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Abstract 

Background:  Conducting traditional wet experiments to guide drug development 
is an expensive, time-consuming and risky process. Analyzing drug function and repo-
sitioning plays a key role in identifying new therapeutic potential of approved drugs 
and discovering therapeutic approaches for untreated diseases. Exploring drug-
disease associations has far-reaching implications for identifying disease pathogenesis 
and treatment. However, reliable detection of drug-disease relationships via traditional 
methods is costly and slow. Therefore, investigations into computational methods 
for predicting drug-disease associations are currently needed.

Results:  This paper presents a novel drug-disease association prediction method, 
RAFGAE. First, RAFGAE integrates known associations between diseases and drugs 
into a bipartite network. Second, RAFGAE designs the Re_GAT framework, which 
includes multilayer graph attention networks (GATs) and two residual networks. The 
multilayer GATs are utilized for learning the node embeddings, which is achieved 
by aggregating information from multihop neighbors. The two residual networks are 
used to alleviate the deep network oversmoothing problem, and an attention mecha-
nism is introduced to combine the node embeddings from different attention layers. 
Third, two graph autoencoders (GAEs) with collaborative training are constructed 
to simulate label propagation to predict potential associations. On this basis, free 
multiscale adversarial training (FMAT) is introduced. FMAT enhances node feature qual-
ity through small gradient adversarial perturbation iterations, improving the predic-
tion performance. Finally, tenfold cross-validations on two benchmark datasets show 
that RAFGAE outperforms current methods. In addition, case studies have confirmed 
that RAFGAE can detect novel drug-disease associations.

Conclusions:  The comprehensive experimental results validate the utility and accu-
racy of RAFGAE. We believe that this method may serve as an excellent predictor 
for identifying unobserved disease-drug associations.

Keywords:  Graph attention network, Residual network, Graph autoencoder, 
Adversarial training, Drug-disease association

Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you 
modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of 
it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise 
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted 
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

RESEARCH

Li et al. BMC Bioinformatics          (2024) 25:261  
https://doi.org/10.1186/s12859-024-05893-5

BMC Bioinformatics

*Correspondence:   
ghli16@hnu.edu.cn; 
luojiawei@hnu.edu.cn

1 School of Information 
Engineering, East China Jiaotong 
University, Nanchang, China
2 School of Information Science 
and Engineering, Shandong 
Normal University, Jinan, China
3 College of Information Science 
and Engineering, Hunan Normal 
University, Changsha, China
4 College of Computer Science 
and Electronic Engineering, 
Hunan University, Changsha, 
China

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05893-5&domain=pdf


Page 2 of 21Li et al. BMC Bioinformatics          (2024) 25:261 

Background
Drugs play important roles in treating diseases and promoting the health of organisms 
[1]. However, traditional drug development is an extremely lengthy and expensive pro-
cess [2]. Recent studies have estimated that the average development cost to approve a 
new drug is $2.6 billion and the average development time is 10 years [3]. Drug reposi-
tioning, which involves discovering new therapeutic outcomes for previously approved 
drugs, is considered an important alternative to traditional drug development [4–8]. 
This approach shortens drug development and research cycles to 7 years, reduces costs 
to $295 million, and is more reliable than novel drug development [9]. Therefore, using 
known drugs for new disease treatments is gaining popularity [10, 11]. Traditional meth-
ods of discovering abnormal clinical manifestations through manual screening of clinical 
drug databases requires extensive experimentation. With the continuous accumulation 
of a wide variety of biological data, numerous computational methods based on data 
mining techniques have gained traction [12].

Matrix factorization aims to approximate the initial matrix by decomposing it into 
the product of two low-rank matrices, which are represented by hidden factor vectors 
in the k-dimension. The inner product of the drug and disease vectors represents the 
association between them. Previous studies have shown that matrix decomposition 
methods are effective computational methods for drug-disease association prediction 
[13–17]. For example, the similarity constrained matrix factorization method for the 
drug-disease association prediction (SCMFDD) method, proposed by Zhang et al., maps 
the associations between diseases and drugs into two low-ranking spaces and reveals the 
basic features. Then, drug similarity and disease similarity are introduced as increasing 
constraints [18]. Furthermore, Yang et al. proposed the multisimilarities bilinear matrix 
factorization (MSBMF) approach, which connects multiple disease and drug similarity 
matrices and extracts the effective latent features in the similarity matrix to infer asso-
ciations between diseases and drugs [19]. In addition, Zhang et al. proposed a new drug 
repositioning method by using Bayesian inductive matrix completion (DRIMC), which 
uses the complement of Bayesian inductive matrices. This method integrates multiple 
similarities into a fused similarity matrix, where similarity information is described by 
similarity values between a drug or disease and its k-nearest neighbors. Finally, the dis-
ease-drug association is predicted via induction matrix completion [20].

Networks can represent the complex relationships among entities, and the methods 
used to construct biological networks can effectively utilize information from multi-
ple biological entities to represent the degree of association between them [21]. The 
network-based method has produced good results in drug repositioning [22–24]. For 
instance, Zhao et al. first constructed a heterogeneous information network by com-
bining drug-disease, protein-disease and drug-protein bioinformatics networks with 
disease and drug biology information. Then, the combined features of the nodes were 
learned from a biological and topological perspective via different representations. 
Moreover, random forest classifiers can be used to predict unknown associations [25]. 
Zhang et al. proposed a multiscale neighborhood topology learning method for drug 
repositioning (MTRD) to learn and integrate multiscale neighborhood topologies. 
This method involves the construction of different drug-disease heterogeneous net-
works to discover new drug-disease associations [26]. In addition, Luo et al. proposed 



Page 3 of 21Li et al. BMC Bioinformatics          (2024) 25:261 	

a method named MBiRW that uses similarity matrices and known associations to 
construct heterogeneous networks and predicts unknown associations via the double 
random walk algorithm [27].

Although matrix factorization methods achieve good performance, they are weak 
in the interpretability of associations between diseases and drugs, whereas network 
methods are biased in representing higher-order networks. To solve these problems, 
several pioneering studies have focused on developing deep learning-based drug repo-
sitioning models [28–33]. For example, Zeng et al. first integrated multiple disease-
drug biological networks and designed a multimodal deep autoencoder named deep 
learning-based drug repositioning (deepDR) for learning higher order neighborhood 
information of drug-disease associations [34]. Subsequently, Yu et  al. constructed a 
graph convolutional network (GCN) architecture with attention mechanisms, i.e., 
the label-aware GCN (LAGCN). First, this method uses known drug-disease asso-
ciations, disease-disease similarities and drug-drug similarities to construct heter-
ogeneous networks and applies GCNs to the network. Next, the embeddings from 
multiple GCN layers are integrated via layer attention mechanisms. Finally, drug-dis-
ease pairs are scored on the basis of the integrated embeddings [35]. Feng et al. pro-
posed Protein And Drug Molecule interaction prEdiction (PADME), a novel method 
to combine molecular GCNs for compound featurization with protein descriptors for 
drug-target interaction prediction [36]. Moreover, Meng et al. proposed a drug repo-
sitioning approach based on weighted bilinear neural collaborative filtering (DRWB-
NCF) on the basis of neighborhood interaction and collaborative filtering. Instead of 
using all neighbors, this method uses only the nearest neighbors, thus filtering out 
noise and yielding more precise results [37]. Recently, Gu et al. proposed a method 
named relations-enhanced drug-disease association (REDDA) for learning node fea-
tures of heterogeneous networks and topological subnetworks. This method employs 
heterogeneous networks as the backbone and combines the backbone with three 
attention mechanisms [38]. Deep learning-based methods mainly construct hetero-
geneous networks by using supplementary information about diseases and drugs and 
learn the features of diseases and drugs by applying deep learning algorithms to these 
networks.

However, these deep learning-based approaches tend to have oversmoothing prob-
lems caused by the homogenization of node embeddings and are highly dependent on 
the input quality. In this paper, we present a novel method of drug repositioning named 
RAFGAE. This method combines residual networks, graph attention networks (GATs), 
graph autoencoders (GAEs) and adversarial training to predict unknown associations 
between diseases and drugs. First, we use disease semantic similarity, drug structural 
similarity and disease-drug associations to construct the initial input features. GATs are 
used to facilitate the learning of disease and drug embeddings in each layer and com-
bine the embedding of different layers via attention mechanisms. Moreover, the initial 
residual and adaptive residual connections are adopted to alleviate the oversmoothing 
problem. Then, two GAEs are constructed on the basis of the disease space and drug 
space, and the information in these spaces can be integrated through synergistic train-
ing. Finally, the scores of the two GAEs are linearly combined by a balancing parameter 
to calculate the final prediction scores. On this basis, adversarial training is introduced 
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to reduce invalid information and data noise, improving the input quality. The main con-
tributions of RAFGAE can be summarized as follows:

•	 RAFGAE is a complete deep learning approach that can effectively predict the asso-
ciations between diseases and drugs.

•	 RAFGAE designs the Re_GAT framework, which includes multilayer GATs and 
two residual networks. Multilayer GATs are utilized to learn the node embeddings 
by aggregating information from multihop neighbors, and two residual networks 
are used to alleviate the deep network oversmoothing problem. Then, an attention 
mechanism is introduced to combine the node embeddings of different attention lay-
ers.

•	 RAFGAE performs adversarial training that may eliminate abnormal values, missing 
values and noise, increasing the input quality and prediction accuracy when extract-
ing associations between diseases and drugs.

•	 Our comprehensive experimental results demonstrate that the proposed RAFGAE 
method significantly outperforms five state-of-the-art methods on the benchmark 
dataset.

Results and discussion
Algorithm performance comparison

To verify the performance of RAFGAE, we compare it with five recently proposed 
methods.

•	 DRWBNCF [37], a method for drug repositioning on the basis of neighborhood 
interaction and collaborative filtering, uses only the nearest neighbors, rather than all 
neighbors, to filter out noisy information. A new weighted bilinear GCN encoder is 
then proposed.

•	 LAGCN [35], a layer attention GCN method for drug repositioning, encodes a het-
erogeneous network combining known drug-disease associations, disease similarity 
and drug similarity information. To integrate all useful information, a layer attention 
mechanism is introduced into multiple GCN layers.

•	 In bounded nuclear norm regularization (BNNR) [39], a heterogeneous network is 
constructed. This network combines known drug-disease associations, disease simi-
larity and drug similarity information. The method tolerates noise by adding a regu-
larization term to balance the rank properties and approximation error.

•	 The neural inductive matrix completion with GCN (NIMCGCN) method [40], a 
method for the prediction of miRNA-disease associations) first employs GCN to 
learn the features of diseases and miRNAs from the disease and miRNA similarity 
networks. Then, neural induction matrix completion is applied for association matrix 
completion.

•	 SCMFDD [18] (a similarity constraint matrix completion method for the prediction 
of drug-disease associations) projects known drug-disease association information 
into two low-rank spaces, revealing potential disease and drug embeddings, and then 
introduces drug featured-based and disease semantic similarities as constraints for 
drugs and diseases in the low-rank spaces.
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The above methods also involve similarity-based graph neural network models. The 
parameters in these methods are set to either the optimal values via a grid search (for 
DRWBNCF, λ is selected from {0.1, 0.2, ..., 0.9}; for BNNR, α and β are chosen from 
{0.01, 0.1, 1, 10}; and for SCMFDD, k is selected from{5%, 10%, ..., 50%}) or the values 
recommended by the authors (for LAGCN, α = 4000, β =0.6, and γ = 0.4; and for NIM-
CGCN, α = 0.4, l = 3, and t = 2). Furthermore, to ensure a meaningful and relevant 
comparison, each of the comparison methods is initially evaluated via the same 10-fold 
cross-validation approach and on the same benchmarking sets as those for our proposed 
method, RAFGAE. This approach allows us to conduct a comprehensive and rigorous 
assessment of the performance of all the methods.

The area under the curve (AUC) values in Fig. 1 and Table 1 show a comparison of 
the model performance. On the F-dataset, RAFGAE achieves the highest AUC score of 
0.9343, which is 7.28%, 4.50%, 3.13%, 4.31%, and 4.01% higher than those of SCMFDD, 
LAGCN, BNNR, NIMGCN, and DRWBNCF, respectively. Similarly, on the C-dataset, 
RAFGAE achieves the highest AUC score of 0.9346. By comparing the model proposed 
in this paper with other models, it is evident that introducing residual connections and 
adversarial training can enhance the predictive performance of our model. Overall, 

Fig. 1  ROC curves and PR curves of RAFGAE and other models on the F-dataset

Table 1  Performance of the comparison methods on the two datasets

Dataset Method AUC​ AUPR F1-score MCC

F-dataset DRWBNCF 0.8943 ± 0.0020 0.4061 ± 0.0064 0.4702 ± 0.0040 0.5222 ± 0.0016

LAGCN 0.8893 ± 0.0026 0.3741 ± 0.0048 0.4003 ± 0.0036 0.5145 ± 0.0040

BNNR 0.9030 ± 0.0046 0.4145 ± 0.0036 0.4467 ± 0.0034 0.5478 ± 0.0044

NIMCGCN 0.8912 ± 0.0042 0.3793 ± 0.0036 0.4019 ± 0.0016 0.4640 ± 0.0054

SCMFDD 0.8615 ± 0.0026 0.3214 ± 0.0034 0.4080 ± 0.0020 0.5095 ± 0.0026

RAFGAE 0.9343 ± 0.0060 0.5270 ± 0.0314 0.5557 ± 0.0060 0.6084 ± 0.0050

C-dataset DRWBNCF 0.8951 ± 0.0026 0.4047 ± 0.0042 0.4722 ± 0.0062 0.5230 ± 0.0048

LAGCN 0.8901 ± 0.0040 0.3692 ± 0.0034 0.4019 ± 0.0042 0.5159 ± 0.0042

BNNR 0.9052 ± 0.0052 0.4140 ± 0.0042 0.4504 ± 0.0040 0.5502 ± 0.0040

NIMCGCN 0.8924 ± 0.0026 0.3789 ± 0.0036 0.4103 ± 0.0046 0.4683 ± 0.0026

SCMFDD 0.8637 ± 0.0020 0.3216 ± 0.0044 0.4124 ± 0.0048 0.5124 ± 0.0034

RAFGAE 0.9346 ± 0.0060 0.5237 ± 0.0316 0.5670 ± 0.0050 0.6223 ± 0.0026
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the above experiments show that RAFGAE is an excellent predictor of disease-drug 
relationships.

Ablation study

To quantitatively evaluate the importance of the two modules (the Re_GAT framework 
and the FMAT module) to RAFGAE, ablation experiments are conducted. The details of 
these variants of RAFGAE are listed below:

•	 RAFGAE: The comprehensive RAFGAE framework consists of three main compo-
nents: the Re_GAT framework, the FMAT module, and the GAE module.

•	 GAE: The RAFGAE variant that includes only the GAE module.
•	 FGAE: The RAFGAE variant that includes the FMAT and GAE modules but excludes 

the Re_GAT framework.
•	 RAGAE: The RAFGAE variant that includes Re_GAT framework and the GAE mod-

ule but excludes the FMAT module.

According to Fig. 2 and Table 2, it is clear that RAFGAE achieved the highest AUC 
and area under the precision–recall (AUPR) curve values on both the F-dataset and the 
C-dataset. The RAGAE and FGAE results show the impacts of global neighborhood 
node information aggregation and adversarial feature enhancement on the RAFGAE 
performance, respectively. In addition, the GAE results demonstrate that combining the 
Re_GAT framework and the FMAT module can improve the predictive performance of 
the RAFGAE model. In comparing FGAE and RAGAE to GAE, the performance results 
imply that both the Re_GAT framework and the FMAT module can improve the model 
performance. The poor performance of GAE suggests that the use of multilayer attention 
networks to aggregate global information and the incorporation of residual architectures 
to address the potential oversmoothing problem can enhance the accuracy of drug-dis-
ease association prediction. Furthermore, the results indicate that the inclusion of the 

Fig. 2  Results of RAFGAE and its variants in the ablation study on the F-dataset
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adversarial training module improves the input quality, thereby satisfying the require-
ments of deep neural networks for high-quality input features. These results demon-
strate that the RAFGAE structure is reasonable.

Performance evaluation

To assess the effectiveness of RAFGAE in predicting known associations, tenfold cross 
validation (CV) is applied. In tenfold CV, the dataset is divided into ten folds. Nine folds 
are used as the training set, and the remaining fold is used to validate the performance 
of RAFGAE. This process is repeated 10 times, with each fold used as the testing fold 
once. Several important indicators are used to evaluate the performance of RAFGAE. 
The receiver operating characteristic (ROC) curve, which is based on the false-posi-
tive rate (FPR) and the true positive rate (TPR), is utilized. As the benchmark datasets 
used in this experiment are imbalanced, we also use the PR curve and calculate the area 
under the PR curve (AUPR) as two additional indicators. To further evaluate the overall 
performance of the prediction model from multiple perspectives, the F1 score and the 
Mathews correlation coefficient (MCC) are calculated.

The ROC and PR curves for the F-dataset are shown in Fig. 3. RAFGAE achieves mean 
AUC and AUPR values of 0.9343 and 0.5270, respectively. The detailed results, includ-
ing the F1-score and MCC, are presented in Table 3. The results based on the C-dataset 
are shown in Table 4. As shown in Tables 1 and 2, the newly proposed RAFGAE model 

Table 2  Performance comparison between RAFGAE and its variants

Dataset Method AUC​ AUPR F1-score MCC

F-dataset GAE 0.9043 ± 0.0040 0.4714 ± 0.0040 0.5021 ± 0.0024 0.5322 ± 0.0016

FGAE 0.9150 ± 0.0010 0.5082 ± 0.0026 0.5303 ± 0.0026 0.5715 ± 0.0022

RAGAE 0.9159 ± 0.0070 0.4923 ± 0.0034 0.5167 ± 0.0042 0.5578 ± 0.0024

RAFGAE 0.9343 ± 0.0060 0.5270 ± 0.0314 0.5557 ± 0.0060 0.6084 ± 0.0050

C-dataset GAE 0.9049 ± 0.0046 0.4728 ± 0.0036 0.5225 ± 0.0060 0.5343 ± 0.0028

FGAE 0.9212 ± 0.0034 0.5123 ± 0.0026 0.5427 ± 0.0042 0.5720 ± 0.0036

RAGAE 0.9155 ± 0.0042 0.4980 ± 0.0040 0.5301 ± 0.0016 0.5592 ± 0.0024

RAFGAE 0.9346 ± 0.0060 0.5309 ± 0.0316 0.5670 ± 0.0050 0.6223 ± 0.0026

Fig. 3  RAFGAE ROC and PR curves via tenfold CV on the F-dataset
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obtains good performance on the above two datasets, proving the effectiveness and 
robustness of this model.

Parameter adjustment

Since the hyperparameter settings can influence the performance of RAFGAE, we used 
tenfold CV on the F-dataset to analyze the impact of different parameter settings. In the 
Re_GAT framework, the weight α of the initial residual connection and the weight β of 
the adaptive residual connection can directly affect the result of feature fusion. To fully 
integrate adjacent node information and mitigate the oversmoothing problem, we adjust 
the α and β values within the following range: α ϵ {0.1 ~ 0.9} and β ϵ {0.1 ~ 0.9}. As shown 
in Fig. 4, when α = 0.3 and β = 0.7, the AUC reaches its maximum value.

In addition, the features of diseases and drugs are extracted via GATs. The Re_GAT 
framework computes and aggregates different multilayer features via the GAT. We dis-
cuss the impact of GATs with different numbers of layers on association prediction. Fig-
ure 5 presents the results of the ROC curve analysis on the basis of tenfold CV.

To optimize the initial parameters, we use the Adam optimizer [41]. As in previ-
ous studies [42, 43], we set the dropout and weight decay parameters to 0.5 and 10–5, 

Table 3  RAFGAE Model Performance via tenfold CV based on the F-Dataset

Fold AUC​ AUPR Precision F1-score Recall MCC

1 0.9230 0.5150 0.5843 0.5702 0.4934 0.6222

2 0.9410 0.5792 0.5529 0.6003 0.5539 0.6445

3 0.9289 0.5172 0.5538 0.5467 0.4742 0.5978

4 0.9290 0.4793 0.5779 0.5019 0.4059 0.5640

5 0.9362 0.5455 0.5684 0.5580 0.4835 0.6095

6 0.9415 0.5181 0.6298 0.5387 0.4344 0.6028

7 0.9392 0.5145 0.5592 0.5510 0.4779 0.6022

8 0.9369 0.5641 0.5462 0.5944 0.5487 0.6386

9 0.9335 0.5498 0.5422 0.5913 0.5461 0.6353

10 0.9337 0.4804 0.5830 0.5045 0.4075 0.5670

Ave 0.9343 ± 0.0006 0.5270 ± 0.0316 0.5697 ± 0.0026 0.5557 ± 0.0060 0.4825 ± 0.0025 0.6084 ± 0.0050

Table 4  RAFGAE Model Performance via tenfold CV on the C-dataset

Fold AUC​ AUPR Precision F1-score Recall MCC

1 0.9396 0.5559 0.5712 0.6056 0.5517 0.6515

2 0.9431 0.5575 0.5737 0.6076 0.5532 0.6536

3 0.9446 0.4951 0.5538 0.5353 0.4541 0.5899

4 0.9489 0.5339 0.5848 0.5512 0.4671 0.6063

5 0.9431 0.5670 0.5611 0.5580 0.5438 0.6425

6 0.9452 0.4953 0.5663 0.5368 0.4553 0.5914

7 0.9388 0.4963 0.5663 0.5368 0.4553 0.5914

8 0.9495 0.5253 0.5911 0.5567 0.4719 0.6118

9 0.9434 0.5214 0.6242 0.5820 0.4924 0.6381

10 0.9496 0.5602 0.5654 0.6006 0.5473 0.6465

Ave 0.9446 ± 0.0006 0.5309 ± 0.0316 0.5757 ± 0.0025 0.5670 ± 0.0050 0.4992 ± 0.0033 0.6223 ± 0.0026
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respectively. We also evaluate the model performance by changing the dimensions of the 
GAE hidden layers. With the other parameters unchanged, the AUC value of RAFGAE 
generally increases as the embedding dimension of the GAE hidden layer increase and 
tends to stabilize when the dimension reaches 256. Finally, we set the embedding dimen-
sion of the hidden layer to 256. These results are shown in Fig. 6.

Case studies

To evaluate the practical ability of RAFGAE to predict unknown indications of 
approved drugs as well as new therapies for existing diseases, we train the RAFGAE 

Fig. 4  Effect of the α and β parameters on the AUC of RAFGAE

Fig. 5  Effect of the number of GAT layers on the AUC of RAFGAE
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model using all known associations as training data, and predict potential associa-
tions for known diseases or drugs. The predicted ranking of unknown indications of 
approved drugs and unknown therapies for existing diseases is validated on the public 
database, namely, the Comparative Toxicogenomics Database (CTD) [44].

To assess the ability of RAFGAE to discover new indications, we select two rep-
resentative medicinal products. Table 5 shows the confirmation information for the 
top 10 candidate diseases and the known drug-disease associations. Among them, 
doxorubicin is a cytotoxic anthracycline antibiotic that is widely used to treat various 
cancers, including Kaposi sarcoma and metastatic cancer related to AIDS. Of the top 
10 positive predictions, there were 7 tumor-related diseases that have been verified 
via reliable databases. Levodopa is a precursor of dopamine and is commonly used in 
the treatment of Parkinson’s syndrome and Parkinson’s syndrome-related disorders 
because of its ability to cross the blood–brain barrier. As shown in Table 5, reliable 
sources have identified 7 of the top 10 associated diseases. This evidence suggests that 
RAFGAE can be trained on and can learn from existing biological information and 
can identify association markers that are not captured in the training set.

To validate the practical ability of RAFGAE to discover novel therapies, we select 
breast neoplasms and small-cell lung cancer as experimental cases. On the basis of 
the RAFGAE prediction results, the 10 drugs with the highest prediction scores are 
validated via the CTD. Table  6 shows similar results for the top 10 positive predic-
tions. Breast neoplasms are among the most common malignancies in women and the 
leading cause of cancer-related disease in women. As shown in Table 6, 9 of the top 
10 drugs were verified via reliable sources. The high incidence rate and high mortal-
ity of small cell lung cancer worldwide make this complex tumor a difficult medical 
problem. In summary, 6 drugs have been confirmed by evidence from authoritative 
sources among the top 10 predicted drugs ranked by prediction score. In summary, 
case studies have shown that RAFGAE can identify the associations between diseases 

Fig. 6  Effect of the hidden vector dimension on the AUC of RAFGAE
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Table 5  Top 10 related diseases for a given drug predicted by RAFGAE

Drug (DrugBank ID) Disease OMIM ID Evidence 
database

Doxorubicin (DB00997) Esophageal cancer 133,239 CTD

Small cell cancer of the lung 182,280 CTD

Colorectal cancer 114,500 CTD

Testicular germ cell tumor 273,300 CTD

Leukemia 109,543 CTD

Dohle bodies 223,350 N/A

Reticulum cell sarcoma 267,730 CTD

Renal failure 161,900 N/A

Hypertension 608,622 CTD

Mccune-albrightt syndrome 174,800 N/A

Levodopa (DB01235) Parkinson disease 168,600 CTD

Hyperplastic myelinopathy 147,530 CTD

Mismatch repair cancer syndrome 276,300 N/A

Asthma 208,550 CTD

Growth retardation 233,810 CTD

Gallbladder disease 1 600,803 CTD

Attention deficit 143,465 CTD

Breast cancer 114,480 CTD

Dohle bodies 1 223,350 N/A

Prolactin deficit 264,120 N/A

Table 6  Top 10 related drugs for a given disease predicted by RAFGAE

Disease (OMIM ID) Drug DrugBank ID Evidence 
database

Breast neoplasms (114,480) Levamisole DB00848 CTD

Diethylstilbestrol DB00255 CTD

Adenosine phosphate DB00131 N/A

Zoledronic acid DB00399 CTD

Ascorbic acid DB00126 CTD

Chlorthalidone DB00310 CTD

Estramustine DB01196 CTD

Atomoxetine DB00289 CTD

Estrone DB00655 CTD

Fenofibrate DB01039 CTD

Small cell lung cancer (182,280) Doxorubicin DB00997 CTD

Vincristine DB00541 CTD

Carboplatin DB00958 CTD

Isosorbide dinitrate DB00883 N/A

Adenosine phosphate DB00131 N/A

Fluorouracil DB00544 CTD

Carmustine DB00262 CTD

Dacarbaziner DB00851 N/A

Leucovorin DB00650 N/A

Mitomycin DB00305 CTD
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and drugs that are unknown in training datasets but that have been validated in real-
world studies. Moreover, RAFGAE can make reliable predictions regarding uncon-
firmed potential associations between diseases and drugs. Therefore, RAFGAE has a 
noteworthy ability to uncover novel therapies/indications for existing diseases/drugs.

Conclusions
In this paper, a deep-learning methodology named RAFGAE is developed for elucidat-
ing drug-disease associations. The key innovation of RAFGAE is that it combines the 
Re_GAT framework and the FMAT algorithm, facilitating the learning of neighbor node 
information and enhancing the initial node features in the disease-drug bipartite net-
work. Then, two GAEs with collaborative training are applied to integrate the disease 
and drug spaces for association prediction. Notably, unlike some previous predictors that 
consider only low-order neighbor information, the Re_GAT framework can account for 
both high-order and low-order neighbor information by using multilayer GATs. Moreo-
ver, residual networks are introduced to mitigate model data oversmoothing, enabling 
the full employment of graph structure information hidden in the bipartite network. To 
enhance the initial features of nodes and make the model more robust, the FMAT algo-
rithm is employed. This algorithm adds gradient-based adversarial perturbation to the 
input characteristics. In addition, we construct two GAEs with collaborative training for 
label propagation, enabling the full integration of the drug and disease space information 
for association prediction and improving the robustness of the RAFGAE model.

With tenfold CV, the RAFGAE model achieves an AUC score of 0.9343, which is bet-
ter than the AUC scores of five state-of-the-art predictors. Furthermore, the case study 
results show that RAFGAE can reposition several representative drugs for human dis-
eases and can be applied as a reasonable and effective tool for predicting the relation-
ships between diseases and drugs.

We propose a computational drug repurposing method. This method can effectively 
identify candidate drugs with potential for treating different diseases and has the poten-
tial to uncover new indications for approved drugs that were previously unexplored. 
RAFGAE can guide wet laboratory experiments, accelerating drug development, reduc-
ing costs, and expanding treatment options. The method combines multilayer neural 
networks with residual connections to capture global information and alleviate overs-
moothing problems. We also employ adversarial perturbations to improve the input 
quality. This novel combination of techniques provides a new perspective for future 
research and can also serve as a valuable reference for similar studies, such as predicting 
the associations between ncRNAs and diseases, microbiome-disease associations, and 
screening ncRNA drug targets.

However, RAFGAE has certain limitations. In this study, the negative and positive 
samples of the benchmark dataset are unbalanced, and we use all the negative samples 
as negative samples for training the proposed model. However, these unknown samples 
considered negative samples may be potential correlations, which greatly impacts the 
prediction accuracy of the model. In the future, we will select negative samples to further 
improve the model accuracy. In terms of biological data, we simply apply the interaction 
network between drugs and diseases without establishing a more informative biologi-
cal regulatory network, which may further improve performance. In future research, we 
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will introduce other biological entities, such as proteins, pathways, and genes. In scenar-
ios where drugs share the same or similar indications but lack structural similarity, the 
transmission of structural similarity information through a multilayer neural network 
can give rise to an "information leakage" problem, leading to a distorted view of the algo-
rithm’s performance in realistic drug repurposing settings. In our future research, we 
plan to address the problem of information leakage further by incorporating multiple 
drug similarities, such as target protein domain similarity, GO target protein annotation 
similarity, side effect similarity, and GIP similarity. This broader range of drug similari-
ties can provide a more comprehensive features for drug repurposing. Similarly, incor-
porating disease similarities, such as disease ontology similarity, can help improve the 
accuracy and reliability of repositioning predictions by leveraging additional disease-
related information.

Methods
Data preparation

We employ two benchmark datasets established by investigators. The first dataset is 
the F-dataset, which corresponds to Gottlieb’s gold standard dataset [45]. The F-dataset 
contains 1933 known associations between diseases and drugs, including 313 diseases 
collected from the OMIM database [46] and 593 drugs obtained from the DrugBank 
database [47]. The second dataset is the C-dataset [24], which includes 2532 known 
associations between 409 diseases collected from the OMIM database and 663 drugs 
obtained from the DrugBank database. Table 7 summarizes the benchmark datasets in 
our proposal.

In this study, we calculated the drug structure similarity matrix Xdr via the simplified 
molecular input line entry system (SMILES) chemical structure [48], which is repre-
sented as the Tanimoto index of chemical fingerprints of the drug pair via the Chemical 
Development Kit [49]. The disease semantic similarity matrix Xdi is computed from the 
semantic similarity of the disease phenotypes via information from the medical descrip-
tions of the disease pairs [50].

RAFGAE

After collecting the required data from different sources, we propose a prediction model 
with three individual modules to predict potential candidate diseases for drugs of interest. 
We first design the Re_GAT framework, which captures global structural information from 
a bipartite network. For the second module, we employ GAEs that use known associations 
between diseases and drugs to simulate label propagation to guide and predict unknown 
associations. On the basis of the above, we utilize the FMAT module for adversarial training 

Table 7  Details of the two benchmark datasets

Dataset No. of drugs No. of diseases No. of 
known 
associations

F-dataset 593 313 1933

C-dataset 663 409 2532
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to improve the input quality and increase the prediction accuracy. Figure 7 shows the over-
all workflow of RAFGAE.

Re_GAT framework

Graph attention networks use a self-attention hidden layer to assign different attention 
scores to different neighbors, thus extracting the features of neighboring nodes more 
effectively.

The initial input to the Re_GAT framework can be described as follows:

where N represents the node count, F represents the dimension of the feature and hi ϵ 
RF represents the initial feature matrix of all the nodes. GATs calculate attention scores 
on the basis of the importance of neighbors and then aggregate neighbor features on the 
basis of the attention score.

The attention score is calculated as follows:

To adjust for the influence of different nodes, we use the softmax function for attention 
score normalization score:

By combining Formulas (3) and (4), the calculation formula for the attention score can be 
expressed as:

(1)h = {h1, h2, · · ·hN }, hi ∈ RF

(2)eij = σ

(

aT
[

Whi � Whj
]

)

(3)aij = softmax
j

(eij) =
exp(eij)

∑

k∈Ni
exp(eik)

(4)aij =
exp

(

σ(aT [Whi � Whj])
)

∑

k∈Ni exp
(

σ(aT [Whi � Whk ])
)

Fig. 7  Flow chart of the RAFGAE calculation method
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where aij is the attention score, W is a learnable linear transformation matrix, a vec-
tor denotes the weight vector, σ() represents the LeakyReLU activation function, and ║ 
denotes the connection operation. After normalization, the following formula can be 
used to calculate the final output feature:

In this study, the drug-disease association matrix is given by matrix A, where the col-
umns represent diseases and the rows represent drugs. The matrix A(j, k) = 1 if drug j 
is associated with disease k and 0 otherwise. Matrix A and its transposition matrix AT 
define the bipartite network G:

We create the initial input embedding H(0) as follows:

When combined with the bipartite network adjacency matrix G above, the graph 
attention network is defined as:

where H(l) represents the node embedding of the l-th layer, where l = 1, …, L, and GATs() 
represents a single attention layer, whereas the entire Re_GAT framework consists of 
multiple attention layers.

This study proposes a Re_GAT framework through two main strategies for forward 
propagation: (I) initial residual connection and adaptive residual connection; and (II) 
attention mechanism layer aggregation.

To facilitate the learning of feature information from higher-order neighbors, multi-
ple attention layers are typically used, easily homogenizing the data and thus leading to 
oversmoothing problems. To alleviate the oversmoothing problem of deep CNNs, resid-
ual connections, also known as skip connections was first proposed for ResNet. Inspired 
by ResNet [51], recent studies have attempted to apply various residual connections to 
GATs to alleviate the oversmoothing problem. Several studies have shown that residual 
connections are necessary for deep GATs [52], not only to alleviate the oversmoothing 
problem, but also to give GATs a more stable gradient.

We sum the H(l) weights with H(0) and H(l−1) according to the scale coefficients α and β, 
respectively. We use the initial skip connection and the adaptive skip connection to miti-
gate the oversmoothing problem and accelerate the convergence of the GATs. The GAT 
formula of our model can be rewritten as:

where α and β are hyperparameters.

(5)hi = σ





�

j∈Ni

aijWhj





(6)G =

[

0 A

AT 0

]

∈ R(Ndr+Ndi)×(Ndi+Ndr)

(7)H (0) =

[

Xdr A

AT Xdi

]

∈ R(Ni+Nr)×(Nr+Ni)

(8)H (l) = σ(GATs(G,H (l−1)))

(9)H (l) = σ

(

GATs(G,H (l−1))

)

+ αH (0) + βH (l−1)
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Inspired by LAGCN [35], the embedding of each layer captures structural informa-
tion from different orders of the heterogeneous network. For instance, the initial layer 
obtains direct connection information, whereas the higher-order layers collect informa-
tion about multihop neighbors through iterative update embedding. To fuse all useful 
information from multiple GAT layers, we use the attention mechanism. Since the Re_
GAT framework calculates the embedding of different layers and the embeddings con-
tain different information, we define the resulting GAT layer embedding as:

where Hdr l ϵ RNdr×kl is the embedding of the drug in layer l and Hdi l ϵ RNdi×kl is the 
embedding of the disease in layer l. We use attention mechanism layer aggregation 
to integrate multiple embedding matrices, and the final fused embedding matrix is as 
follows:

where, Hdr i and Hdi i are the l-layer embeddings of drugs and diseases, respectively, ai 
and bi are the attention factors that can be calculated via Formulas (2), (3) and (4), and L 
is the number of layers.

Constructing the feature similarity graph

A previous study showed that a similarity graph constructed using drug and disease 
features can be used to propagate labels [53]. We use the features Cdr and Cdi to con-
struct feature similarity graphs for diseases and drugs, respectively. These features are 
used for label propagation in the disease and drug spaces. The feature similarity graphs 
are constructed as follows. First, the Euclidean distance between nodes is calculated and 
ranked. Second, for each node i, its 10 nearest neighbors are selected. Finally, the adja-
cency matrix is defined as M, and the set of neighbors of node i is defined as N(i). The 
matrix M satisfies Mij = 1 when j belongs to N(i); otherwise, Mij = 0.

The self-loop adjacency matrix for the similarity graph S is constructed as follows:

where ⊙ is the Hadamard product. This method can be used to obtain both the drug 
similarity graph Sdr and the disease similarity graph Sdi.

Graph autoencoder

Previous studies have shown that the graph autoencoder may simulate label propaga-
tion by iteratively propagating label information on the graph [54–56]. The associa-
tion matrix A can be considered initial label information. The initial label information 

(10)Hl =

[

Hdr
l

Hdi
l

]

∈ R(Ndr+Ndi)×kl

(11)Cdr =

L
∑

i=1

aiH
dr
i

(12)Cdi =

L
∑

i=1

biH
di
i

(13)S = MT ⊙M + I
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and the similarity graph S calculated via the above method are input to the GAE. The 
encoder layer produces a hidden layer Z, whereas the decoder outputs the score F. 
The encoder of the GAE can be defined as:

where Φ denotes the weight matrix. Here, we use two GAEs to propagate label informa-
tion on the drug and disease graphs. We can obtain the drug hidden layer Zdr and the 
disease hidden layer Zdi, which are expressed as follows:

where Sdr and Sdi denote the drug similarity graph and the disease similarity graph, 
respectively, and A denotes the association matrix.

The decoder of the GAE is applied to decode the hidden layer representation, which 
is defined as follows:

Therefore, the score matrices Fdr and Fdi can be obtained by decoding Zdr and Zdi, 
respectively.

Since Fdr and Fdi are both low rank matrices [57], they need to satisfy the rank-sum 
inequality:

By performing a linear combination of Fdr and Fdi, the final integrated score is 
obtained as follows:

where α ϵ (0,1) represents the balanced weight between the drug space and the disease 
space.

The GAE reconstruction error is the loss of cross-entropy between the final predic-
tion and the true value:

As the information from the disease space and the drug space influences the pre-
dicted outcome, we use a cotraining approach to train the above two GAEs. The 
cotraining training loss Lco is defined as:

(14)GAEenc(S,A) = tanh(S · ReLu(SA�(0))�(1))

(15)Zdr = GAEenc(Sdr ,A)

(16)Zdi = GAEenc(Sdi,A
T )

(17)GAEdec(S,Z) = sigmoid(S · ReLu(SZ�(2))�(3))

(18)Fdr = GAEdec(Sdr ,Zdr)

(19)Fdi = GAEdec(Sdi,Zdi)

(20)rank(αFdr + (1− α)FT
di) ≤ rank(Fdr)+ rank(FT

di)

(21)F = αFdr + (1− α)FT
di

(22)Lr = −
∑

i,j

Aij log Fij
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The combined loss function can be rewritten as:

where Lrdr and Lrdi denote the reconstruction errors of the two GAEs in the drug space 
and the disease space, respectively.

Free multiscale adversarial training

In this section, we investigate how to effectively improve the input quality through data 
augmentation [58]. When neural networks are trained, the quality of the data is far more 
important than the quantity. By searching for and stamping out small perturbations that 
cause the classifier to fail, one may hope that adversarial training could benefit standard 
accuracy. Adversarial training is a well-studied method that increases the robustness and 
interpretability of neural networks. When the data distribution is sparse and discrete, 
the beneficial effect of adversarial perturbations on generalizability is prominent [59]. 
Inspired by this, we introduce free multiscale adversarial training (FMAT) to augment 
the node features [60].

Adversarial training first generates adversarial perturbations, which are then inte-
grated into the training node features. Given a learning model fθ with parameters θ, we 
denote the perturbed feature as Hadv = H + δ. Adversarial learning follows the min–max 
formulation:

where A represents the real value, D represents the data distribution, L represents the 
objective loss function, ε represents the perturbation budget, and ║║p represents an 
lp-norm distance measure.

The saddle-point optimization problem can be solved via projected gradient descent 
(PGD), which implements inner maximization, and stochastic gradient descent (SGD), 
which implements outer minimization. The parameter δ is updated after each step:

where ∏║δ║≤ε is projected onto the ε-sphere under the l∞-norm. The initial layer of the 
Re_GAT framework can be rewritten as:

To effectively exploit the generalizability of adversarial perturbations and improve 
their diversity and quality, Chen et  al. emphasized the importance of adapting to dif-
ferent types of data enhancements [61]. To achieve this, we introduce a ’free’ training 
approach [62].

The calculation of δ is inefficient because the N-step update requires N forward and 
backward channels. This update runs N times completely forward and backward to 
obtain the worst perturbation δN. However, the model weight θ is updated once to use 

(23)Lco =
1

2

∥

∥

∥ZdrZ
T
di − A

∥

∥

∥

2

F

(24)L = αLrdr + (1− α)Lrdi + Lco

(25)min
θ

E(H ,A)∼D[ max
�δ�p≤ε

L(fθ (H + δ),A)]

(26)δt+1 =
∏

�δ�∞≤ε(δt + e · sign(∇δL(fθ (H + δt),A)))

(27)H (1) = σ(GAT (H (0) + δt ,G))
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only δN. Model training is N times slower because of this process. In contrast, the ’free’ 
training outputs the model weights θ on the same backward channel while calculating 
the δ gradient, allowing model weight updates to be calculated in parallel with perturba-
tion updates.

’Free’ training has the same robustness and accuracy as standard adversarial train-
ing does. However, the training costs are the same as those of clean training. The ’free’ 
strategy accumulates a gradient of ∇θL in each iteration and updates the model weight θ 
through this gradient. During training process, the model runs the inner circle T times, 
each time calculating the gradient of θt-1 and δt by taking a step along the average gradi-
ent at H(l) + δ0, …, H(l) + δT-1. Formally, the optimization step is

Abbreviations
GAT​	� Graph attention network
GAE	� Graph autoencoder
FMAT	� Free multiscale adversarial training
TPR	� True positive rate
FPR	� False-positive rate
ROC	� Receiver operating characteristic
AUC​	� Area under ROC curve
CV	� Cross validation

Acknowledgements
Not applicable.

Author contributions
GL and JL conceived and designed the study.  GL and SL implemented the experiments and drafted the manuscript. CL 
and QX analyzed the results. All the authors have read and approved the final manuscript.

Funding
This work is supported by the National Natural Science Foundation of China (Grant Nos. 62362034, 61862025, 62372279, 
and 62002116), the Natural Science Foundation of Jiangxi Province (Grant Nos. 20232ACB202010, 20212BAB202009, 
20181BAB211016), and the Natural Science Foundation of Shandong Province (Grant No. ZR2023MF119).

Availability of data and materials
We acquired the C-dataset of disease-drug associations, from the Comparative Toxicogenomics Database [44] (http://​
ctdba​se.​org/). We screened the F-dataset of disease-drug interactions from the OMIM database [46] (https://​www.​omim.​
org/) and DrugBank database [47] (https://​www.​drugb​ank.​ca/). These two datasets and the source code are available at: 
https://​github.​com/​ghli16/​RAFGAE.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 30 June 2023   Accepted: 6 August 2024

References
	1.	 Rifaioglu AS, Atas H, Martin MJ, Cetin-Atalay R, Atalay V, Doğan T. Recent applications of deep learning and machine 

intelligence on in silico drug discovery: methods, tools and databases. Brief Bioinform. 2019;20(5):1878–912.

(28)min
θ

E(H ,A)∼D

[

1

T

T−1
∑

t=0

max
�δ�p≤ε

L(fθ (H + δt),A)

]

http://ctdbase.org/
http://ctdbase.org/
https://www.omim.org/
https://www.omim.org/
https://www.drugbank.ca/
https://github.com/ghli16/RAFGAE


Page 20 of 21Li et al. BMC Bioinformatics          (2024) 25:261 

	2.	 Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug 
Discov. 2004;3(8):673–83.

	3.	 Dickson M, Gagnon JP. Key factors in the rising cost of new drug discovery and development. Nat Rev Drug Discov. 
2004;3(5):417–29.

	4.	 Padhy BM, Gupta YK. Drug repositioning: re-investigating existing drugs for new therapeutic indications. J Postgrad 
Med. 2011;57(2):153.

	5.	 Xue H, Li J, Xie H, Wang Y. Review of drug repositioning approaches and resources. Int J Biol Sci. 2018;14(10):1232.
	6.	 Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C, Norris A, 

Sanseau P, Cavalla C, Pirmohamed M. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug 
Discov. 2019;18(1):41–58.

	7.	 Baker NC, Ekins S, Williams AJ, Tropsha A. A bibliometric review of drug repurposing. Drug Discov Today. 
2018;23(3):661–72.

	8.	 Nosengo N. New tricks for old drugs. Nature. 2016;534(7607):314–6.
	9.	 Jarada TN, Rokne JG, Alhajj R. A review of computational drug repositioning: strategies, approaches, opportunities, 

challenges, and directions. J Cheminform. 2020;12(1):1–23.
	10.	 Mohamed K, Yazdanpanah N, Saghazadeh A, Rezaei N. Computational drug discovery and repurposing for the treat-

ment of COVID-19: a systematic review. Bioorg Chem. 2021;106: 104490.
	11.	 Fahimian G, Zahiri J, Arab SS, Sajedi RH. RepCOOL: computational drug repositioning via integrating heterogeneous 

biological networks. J Transl Med. 2020;18(1):1–10.
	12.	 Traylor JI, Sheppard HE, Ravikumar V, Breshears J, Raza SM, Lin CY, Patel SR, DeMonte F. Computational drug reposi-

tioning identifies potentially active therapies for chordoma. Neurosurgery. 2021;88(2):428.
	13.	 Bai L, Scott MK, Steinberg E, Kalesinskas L, Habtezion A, Shah NH, Khatri P. Computational drug repositioning of 

atorvastatin for ulcerative colitis. J Am Med Inform Assoc. 2021;28(11):2325–35.
	14.	 Dai W, Liu X, Gao Y, Chen L, Song J, Chen D, Gao K, Jiang YS, Yang YP, Chen JX, Lu P. Matrix factorization-based predic-

tion of novel drug indications by integrating genomic space. Comput Math Methods Med. 2015;2015:275045.
	15.	 Zhang W, Zou H, Luo L, Liu Q, Wu W, Xiao W. Predicting potential side effects of drugs by recommender methods 

and ensemble learning. Neurocomputing. 2016;173:979–87.
	16.	 Huang F, Qiu Y, Li Q, Liu S, Ni F. Predicting drug-disease associations via multi-task learning based on collective 

matrix factorization. Front Bioeng Biotechnol. 2020;8:218.
	17.	 Luo H, Li M, Wang S, Liu Q, Li Y, Wang J. Computational drug repositioning using low-rank matrix approximation and 

randomized algorithms. Bioinformatics. 2018;34(11):1904–12.
	18.	 Zhang W, Yue X, Lin W, Wu W, Liu R, Huang F, Liu F. Predicting drug-disease associations by using similarity con-

strained matrix factorization. BMC Bioinform. 2018;19:1–12.
	19.	 Yang M, Wu G, Zhao Q, Li Y, Wang J. Computational drug repositioning based on multi-similarities bilinear matrix 

factorization. Brief Bioinform. 2021;22(4):bbaa267.
	20.	 Zhang W, Xu H, Li X, Gao Q, Wang L. DRIMC: an improved drug repositioning approach using Bayesian inductive 

matrix completion. Bioinformatics. 2020;36(9):2839–47.
	21.	 Hu L, Zhang J, Pan X, Yan H, You ZH. HiSCF: leveraging higher-order structures for clustering analysis in biological 

networks. Bioinformatics. 2021;37(4):542–50.
	22.	 Chu Y, Kaushik AC, Wang X, Wang W, Zhang Y, Shan X, Salahub DR, Xiong Y, Wei DQ. DTI-CDF: a cascade deep 

forest model towards the prediction of drug-target interactions based on hybrid features. Brief Bioinform. 
2021;22(1):451–62.

	23.	 Yang K, Zhao X, Waxman D, Zhao XM. Predicting drug-disease associations with heterogeneous network embed-
ding. Chaos Interdiscip J Nonlinear Sci. 2019;29(12):123109.

	24.	 Luo Y, Zhao X, Zhou J, Yang J, Zhang Y, Kuang W, Peng J, Chen L, Zeng J. A network integration approach for drug-
target interaction prediction and computational drug repositioning from heterogeneous information. Nat Com-
mun. 2017;8(1):573.

	25.	 Zhao BW, Hu L, You ZH, Wang L, Su XR. HINGRL: predicting drug–disease associations with graph representation 
learning on heterogeneous information networks. Brief Bioinform. 2022;23(1):bbab515.

	26.	 Zhang H, Cui H, Zhang T, Cao Y, Xuan P. Learning multi-scale heterogenous network topologies and various pairwise 
attributes for drug–disease association prediction. Brief Bioinform. 2022;23(2):bbac009.

	27.	 Luo H, Wang J, Li M, Luo J, Peng X, Wu FX, Pan Y. Drug repositioning based on comprehensive similarity measures 
and bi-random walk algorithm. Bioinformatics. 2016;32(17):2664–71.

	28.	 Cai L, Lu C, Xu J, Meng Y, Wang P, Fu X, Su Y. Drug repositioning based on the heterogeneous information fusion 
graph convolutional network. Brief Bioinform. 2021;22(6):bbab319.

	29.	 Xuan P, Ye Y, Zhang T, Zhao L, Sun C. Convolutional neural network and bidirectional long short-term memory-
based method for predicting drug–disease associations. Cells. 2019;8(7):705.

	30.	 Liu H, Zhang W, Song Y, Deng L, Zhou S. HNet-DNN: inferring new drug–disease associations with deep neural 
network based on heterogeneous network features. J Chem Inf Model. 2020;60(4):2367–76.

	31.	 Peng L, Tan J, Xiong W, Zhang L, Wang Z, Yuan R, Li Z, Chen X. Deciphering ligand–receptor-mediated intercellular 
communication based on ensemble deep learning and the joint scoring strategy from single-cell transcriptomic 
data. Comput Biol Med. 2023;2023: 107137.

	32.	 Xuan P, Gao L, Sheng N, Zhang T, Nakaguchi T. Graph convolutional autoencoder and fully-connected autoencoder 
with attention mechanism based method for predicting drug-disease associations. IEEE J Biomed Health Inform. 
2020;25(5):1793–804.

	33.	 Coşkun M, Koyutürk M. Node similarity-based graph convolution for link prediction in biological networks. Bioinfor-
matics. 2021;37(23):4501–8.

	34.	 Zeng X, Zhu S, Liu X, Zhou Y, Nussinov R, Cheng F. deepDR: a network-based deep learning approach to in silico 
drug repositioning. Bioinformatics. 2019;35(24):5191–8.

	35.	 Yu Z, Huang F, Zhao X, Xiao W, Zhang W. Predicting drug–disease associations through layer attention graph convo-
lutional network. Brief Bioinform. 2021;22(4):bbaa243.



Page 21 of 21Li et al. BMC Bioinformatics          (2024) 25:261 	

	36.	 Feng Q, Dueva E, Cherkasov A, Ester M. PADME: a deep learning-based framework for drug–target interaction 
prediction. https://​arxiv.​org/​abs/​1807.​09741 (2019).

	37.	 Meng Y, Lu C, Jin M, Xu J, Zeng X, Yang J. A weighted bilinear neural collaborative filtering approach for drug reposi-
tioning. Brief Bioinform. 2022;23(2):bbab581.

	38.	 Gu Y, Zheng S, Yin Q, Jiang R, Li J. REDDA: integrating multiple biological relations to heterogeneous graph neural 
network for drug-disease association prediction. Comput Biol Med. 2022;150: 106127.

	39.	 Yang M, Luo H, Li Y, et al. Drug repositioning based on bounded nuclear norm regularization. Bioinformatics. 
2019;35(14):i455–63.

	40.	 Li J, Zhang S, Liu T, et al. Neural inductive matrix completion with graph convolutional networks for miRNA-disease 
association prediction. Bioinformatics. 2020;36(8):2538–46.

	41.	 Kingma DP. A method for stochastic optimization. ArXiv Prepr. 2014.
	42.	 Niu M, Zou Q, Wang C. GMNN2CD: identification of circRNA–disease associations based on variational inference and 

graph Markov neural networks. Bioinformatics. 2022;38(8):2246–53.
	43.	 Shi Z, Zhang H, Jin C, Quan X, Yin Y. A representation learning model based on variational inference and graph 

autoencoder for predicting lncRNA-disease associations. BMC Bioinform. 2021;22(1):1–20.
	44.	 Davis AP, Murphy CG, Johnson R, Lay JM, Lennon-Hopkins K, Saraceni-Richards C, Sciaky D, King BL, Rosenstein 

MC, Wiegers TC, Mattingly CJ. The comparative toxicogenomics database: update 2013. Nucleic Acids Res. 
2013;41(D1):D1104–14.

	45.	 Gottlieb A, Stein GY, Ruppin E, Sharan R. PREDICT: a method for inferring novel drug indications with application to 
personalized medicine. Mol Syst Biol. 2011;7(1):496.

	46.	 Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J. DrugBank: a comprehensive 
resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34(suppl_1):D668–72.

	47.	 Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowl-
edgebase of human genes and genetic disorders. Nucleic Acids Res. 2005;33(suppl_1):D514–7.

	48.	 Vidal D, Thormann M, Pons M. LINGO, an efficient holographic text based method to calculate biophysical proper-
ties and intermolecular similarities. J Chem Inf Model. 2005;45(2):386–93.

	49.	 Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E. The Chemistry Development Kit (CDK): an open-
source Java library for chemo-and bioinformatics. J Chem Inf Comput Sci. 2003;43(2):493–500.

	50.	 Van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA. A text-mining analysis of the human phenome. Eur 
J Hum Genet. 2006;14(5):535–42.

	51.	 Kaiming H, Shaoqing R, Jian S. Deep residual learning for image recognition. In Proceedings of the IEEE conference 
on computer vision and pattern recognition. 2016:770–778.

	52.	 Sharma V, Dyreson C. Covid-19 screening using residual attention network an artificial intelligence approach. 2020 
19th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE. 2020:1354–1361.

	53.	 Belkin M, Niyogi P, Sindhwani V. Manifold regularization: A geometric framework for learning from labeled and 
unlabeled examples. J Mach Learn Res. 2006;7(11).

	54.	 Kipf TN, Welling M. Variational graph auto-encoders. https://​arxiv.​org/​abs/​1611.​07308 (2016).
	55.	 Li G, Luo J, Xiao Q, Liang C, Ding P. Predicting microRNA-disease associations using label propagation based on 

linear neighborhood similarity. J Biomed Inform. 2018;82:169–77.
	56.	 Wang F, Zhang C. Label propagation through linear neighborhoods. Proceedings of the 23rd international confer-

ence on Machine learning. 2006:985–992.
	57.	 Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. https://​arxiv.​org/​

abs/​1409.​0473 (2014).
	58.	 Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Commun 

ACM. 2017;60(6):84–90.
	59.	 Gan Z, Chen YC, Li L, et al. Large-scale adversarial training for vision-and-language representation learning. Adv 

Neural Inf Process Syst. 2020;33:6616–28.
	60.	 Kong K, Li G, Ding M, Wu Z, Zhu C, Ghanem B, Taylor G, Goldstein T. Robust optimization as data augmentation 

for large-scale graphs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 
2022:60–69.

	61.	 Chen T, Kornblith S, Norouzi M, Hinton G. A simple framework for contrastive learning of visual representations. 
In International conference on machine learning. PMLR. 2020:1597–1607.

	62.	 Shafahi A, Najibi M, Ghiasi MA, Xu Z, Dickerson J, Studer C, Davis LS, Taylor G, Goldstein T. Adversarial training for 
free!. Adv Neural Inf Process Syst. 2019;32.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://arxiv.org/abs/1807.09741
https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473

	Drug repositioning based on residual attention network and free multiscale adversarial training
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results and discussion
	Algorithm performance comparison
	Ablation study
	Performance evaluation
	Parameter adjustment
	Case studies

	Conclusions
	Methods
	Data preparation
	RAFGAE
	Re_GAT framework
	Constructing the feature similarity graph
	Graph autoencoder
	Free multiscale adversarial training

	Acknowledgements
	References


