand this inequality, think about Reff(s, e) as measur-
ing the occurrence of at least one edit in the window, while 

∑e
i=s Rbystander(i) is the sum 

of individual probabilities, which can sum to more than 1 if multiple edits are possible 
in the same read. Example calculations of efficiency and bystander rates can be seen in 
Sect. "Machine learning use case".

Data acquisition and processing

To ensure the inclusion of as many studies as possible and an extensive database, we 
analysed 723 unique publications from the base editing field. All publications with “base 
editing”, “base editor” or “base editors” in the title were retrieved from Google Scholar. 
Following, the papers were analysed via Python for data sources that are reported in 
the individual studies and manually screened afterwards. Additional data points were 
requested for several studies to ensure a comprehensive dataset.

Figure  1 reports the available bystander data points per study in descending order. 
After five publications, there is a noticeable drop in available data points. In addition, 
subsequent studies often lack critical data points, such as total read counts or efficiency 
rates, and present data in formats that are challenging to standardize and extract, as 
these data points are usually embedded in the underlying data for tables and charts in 
publications. Considering the data quality and the fact that the first five studies account 
for over 98% of available data points, we establish a cut-off after the fifth article.

From a machine learning perspective, the small number of data points offered by the 
subsequent studies would not have a meaningful impact on model training. Machine 
learning models rely on large, high-quality datasets to generalize well. The robust dataset 
from the first five articles provides a strong foundation for model development. To fur-
ther grow and diversify the database, we encourage researchers to submit their data via 
our homepage.

The included studies, along with selected key metrics, are reported in Table  1. 
Furthermore, stratification Table  2 shows selected metrics by base editors. Table  3 
details key metrics and statistics segmented by studies.

For the data processing, we follow three steps. First, the raw data files for all stud-
ies are downloaded from the corresponding journal and unpacked using Python. 
Second, the data files are mapped to a common format where the bystander data is 
compressed to a single row, with editing outcomes at certain positions being rep-
resented by individual columns. Third, additional factors such as energy terms, and 

(7)
e

∑

i=s

Rbystander(i) =
1

E

E
∑

k=1

e
∑

i=s

edit(i, k)

(8)Reff(s, e) ≤

e
∑

i=s

Rbystander(i)
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melting temperatures are incorporated in the database. All data processing was done 
in Python. The data processing script can be found under https://​github.​com/​Lucas​
749/​be-​datah​ive. More details about the database format are reported in Table  1 in 
the supplementary data.

Data enrichment

Physical energy terms

In line with Störtz and Minary [12], we add various interaction energies figures to 
the database to enrich the dataset. Based on Alkan et  al.’s [13] approximate energy 
model for Cas9-gRNA-DNA binding, we compute multiple energy terms. In total, 24 
energy figures are added to the database based on different parameter combinations 
(see supplementary Table 2 for an overview). Furthermore, we use RNAfold [14] to 
compute the minimum free energy (MFE) secondary structure of the gRNA sequence.

Although these energy metrics were originally developed for traditional Cas9 systems, 
base editing leverages a modified, inactive Cas protein, known as dead Cas (dCas), which 
does not cleave DNA. Despite this modification, we hypothesize that these energy terms 
will still enhance the predictive power of machine learning models in the field of base 
editing. The incorporation of these energy terms provides several advantages:

•	 Enhanced Predictive Accuracy: Energy terms offer quantitative insights into the 
stability and efficiency of gRNA-DNA binding interactions, potentially allowing 
models to better forecast the likelihood of successful base editing events.

Fig. 1  Available bystander data points per study in descending order

https://github.com/Lucas749/be-datahive
https://github.com/Lucas749/be-datahive
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•	 Robustness Across gRNA Variations: Energy terms help models generalize across 
different gRNA sequences and target sites by providing a consistent measure 
of interaction strength and stability, thereby potentially enhancing model 
robustness.

Future research will further investigate the importance and impact of these energy 
features on the performance of machine learning models for base editing.

Table 1  Overview of studies included in the base editing database with selected metrics

Please note that for some base editors certain metrics cannot be computed based on the underlying data and are therefore 
shown as –. For example, efficiency rates cannot be calculated based on bystander data alone as one could have multiple 
edits occurring at different positions within the same read (for a more detailed explanation please see Sect. "Base editing 
prediction tasks")

References Guides Targets Avg. 
efficiency 
rates full 
guide

Avg. 
bystander 
outcome 
rate

Avg. 
bystander 
edit rate

Cell lines Base editors Editor 
types

Arbab et al. 
(2020) [6]

33,280 33,612 0.291 0.703 0.054 HEK293T, 
U2OS, 
mES

ABE, ABE-
CP1040, 
AID, BE4, 
BE4-CP1028, 
CDA, 
H47ES48A, 
T31A, 
T31AT44A, 
T44DS45A, 
eA3A, 
evoAPOBEC

ABE, CBE

Pallaseni 
et al. (2022) 
[3]

26,339 26,335 0.137 0.707 0.466 HEK293T, 
K562

ABE20m, 
ABE8e, 
ABERA, 
BE4-1, BE4-2, 
FNLS

ABE, CBE

Marquart 
et al. (2021) 
[9]

22,289 22,289 0.201 0.903 0.010 HEK293T ABE8e, 
ABEmax, 
CBE4max, 
Target-AID

ABE, CBE

Yuan et al. 
(2021) [8]

13,660 13,660 – 0.356 0.014 HEK293T A3G-CGBE, 
A3G-CTD-
CGBE, 
BE3-WT, 
CBE4max, 
YE1-FNLS-
BE3, YE1-
FNLS-CGBE, 
eA3A-
FNLS-CGBE, 
elegan-
A3G-CTD-
OPTI-CGBE, 
elegan-A3G-
OPTI-CGBE, 
elegan-
eA3A-OPTI-
CGBE, elgan-
OPTI-CGBE

CBE

Song et al. 
(2020) [7]

12,210 12,210 0.141 0.960 0.007 HEK293T ABE, CBE ABE, CBE
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Table 2  Stratification of the database by base editors for selected metrics

 Please note that for some base editors certain metrics cannot be computed based on the underlying data and are therefore 
shown as –. For example, efficiency rates cannot be calculated based on bystander data alone as one could have multiple 
edits occurring at different positions within the same read (for a more detailed explanation please see Sect. "Base editing 
prediction tasks")

*Calculated rate is used if no efficiency rate is reported

Base editor Unique 
guides

Unique 
targets

Unique 
PAMS

Avg. 
sequence 
length

Avg. length 
flanking 
sequence

Avg. 
efficiency 
rate full 
guide*

Avg. 
efficiency 
rate 3–10 
window*

A3G-CGBE 7205 7205 38 79 59 – –

A3G-CTD-
CGBE

7022 7022 40 79 59 – –

ABE 29,179 29,179 4 49.70 29.70 0.25 0.20

ABE20m 24,994 24,990 69 79 59 0.17 –

ABE8e 28,962 28,958 69 72.04 52.04 0.22 0.27

ABE-CP1040 16,295 16,295 4 56 36 0.26 –

ABEmax 8558 8558 – 20 – 0.26 0.25

ABERA 14,776 14,776 69 79 59 0.00 –

AID 18,876 18,876 4 56 36 0.41 –

BE3-WT 8522 8522 36 79 59 – –

BE4 12,607 12,607 4 56 36 0.27 –

BE4-1 14,776 14,776 69 79 59 0.10 –

BE4-2 11,811 11,811 69 79 59 0.09 –

BE4-CP1028 13,534 13,534 4 56 36 0.21 –

CBE 10,221 10,221 4 30 10 0.08 0.07

CBE4max 16,881 16,881 31 46.46 26.46 0.18 0.14

CDA 17,306 17,306 4 56 36 0.31 –

eA3A 12,115 12,446 16 55.37 35.37 0.29 –

eA3A-FNLS-
CGBE

7106 7106 33 79 59 – –

elegan-A3G-
CTD-OPTI-
CGBE

6885 6885 39 79 59 – –

elegan-A3G-
OPTI-CGBE

7204 7204 36 79 59 – –

elegan-
eA3A-OPTI-
CGBE

7369 7369 37 79 59 – –

elgan-OPTI-
CGBE

7921 7921 35 79 59 – –

evoAPOBEC 16,733 16,733 4 56 36 0.29 –

FNLS 14,776 14,776 69 79 59 0.17 –

H47ES48A 7049 7049 4 56 36 0.33 –

T31A 827 879 16 54.06 34.06 0.22 –

T31AT44A 3089 3135 16 55.66 35.66 0.22 –

T44DS45A 1101 1101 4 56 36 0.19 –

Target-AID 10,177 10,177 – 20 – 0.13 0.05

YE1-FNLS-
BE3

8021 8021 34 79 59 – –

YE1-FNLS-
CGBE

7040 7040 33 79 59 – –
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Melting temperature

In addition, we add the melting temperatures of the 20nt target sequence and gRNA 
to the database. The melting temperature is computed via the Biopython MeltingTemp 
module [15] using the Tm_NN  function which calculates the temperature based on 
nearest neighbour thermodynamics and corrects amongst others for mismatches, dan-
gling ends, and salt concentration. Melting temperatures find usage in some base editing 
prediction models, such as Pallaseni et al. [3] and Arbab et al. [6].

Data representation

There exist many methods to encode sequence data and process information efficiently. 
Besides traditional methods, such as one-hot encoding or k-mers, novel approaches 
such as BASiNET [16] and Hilbert curve encodings [17, 18] have been developed. Our 
database is designed to easily integrate any type of encoding method, independently of 
the underlying complexity, and can be extended with more encoding techniques.

Currently, the database supports two main encoding methods: one-hot encoding and 
Hilbert curve encoding. We chose these two approaches to illustrate the flexibility and 
capability of our database and to offer users one standard encoding approach (one-hot 
encoding) and a more novel and complex encoding framework from the field of imaging 

Table 3  Stratification of the database by studies for selected metrics

*Calculated rate is used if no efficiency rate is reported

Metric Statistic References

Arbab 
et al. 
(2020) [6]

Pallaseni 
et al. (2022) 
[3]

Marquart 
et al. (2021) 
[9]

Yuan et al. 
(2021) [8]

Song et al. (2020) 
[7]

Guide length Value 20 20 20 20 20

Mismatch guide/
sequence

Percentage 0.00 0.74 0.00 0.04 0.00

Sequence length Min 40 40 20 20 30

Average 40 40 20 20 30

Max 34 40 20 20 30

Full context 
sequence

Min 35 79 20 79 30

Average 56 79 20 79 30

Max 61 79 20 79 30

Flanking sequence 
length

Min 41 59 0 59 10

Average 36 59 0 59 10

Max 15 59 0 59 10

Total reads experi-
ment

Min 101 3 100 0 110

Average 4527 6353 1999 0 2422

Max 688,505 337,154 285,776 0 1,156,803

Edited count 
experiment

Min 100 0 0 0 0

Average 1028 0 1419 0 517

Max 106,103 0 49,761 0 314,275

Efficiency rate full 
guide*

Min 0.00 0.00 0.03 0.00 0.00

Average 0.29 0.14 0.20 0.00 0.00

Max 1.00 1.00 1.00 0.00 0.00

Efficiency Rate 
3–10 Window*

Min 0.00 0.00 0.00 0.00 0.00

Average 0.00 0.00 0.15 0.00 0.00

Max 0.00 0.00 1.00 0.00 0.00
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(Hilbert curve encoding) that has produced promising results in machine learning mod-
els [17, 18].

One‑hot encoding

One-hot encoding is a commonly used preprocessing method to convert categorical 
data into a format that can be understood by machine learning algorithms. Each cate-
gory value is converted into a new binary feature that takes a value of 1 for its respective 
category and 0 for others. In a DNA sequence context, nucleotides ’A’, ’T’, ’C’, ’G’ can be 
one-hot encoded as [1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1] respectively. This method effi-
ciently represents categorical data.

Hilbert curve encoding

Sequences are represented as a Hilbert curve image [19]. This imaging approach is used 
in converting multi-dimensional data into one-dimensional data while preserving local-
ity, meaning that points that are close in higher dimensions remain close when mapped 
to the Hilbert curve. Using Hilbert curves allows DNA sequences to be represented in 
a two-dimensional space while preserving the locality of the nucleotides. Each point on 
the Hilbert curve corresponds to a specific nucleotide in the sequence. The curve covers 
every point in a square grid with a size of any power of 2. A practical example of the gen-
eration of a Hilbert curve encoding can be found in the Appendix. For a detailed expla-
nation on Hilbert curves and the exact construction methodology we refer to Anjum 
et al. [17].

Technical implementation

The database consists of four main components, a mySQL database, a Node.js server 
for REST API queries, a Python wrapper for the API, and our website https://​be-​datah​
ive.​com/. The setup is illustrated in Fig. 2. The REST server, utilizing Node.js as runt-
ime framework, provides data for the website and can also be directly accessed from 
users to serve individual queries. The website is written from scratch using CSS, HTML, 
and JavaScript. API calls to the database are done via JavaScript’s asynchronous fetch 
method.

Fig. 2  Illustration of the technical implementation of BE-dataHIVE

https://be-datahive.com/
https://be-datahive.com/
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Our setup enables highly individualized and fast data queries and offers users two 
interfaces - our website and API. Furthermore, the framework is easily expandable to 
accommodate and incorporate various data views, especially for machine learning 
applications.

Website interface

Our website https://​be-​datah​ive.​com/ provides a convenient way for practitioners to 
look up guides, targets, and base editor efficiency rates as well as bystander outcomes 
(see Fig. 3). For example, if a lab would like to investigate the bystander activity of a cer-
tain guide RNA, they can search for the specific guide but also for similar sequences via 
the search feature on our web page.

The website offers the following features:

•	 Browsing and searching by gRNA, base editor, and cell lines
•	 Access to statistics and analytics for bystander and efficiency data
•	 Charting of data
•	 Direct csv download

Fig. 3  Web interface of BE-dataHIVE. Experiments can be filtered on the home screen (a) and bystander data 
can be examined (b)

https://be-datahive.com/
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•	 API to interact with the mySQL database for customised data requests

Application programming interface

The database can be accessed via a REST-API that enables easy access to the underlying 
data as well as a flexible way to interact with the database. The data can be directly fil-
tered and modified via the API and accessed from any programming language that sup-
ports http requests. The API will be particularly relevant for data scientists and machine 
learning researchers as it provides the flexibility to filter and retrieve the desired data 
directly from the server without any intermediary steps. The API documentation can be 
found under https://​be-​datah​ive.​com/​docum​entat​ion.​html.

Python API wrapper

To provide a simple way to obtain data directly in Python, a widely used programming 
language for machine learning, we wrote the Python library be_datahive that han-
dles all API requests and data handling. Data can be retrieved directly via the package. 
Furthermore, the wrapper implements some basic machine learning data handling rou-
tines, such as the creation of a labelled dataset. be_datahive is available on GitHub 
and PyPi. Detailed usage examples are showcased on our GitHub.

Machine learning use case

Base editing features two types of prediction tasks, namely efficiency rate and bystander 
predictions. The former predicts the overall editing efficiency while the latter aims at 
predicting bystander edit rates or the more informative bystander outcome rates (as 
defined above). Easy access to training data for both types of prediction tasks can be 
facilitated by BE-dataHIVE. The required machine learning ready data can simply be 
obtained and multiple feature encodings are available out-of-the-box. Python users can 
use our Python API wrapper that returns the requested data in a few lines of code. Prac-
tical coding examples for training machine learning models with our database are avail-
able on our Python wrapper GitHub. The following section illustrates the structure of 
one data point based on a specific example to make it easier for readers to grasp the data 
format. Assuming that one labelled data point has the format (X, y), where y is the pre-
diction target one aims to predict based on X, which typically denotes the features. Data 
points for efficiency rate, bystander edit rate and bystander outcome rate differ in terms 
of y so here we give an example data point for each rate that shares the same X illustrated 
in Eq.  9. Using our database, we retrieve 33 features for X, such as melting tempera-
tures, energy terms, and gRNA. One-hot and Hilbert curve encodings are available for 
all nucleic acid sequence fields.

https://be-datahive.com/documentation.html
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Efficiency rate prediction task

The efficiency data can be obtained by calling the endpoint “efficiency” in our API or 
Python wrapper. In the efficiency rate prediction task, we are forecasting a single number, 
which for our example (X) is

Bystander edit rate prediction task

Endpoint “bystander” yields bystander edit and outcome data (see below). For bystander 
edit rate prediction the target matrix is of size 1×m , containing editing fractions (number 
of edits divided by total reads) for every position. In our data point m = 42 and positions 
are determined relative to the start of the gRNA, meaning that position −1 would indicate 
the base immediately before the start of the gRNA sequence (see Eq. 11). In the case that 
only a single edit per base occurs per sample, we could simply sum up the vector to calcu-
late the efficiency rate. However, multiple edits can occur at different positions within the 
same read, weaking this link between efficiency and bystander edit rate (see Eq. 8).

Bystander outcome rate prediction task

Bystander outcome forecasts have as target a matrix of size n×m , containing editing frac-
tions (number of edits divided by total reads) for position and outcome combinations. m 
refers to the editing positions around the target sequence while n represents the possible 
editing outcomes A, T, C, or G for outcome predictions. Therefore, the matrix has four 
rows ( n = 4 ). Equation 12 shows the example, y for editing outcomes, which is a 4 × 42 
matrix. Based on the example data, we can see that in 0.18% of the total reads the base at 
position − 9 is edited to an A nucleotide.
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To demonstrate the utility of our database and the significance of newly incorporated 
features, such as energy terms and melting temperatures, we train a machine learn-
ing model to predict efficiency rates using various feature combinations. We employ a 
Gradient Boosting Regression model with a learning rate of 0.1, maximum depth of 3, 
and 100 boosting stages. The model is trained on 80% of the dataset based on a five-fold 
cross-validation approach with Spearman correlation as the loss function. We use the 
same model and training approach while varying feature combinations. We create the 
following feature groups and test all four combinations: 

1.	 Baseline Includes only one-hot encoded gRNA and full context sequence.
2.	 Energy Terms Includes all physical energy terms for the sequence and gRNA.
3.	 Melting Temperature Includes all melting temperatures for the sequence and gRNA.

Figure  4 shows the improvement of different feature combinations over the baseline 
model using Spearman correlation to assess performance. Models with an enhanced 
feature set outperform the baseline across ABEs and CBEs. The greatest performance 
improvements—6.0% higher Spearman correlation for ABEs and a 4.2% increase for 
CBEs compared to the baseline—are achieved using both energy terms and melting tem-
peratures. Using energy terms alone improves performance for ABEs and CBEs by 4.9% 
and 3.0% , respectively. Melting temperatures increase the correlation by 0.3% for ABEs 
and 0.2% for CBEs. Overall, incorporating energy terms and melting temperatures into 
the feature set results in a substantial increase in Spearman correlation across ABE and 
CBE base editors. This systematic case study highlights the potential of the newly added 
features in our database to enhance the predictive power of base editing models.

Results and discussion
We devise a base editing database that consists of over 460,000 individual data points, 
covering 32 distinct base editors and over 98,000 unique guides. BE-dataHIVE addresses 
multiple issues in the computational pipeline for base editing prediction models.

We create the first baseline dataset for base editing prediction tasks. The data is 
standardized and enriched with additional metrics from various data sources. Our 

Fig. 4  Percentage improvement of the Spearman correlation over the baseline feature set with respect to 
various feature combinations



Page 14 of 18Schneider and Minary ﻿BMC Bioinformatics          (2024) 25:330 

dataset can be easily used by non-domain experts, significantly lowering the entry 
barrier for computer scientists and machine learning researchers to work on base 
editing outcome predictions. Similar to how standardized datasets like the Protein-
Protein Interactions (PPI) [20] or MNIST [21] datasets facilitated advancements 
in their respective fields, we hope that our data will serve this crucial role for base 
editing.

In addition to compiling the first comprehensive collection of data points for base 
editing, we further enhance the underlying data with energy terms and melting tem-
peratures that will allow more robust machine learning models.

Furthermore, our interactive web interface provides analytics for single data points 
that give researchers the possibility to look up relevant gRNA and target combina-
tions as well as understand the underlying data points.

Moreover, our dataset is easily accessible via our web interface and API that allows 
flexible data queries for researchers to directly integrate base editing data into their 
studies. With our Python wrapper, users can create machine learning models with 
a few lines of code and access machine readable encodings (please see our Python 
wrapper GitHub for examples). Those generated encodings alone have a size of 
72GB.

We hope the database will contribute to the literature to produce stronger base 
editing prediction models that are more robust and help streamline the efficient 
development of base editing systems to ultimately cure rare diseases caused by point 
mutations. We highly encourage laboratories and practitioners to reach out and sub-
mit base editing data to grow the database further and advance the field together.

Appendix
Base editing prediction models

In this section, we delve deeper into the current systems used to forecast base edit-
ing outcomes. There are seven core studies (see Table 4). While most publications 
utilise a machine learning framework, Dandage et  al. [10] is the oldest and only 
article that relies on a deterministic workflow to estimate efficiency rates. From the 
machine learning models, neural networks are the most popular architecture types – 
four of the six publications build neural networks while the other two use tree based 
models. Most of the machine learning models focus on simple architectures, such as 
gradient boosted trees or logistic regressions [3, 6, 11]. Marquart et al. [9] is the only 
publication that enriches their own dataset with some of the data from Arbab et al. 
[6] and Song et al. [7]. Noticeable is that some models utilise different architectures 
within itself for different base editing prediction tasks. For example, the BE-Hive 
model uses gradient boosted trees for efficiency forecasts but a two-layer neural net-
work for bystander predictions. Amongst the publications, there seems to be a slight 
bias towards predicting CBE outcomes as 100% of articles cover those, while solely 
71% support ABEs. However, most studies incorporate ABEs and CBEs. Overall, 
academia developed six models for base editing outcome predictions, namely bedi-
tor, BE-Hive, DeepBaseEditor, BE-SMART, BE-DICT, and FORECasT-BE.
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Table 4  Overview of the state-of-the-art prediction models in the literature

References Year Task Model 
approach

Architecture Model Model 
details

ABE 
support

CBE 
support

Dandage 
et al. [10]

2019 Efficiency Determin-
istic

N/A beditor Computa-
tional scor-
ing system 
that 
uses the 
Burrows-
Wheeler 
aligner to 
determine 
mis-
matches 
and apply 
different 
penalty 
scores if a 
mismatch 
is near 
the PAM, 
genic or 
intergenic

✓ ✓

Arbab et al. 
[6]

2020 Efficiency Machine 
learning

Decision tree BE-Hive Gradient 
boosted 
regression 
trees

✓ ✓

Bystander Neural net-
work

Deep con-
ditional 
autore-
gressive 
machine 
learning 
model 
with 
encoder/
decoder. 
Encoder 
has two 
hidden 
layers 
and the 
decoder 
exhib-
its five 
hidden 
layers. The 
network is 
fully con-
nected

Song et al. 
[7]

2020 Efficiency 
and 
bystander

Machine 
learning

Neural net-
work

DeepBa-
seEditor 
(DeepABE/
DeepCBE)

Two to 
three 
hidden 
layer deep 
neural net-
work with 
convolu-
tion and 
dropouts

✓ ✓

Koblan et al. 
[11]

2021 Efficiency 
and 
bystander

Machine 
learning

Neural net-
work, regres-
sion, decision 
tree

Mixed BE-Hive, 
logistic 
regression, 
gradient 
boosted 
regression 
trees

✗ ✓
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Hilbert curve encoding example

In this section, we will construct a practical example of the Hilbert curve encoding 
based on a sequence of nucleotides. Assume we want to encode the sequence “ATG​
CAT​CAG”. In order to fit the full sequence of length 9 into a matrix, we need at least 
the dimension 4 × 4. First, we start with the simplest 2 × 2 Hilbert curve that has the 
following shape (see Fig. 5).

Table 4  (continued)

References Year Task Model 
approach

Architecture Model Model 
details

ABE 
support

CBE 
support

Yuan et al. 
[8]

2021 Bystander Machine 
learning

Neural net-
work

BE-SMART​ Deep 
neural 
network 
model 
with 
dropout

✗ ✓

Marquart 
et al. [9]

2021 Efficiency Machine 
learning

Neural net-
work

BE-DICT Attention-
based 
deep 
neural 
network 
with an 
encoder 
block that 
has a self-
attention 
layer, layer 
normaliza-
tion and 
residual 
connec-
tions, and 
a feed 
forward 
network

✓ ✓

Bystander Extension 
of the 
efficiency 
model. 
Encoded 
block 
of the 
efficiency 
module 
feeds 
into an 
encoder-
decoder 
attention 
layer 
together 
with 
positional 
embed-
dings

Pallaseni 
et al. [3]

2022 Efficiency 
and 
bystander

Machine 
learning

Decision tree FORECasT-
BE

Gradient 
boosted 
regression 
trees

✓ ✓
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Based on the 2 × 2 Hilbert curve we can expand the grid to a 4 × 4 matrix (see Fig. 6). 
The nucleotides can now be placed into the grid in the Hilbert curve order.

The individual letter can be further encoded, with for example one-hot encoding. This 
transforms the 4 × 4 matrix into a three dimensional matrix of the shape 4 × 4 × 4 that 
is preserving the locality of the data. The Hilbert curves are constructed in line with 
Anjum et  al. [17], which build a CNN model for enhancer predictions utilising this 
graphical representation. For a detailed explanation on Hilbert curves and the exact con-
struction methodology we refer to Anjum et al. [17].
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