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Background
After entering the post-genomic era, the main research content of bioinformatics is 
to analyze a large amount of various biological molecular data and deeply explore the 
life information contained in it. It is a relatively new and popular research issue to put 

Abstract 

Background: The progress of the cell cycle of yeast involves the regulatory relation-
ships between genes and the interactions proteins. However, it is still obscure which 
type of protein plays a decisive role in regulation and how to identify the vital nodes 
in the regulatory network. To elucidate the sensitive node or gene in the progression 
of yeast, here, we select 8 crucial regulatory factors from the yeast cell cycle to deci-
pher a specific network and propose a simple mixed K2 algorithm to identify effectively 
the sensitive nodes and genes in the evolution of yeast.

Results: Considering the multivariate of cell cycle data, we first utilize the K2 algo-
rithm limited to the stationary interval for the time series segmentation to measure 
the scores for refining the specific network. After that, we employ the network entropy 
to effectively screen the obtained specific network, and simulate the gene expres-
sion data by a normal distribution approximation and the screened specific network 
by the partial least squares method. We can conclude that the robustness of the spe-
cific network screened by network entropy is better than that of the specific net-
work with the determined relationship by comparing the obtained specific network 
with the determined relationship. Finally, we can determine that the node CDH1 
has the highest score in the specific network through a sensitivity score calculated 
by network entropy implying the gene CDH1 is the most sensitive regulatory factor.

Conclusions: It is clearly of great potential value to reconstruct and visualize gene 
regulatory networks according to gene databases for life activities. Here, we present 
an available algorithm to achieve the network reconstruction by measuring the net-
work entropy and identifying the vital nodes in the specific nodes. The results indicate 
that inhibiting or enhancing the expression of CDH1 can maximize the inhibition 
or enhancement of the yeast cell cycle. Although our algorithm is simple, it is also the 
first step in deciphering the profound mystery of gene regulation.

Keywords: Network entropy, Gene regulatory network, K2 algorithm, Partial least 
squares, Network simulation, Time series plateau interval
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forward some efficient arithmetic and reconstruct the gene regulatory network [1]. It 
is known that the specific network in the gene regulatory network can always perform 
some specific functions, such as the cell cycle, biological clock, etc. [2, 3]. In an organ-
ism, the expression regulation of any gene is not isolated but is inevitably promoted or 
suppressed by other genes [1–3]. Therefore, it is the first goal in this field to reverse-
mine the association between genes within biological cells based on existing known gene 
expression data to scaffold the specific network and determine the sensitive nodes or 
biomarker protein, and then visualize the interactions between genes in the form of net-
work graphs to reveal the functional information of various genes in biological cells in 
life activities.

In recent years, it has gradually advanced of that the relevant research methods for 
gene regulatory networks. Several mathematical models have been applied to target 
gene regulatory network modeling, which is famous for Boolean network models [2, 3], 
neural network models [4], differential equation models (based on ordinary differential 
equations (ODEs)) [5], and probabilistic graphical models [6]. These models achieve 
partly the abstraction of the real gene regulatory network to different degrees. Among 
them, the Bayesian network model has been widely used and is a mainstream method to 
study gene regulation because of its characteristic of high scaffolding efficiency and high 
accuracy of results compared with other models [7].

In 1992, Cooper et al. [8] proposed the K2 algorithm to learn the Bayesian network 
structure for building a specific network. Although the K2 algorithm is famous for its 
high execution efficiency, it does not take into account the characteristics of the time-
variant, that is, the structure of the corresponding regulatory network can change with 
time which results in the problem of learning excessively easily. Wang proposed an 
AutoDBN algorithm to learn dynamic Bayesian networks with variable structures [9]. 
The AutoDBN algorithm introduces manifold theory to partition the stationarity of time 
series [10]. Although this method investigates the stationarity partition of time series, it 
does not discuss the changes of models over time on adjacent stationary time periods. 
Lau et al. [11] introduced entropy into the scaffolding of the gene regulatory network, 
however, it is easy to lead to error results for this method because they only employ the 
Boolean network to define the internal genetic function and interactions as simple logi-
cal rules that can be inferred from the gene expression level of each gene determining 
one logical rule.

With the development of the next sequencing technology (NGS), the gene sequenc-
ing data have the properties of multivariate and non-homogeneous and it is a pressing 
matter of the moment to develop an algorithm to compensate for the drawback of 
the scaffolding efficiency and discriminate the important nodes in a specific network. 
Without loss of generality, we select the classical gene module of yeast to exhibit the 
robustness and efficiency of our algorithm. The reason why we chose the yeast mod-
ule is that it is of great significance for human production and life, and it has the char-
acteristics of a small genome and easy cultivation, as well as also directly the cell cycle 
progress [12]. In fact, the specific network regulates the entire cell cycle: during the 
G1 phase, CDC28 gene expression is transcribed and forms a complex with CLN3. 
When the level of the complex exceeds a certain threshold, it phosphorylates SBF [11] 
and MBF [13] to trigger the G1 to S transition. Subsequently, SBF and MBF promote 
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the transcription of CLN1 and CLN2 [14]. At the same time, the synergistic effect of 
CDH1 and APC controls the degradation of M G1-related proteins [15, 16]. Then, 
CLN1, CLN2, and CDC28 interact to form a complex to promote the activation of 
CDK, thus driving DNA replication and entering mitosis [17]. In the G2 phase, the 
rise of CDC28-related compounds led to the inactivation of SBF, and then the activity 
of CLN1 and CLN2 decreased [18]. Subsequently, CDH1 undergoes phosphorylation 
and is subsequently inactivated by CLN1 and CLN2 [19, 20]. In the G2 phase stage, 
the membrane filament assembly defect of the bud neck led to the low phosphoryla-
tion and stability of SWE1, leading to the dependent inhibition of CLB-CDC28 by 
SWE1. CDC5-related genes were expressed and reached a certain number in the 
G2 phase, then Cdc5-mediated phosphorylation promoted the down-regulation of 
SWE1, promoted the effective degradation of Swe1, and effectively activated CLB-
CDC28 [21, 22]. Then, the yeast enters the M phase. SWI5 is the SIC1 transcription 
factor. Once SWI5 enters the cell, it will be destroyed. SWI5 will promote the cell to 
return from the M phase to the G1 phase [22]. In addition, CDH1 and SIC1 cooperate 
to promote origin redundancy in the cell cycle to prevent a shortage of active origin 
regions and maintain chromosome stability [23].

Here, we integrate the existing algorithms to build up the network by introducing 
the time series plateau interval into the K2 algorithm and then screen the built regu-
latory network by network entropy to try to surmount the problems of the overlearn-
ing problem and low construction efficiency of P-BIC scores, as well as the problem 
of the Boolean network logic rules to infer error conclusion (referring to Fig. 1). We 
select eight specific networks of genes: CLN1, CLN2, CDC28, SWE1, CDC5, CDH1, 
SWI5, and SIC1 (refer to Abbreviations), to investigate the gene regulation of the 
yeast cell cycle. Also, we calculate the network entropy to screen the stability of a spe-
cific network and then simulate the progress of yeast by normal distribution approxi-
mation to determine the specific network. By comparing in pairs the networks, we 
can yield the sorting of gene sensitivity and identify the vital nodes or genes in the 
specific network. For the yeast cell cycle network, we can find that node CDH1 is the 

Fig. 1 Flow diagram for scaffolding and selecting the specific network. The time-dependent expression 
data of a set of genes are acquired, which is built after the data processing using the K2 algorithm based 
on the time series plateau interval. The obtained network was selected using network entropy. Numerical 
simulations were subsequently performed using a normal distribution with partial least squares. Finally, gene 
sensitivities were ranked using network entropy
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first sensitive gene that can achieve effectively the maximization of the inhibition or 
enhancement of the yeast cell cycle.

Materials and methods
K2 algorithm

We employ the K2 algorithm to construct the specific network [8]. The K2 algorithm dis-
cusses a defined scoring function, starting from an empty specific network, and selects the 
upstream gene of the given gene that maximizes the posterior structure probability based 
on the order of upstream and downstream genes. Traverse all genes in sequence, gradually 
adding the best upstream gene for each gene [8, 24].

The original scoring function is score(i,πi) = �
qi
j=1

(ri−1)!
(Nij+ri−1)!�

rj
k=1Nijk ! where 

Nij =
r1
∑

k=1

Nijk , i representing gene i , πi  representing the upstream genes of the gene i , n 

representing the number of genes, qi representing the number of types of upstream genes 
of the gene i , ri is the state of the gene i where the state is expressed and unexpressed,  i.e. ri 
is taken as 2 or 3.  Nijk  representing the kth state of the gene.

Segmentation of multivariate time series

Time series stationarity is a concept in time series analysis [25]. Time series stationarity was 
introduced into gene expression levels [9, 26]. The ratio of the magnitude of fluctuation of a 
gene’s expression level over a given period to that of the entire period may reflect a plateau 
in this gene’s expression. The smaller ratios indicate a plateau in this gene’s expression level 
over a selected period, which is referred to as the plateau in this gene’s expression [25, 26]. 
Within the interval [s, k] and [k, t], the stationarity RB(s, t) and RB(k , t) are calculated, 
respectively. The expression levels of all genes are stationary within [s, t] if RB(s, k) is the 
same distribution function as RB(k , t) . That is, [s, k] and [k, t] are within a stationary inter-
val and the two intervals can be merged into a single interval [s, t]. Here, the stationarity is 

defined asRB(s, k) =
(
∑

i∈[s,t]

|G(i)−µG(s,t)|)/n

(
∑

i∈[1,t]

|G(i)−µG(1,T )|)/N
 , where µG(s, t) =

1
n

∑

i∈[s,t]

G(i) , G(i)represent-

ing the expression of gen G at the point i . The value RB(s, k) is smaller, the more stable the 
level of change in the gene i within [s, t]. The value RB(s, k) is larger, indicating that the level 
of change in gene ifluctuates more within [s, t] [9, 26].

Evaluation by network entropy

The concept of entropy stems from thermodynamics, measuring the degree of energy 
failure in a system of matter [27]. It is essentially a system’s “degree of intrinsic disorder”. 
Entropy is introduced into networks to solve various problems [28]. It is known from the 
network entropy definition that the network entropy energy can describe the stability of a 
specific network, i.e., the smaller the network entropy, the stronger the stability of that net-
work. For a specific network, the network entropy is calculated as:

(1)Hi = −

N
∑

j=1

pij log(pij)
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where kirepresents the expression of gene i changes over time data, and if the gene i is 
connected with the gene j without an edge, the calculation is not performed. Otherwise, 
if data kikj are all normally distributed, CORR(ki, kj)  represents the Pearson correlation 
coefficient of the amount of expression between gene i and gene j . Or else, if data ki kj 
are not normally distributed, CORR(ki, kj) represents the Spearman correlation coeffi-
cient of the amount of expression between the gene  i and the gene j . N  represents the 
number of selected genes, and Hi represents the network entropy of the gene i.

Algorithms for specific network selecting

Given an initial specific network with the dynamic change of gene expression quantity, 
we screen the network in the following steps:

1. Set n = number of unconfirmed edges, threshold a and b, number of the uncon-
firmed edges;

2. Create a network NET composed of correct edges and a zero matrix Initial of a × n;
3. Do the following for the unconfirmed edges to traverse through all unconfirmed 

edges:

3.1 setting m = 1;
3.2 Perform the following for the selected unconfirmed edges, to ensure all uncon-

firmed edge combinations are considered in full:
3.2.1 NET1 = NET adds m unconfirmed edges except for this unconfirmed edge;
3.2.2 NET2 = NET1 added this unconfirmed edge;
3.2.3 Setting c, d = NET1 network entropy, NET2 network entropy;
3.2.4 If c-d > a, Initial (i) = 0; Otherwise Initial (i) = Initial (i). Turn step 3.2;

3.3 If m < n-1, then n = m + 1, turn step 3.2; Otherwise turn step 3.4;
3.4  If the presence of an unconfirmed edge is not selected, select the next uncon-

firmed edge, step 3; Otherwise, turn to step 4;

4. If Initial (i) < b, join the edge to the network net; Otherwise, do not operate on NET;
5. Output network NET.

Specific network‑sensitive gene ranking algorithm

For the dynamic changes in the amount of gene expression of screened networks, we use 
the following algorithm to rank the level of sensitivity of the gene model:

(2)
with pij =

|CORR(ki, kj)|

N
∑

m=1

|CORR(ki, kj)|
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1. Create a network NET composed of the selected rear edges, n = the number of genes 
of that network;

2. c = network entropy of NET, i = 1, genes are numbered to create a 1 × n zero vector 
k;

3. Do the following for nodes of a network net, to all nodes be traversed:

3.1 Selection of the Gene i;
3.2 NET1 = Remove the node and corresponding out edge, into the edge;
3.3 d = network NET1 network entropy;
3.4 g = c–d;
3.5 If i < n, i = i + 1, turn step 3; Otherwise turn step 4;

4. Output after sorting vector k elements.

Data source and processing

The species data applied here are microarray gene expression data for yeast cells derived 
from Spellman et al.’s experiments [29]. This dataset is expression data for a total of 6178 
genes resulting from 6 different conditions. Here, we select eight genes from the CDC28 
dataset [28]: CLN1, CLN2, CDC28, SWE1, CDC5, CDH1, SWI5, and SIC1 and numbered 
the genes (Fig. 2A).

First, the selected genes are filtered, and the missing data rate is lower than 15% in all 
eight genes (Fig. 2B), which indicates that the selected genes all satisfy the conditions. A 
cubic linear function is subsequently utilized to impute missing data for the CDC28 dataset 

Fig. 2 A The eight genes were numbered, and CLN1, CLN2, CDC28, SWE1, CDC5, CDH1, SWI5, and SIC1 
were assigned values of 1, 2, 3, 4, 5, 6, 7, 8. B The missing data rate of the eight genes. C The proportion of 
expressed genes in each interval after time series stationary interval segmentation. D Scaffolding process of 
the specific network by K2 algorithm based on the time series stationary interval. Red indicates expressed 
genes and green indicates non-expressed genes. E Synthesis of the resulting network. The solid line 
represents the proven relationship and the dotted line represents the unconfirmed relationship
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and to normalize the post-imputed data. Finally, the data are discretized, we choose the 
three-value discretization method to discretize the data:

where aij is the value of the gene i at the time j, µi  is the mean of the gene i expres-
sion abundance over time, and si is the variance of the gene i expression abundance over 
time.

Result
Specific network time division based on time series plateau interval

The selected 8 genes are subjected to segmentation of the time series plateau interval. 
A p value of 0.01 is set to segment the time-series data set into 7 plateaus. Since [60, 80] 
is merged into a plateau interval sheet with [80, 100], we can consider gene expression 
at [60, 80] as that at [60, 100]. Therefore, we divide the time into [0, 20], [20, 40], [40, 
60], [60, 100], [100, 120], [120, 140], [140, 160] seven time periods. The activity rates of 
the genes stabilized between 60 and 90% across the respective plateau intervals(Fig. 2C), 
implying that the partitioned plateau sheets all satisfied the requirements. The expressed 
genes in the seven-time periods are shown in red in Fig.  2D. Since it is not clear the 
stages of the cell cycle at the beginning of the experiment, the cell cycle periods for 
the respective periods could not be determined. [0, 20], [20, 40], and [40, 60], in these 
three intervals, the active genes are mainly expressed as three genes CLN1, CLN2, and 
CDC28, which are speculated to be probably from the G1 phase to S phase [30]. [60, 
100] and [100, 120], the two individual interval regulatory processes are complex, and 
almost all genes are involved in the expression. Within these two intervals, it is known 
by CDC5 gene expression that the stage is in the S phase and G2 phase [22]. Also by the 
fact that the SWI5 gene is not expressed in these two intervals, it was judged that this 
interval may be the S phase versus the early middle G2 phase [30]. During the interval 
[120, 140] and [140, 160], CDH1, SWI5, and SIC1 are more strongly expressed, inferring 
the G2 phase, M phase, and the early G1 phase [31].

K2 algorithm to construct the specificity network

Based on the segmentation results of the time series plateau interval of the gene expres-
sion data of CLN1, CLN2, CDC28, SWE1, CDC5, CDH1, SWI5, and SIC1, relevant 
computer programs are written using the BNT toolbox in MATLAB. This specific net-
work over time is shown in Fig. 2D.

It is clear that 0–60 min is predominantly the mid-late G1 phase. This process mainly 
involves the activation of cyclin CDC28 kinase by CLN1 and CLN2 kinases and the 
accumulation of CDC28-associated proteins. When the CDC28 protein passes a cer-
tain threshold, the related genes that it regulates become activated to promote the 
transcription of CLN1, CLN2, and other genes required for S phase progression. At 
the same time, CLN1 and CLN2 interact with CDC28 to promote the activation of 







aij = 3 aij > µi + si
aij = 2

aij = 1

aij = µi + si

aij < µi + si
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B-type cyclin-associated CDKs, which bind to CDC28 expressing proteins and promote 
the transition of the cell cycle from the G1 phase to the S phase [30, 31]. SWE1 is also 
expressed starting in the late G1 phase [22].

Followed by 60–120  min, it is predominantly in the S phase with early G2 phase. 
Multiple genes are expressed continuously during this period. During the S phase, 
SWE1-related genes continue to be expressed and accumulate, become sequentially 
hyperphosphorylated, give rise to multiple isoforms, and then undergo ubiquitin-
mediated degradation. Defective septal filament assembly at the bud neck leads to 
hypophosphorylation and stabilization of SWE1 and, as a result, SWE1-dependent 
inhibition of CLB-CDC28. In parallel, CDC5-associated genes are expressed and 
reach a certain number in the G2 phase, and subsequent CDC5-mediated phospho-
rylation prompts SWE1 downregulation, promoting efficient degradation of SWE1 
for efficient activation by CLB-CDC28 [21, 22].

From 120 to 160 min is mainly in the mid-late G2 phase, M phase to early G1 phase. 
SWI5 begins to be expressed during the G2 phase, and the mRNA level of SWI5 peaks 
in G2/M, with nascent proteins entering the nucleus and promoting the transcription 
of SIC1 and many other periodically expressed genes. This results in an M/G1 specific 
transcriptional burst of SIC1, which encodes a potent B-type cell cycle kinase inhibi-
tor. SWI5, SIC1, and CDH1 subsequently dephosphorylate, leading to the inhibition 
of CDC28 and degradation of cyclins required for mitotic exit. SIC1 and APC activi-
ties persist through G1, resulting in a B-type cell cycle kinase deficient state required 
for the establishment of the pre-replication complex on genomic DNA [30]. It can 
be known that the constructing network process coincides with the cell cycle, which 
proves the correctness of our used method to some extent.

The resulting network is shown in Fig. 2E. From the experimental results (Fig. 2E), 
we can yield that the network constructed by the improved K2 algorithm has a total 
of 34 regulatory relationships. We use the protein interaction relationships of KEGG 
and corresponding literature as prior information and fuse the results of EVEX data 
mining to obtain a deterministic relationship network (Fig. 3C) [32, 33]. Comparing 

Fig. 3 A Results were tested for normal distribution of gene expression. B Specificity network after selecting 
by network entropy. C Network of KEGG, EVEX, and relevant literature. D Heat map of correlation coefficients 
for expression quantities between individual genes. E Simulated network relative error contrasts
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the experiments with known networks inferred from the literature indicates that 17 
regulatory relationships have been proven in biological experiments, but there are 
still 17 relationships that have not been proven, with an accuracy rate of 50%. The 
results are compared with the REVEAL algorithm 36% correct [33] and the DBCMC 
algorithm 29% correct [34], and the method presented here has a higher correct rate 
than the REVEAL algorithm and the DBCMC algorithm, implying the method pre-
sented here is effective.

Selecting of networks using network entropy

First, the level of gene expression is tested for L normal distribution. We selected all 
the data with p values greater than 0.05 at the 95% confidence level from the normal 
distribution test results (Fig. 3A), that is, the selected data are all normally distributed. 
We subsequently calculate the entropy values of the respective genes using Eq. (1) and 
select this specific network following the algorithm of network screening for specific-
ity. Considering the number of unproven edges in the network, we divide it into two 
groups. The first one includes eight uncertain edges that set the threshold for a at 0.3 
and threshold b at 100. The other nine edges are the second group with a threshold of 
a at 0.3 and a threshold of b at 200. The resulting specific network after selection is 
shown in Fig. 3 B. From the experimental results, after the network entropy selection, 
eight relationships are added: CDH1 regulates CLN2, CLN1 regulates SWE1, CDC28 
regulates SWE1, CDH1 regulates SWE1, CLN1 regulate SWI5, SWE1 regulate SWI5, 
CDC5 regulate SIC1, SWE1 regulate SIC1. Among them, Skotheim et  al. [35] dem-
onstrated that CDH1 mutations can partially salvage G2 stagnation in CLN1/CLN2 
dual mutants, indicating that CDH1 regulation of CLN2 may exist. Ahn et  al. [36] 
demonstrated that when using wild-type CDC28, CLN1 overexpression-induced silk 
formation is significantly reduced in SWE1 deficiency, meaning a certain regulatory 
relationship among CDC28, SWE1, and CLN. The other sets of relationships have 
not been experimentally proven, so a definitive relationship cannot be obtained. The 
above results indicate that the network selected by our method is correct in biological 
significance, which is helpful for the relationship between gene regulation.

Numeric simulation by partial least squares (PLS) for selecting a specific network

To verify that the selected specific network is mathematically correct, the resulting 
network is simulated by partial least squares (PLS). PLS integrates the expression data 
between the gene and other genes to establish a linear equation:

where the xi(t) represents the expression level of the gene i at the time t ; the  βj  repre-
sents the coefficient and takes the value of 0 if the gene j is not upstream of the gene i ; n 
represents the total number of genes of the specific network.

Since the gene expression level conforms to the normal distribution, we use the 
normal distribution to generate a set of data and then put the data into the estab-
lished PLS model to compare the average relative error of genes and obtain the 
network error. Comparing the relative error obtained with the standard network 

xi(t) = β1x1(t)+ β2x2(t)+ . . .+ βi−1xi−1(t)+ βi+1xi+1(t)+ . . .+ βnxn(t)
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(Fig. 2C), we can see the network relative error of the entropy screening of the known 
network is better than the other two errors (Fig. 2D), implying that the robustness of 
the screened network is higher than the other two networks.

Node sensitivity ranking based on network entropy

For the screened network, we used network entropy to rank their degree of gene sen-
sitivity. The greater the junction network entropy, the worse its stability. We have to 
remove the junction that reduces the largest in-network entropy (namely, the node 
sensitivity is greater), i.e., the greater the increase in network entropy upon inclu-
sion of this gene, the more sensitive it is. We sort the network genes by a specific 
network sensitive-gene ranking algorithm. The genes are sequentially deleted in spe-
cific network evolution based on network entropy, as shown in Fig. 4A. We start this 
procedure from gene 1, and the rest of the genes are retained. Then, we calculate 
their entropy cyclically, the sequencing results are shown in Fig. 4B. From the above 
experiments, the sensitivity of genes sorts from small to large as CDC5, SWI5, SIC1, 
CDC5, CLN1, CDCD28, and CLN1.

It is known that if we are to inhibit the activity of this network, then we should pref-
erentially repress the gene CDH1, thus minimizing the entropy of this specific network. 
CDH1 promotes APC/C production in the late stage of mitosis and serves as an antago-
nist to the checkpoint of spindle components, guiding the ubiquitination of cell cycle 
proteins, and resulting in mitotic exit. It targets specific substrates including CDC20p, 
ASE1p, CIN8p, FIN1p, and CLB5p [15, 37–39]. CDH1 plays a crucial role throughout 
the entire cell cycle, which verifies our results to some extent.

Fig. 4 A Network evolution of specificity based on network entropy. B Results of gene sensitivity ranking 
based on network entropy
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Conclusions
Gene regulatory relationships, as a means of mining living information, have been a 
research hotspot for the past few years. It provides important support and reference 
for the study of gene regulatory relationships to find sensitive nodes or genes in spe-
cific networks. However, because the methods of gene chip data and specific network 
construction are affected by many factors, it is often difficult for the traditional model 
to build a correct specific network and search for sensitive genes. In addition, tradi-
tional algorithms do not take into account the problems that the regulatory relation-
ship between genes often changes over time, and the structure of the corresponding 
regulatory network also changes over time. So for the specific network scaffolding 
in yeast, here, we propose a mixed K2 algorithm based on the time-series stationary 
interval segmentation to screen the specific network after scaffolding using the net-
work entropy. To further find the sensitive genes of this yeast-specific network, we sort 
the specific network-sensitive genes by the method of network entropy. The results 
indicate that the mixed K2 algorithm can solve effectively the problem overlearning 
problem and low scaffolding efficiency, as well as the problem of the Boolean network 
single logic rule. Furthermore, we calculate the value of network entropy to meas-
ure the stability of the specific network obtained by adding or deleting the edges of 
a determined network. We notice that the more sensitive the node is, the greater the 
reduction of network entropy after removing a certain gene of this specific network. 
Like this, we can identify the most sensitive gene of this specific network as CDH1, 
and to some extent, it has been proved by related literature [15, 16]. Lastly, we also 
validate the results through simulation by the partial least squares and the accuracy is 
higher than the existing results.

Discussion
It is of great potential value for humans to study gene regulatory networks. Undoubt-
edly, it can help humans reconstruct and visualize gene regulatory networks using gene 
databases and further understand the complex regulatory relationships among various 
types of life activities of cells at the gene level, such as the deep regulation of DNA tran-
scription and mRNA translation [40–43]. Also, it can help to understand the complex 
disease from the gene level with the help of a directed acyclic graph structure abstracted 
from gene regulatory networks, including the generation of tumors in cancer and the 
differentiation of cancer cells, as well as helping humans to target it for therapy [44, 
45]. A relatively mature network is a death signaling network that contains the relation 
between RIP1 level and the occurrence of necroptosis to reveal biphasic cell apoptosis 
and necrosis pathways [44]. What is more, it is helpful to strengthen the pertinence of 
drug design with the help of this tool of gene regulatory networks and designing the cor-
responding target screening algorithms, to develop drugs at a smaller cost, and improve 
the efficiency of drug research and development [46]. The key problem in drug design is 
to identify the most sensitive biomarker gene in the corresponding regulatory network. 
For example, curcumin, as a potentially promising anticancer drug, is from 5450 natu-
ral small molecules. There is a key biomarker target BIRC5 (survivin) for curcumin that 
is selected from the human transcriptional regulatory network (HTRN) by the random 
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walk-based graph embedding method to calculate the diffusion profiles of drugs and 
cancers [47].

Moreover, the construction of a yeast-specific network and the evaluation of sensi-
tive genes depend partly on the threshold parameters a and b, which are too large 
to fail to select the existing relationship of genes and too small to delete the redun-
dant edge in the specific network, ensuring that the algorithm designed here can be 
applied to small-scale data without causing overfitting [48–50]. Therefore, how to set 
reasonable parameters is the key to applying the related algorithm and we can focus 
on setting parameters a and b in future experiments to improve the screened spe-
cific network accuracy. Furthermore, it is feasible from the viewpoint of mathematics 
and a certain biological sense to rank the sensitivity of genes by network entropy. We 
need to validate further in the sense of vivo biological experiments by comparing our 
results with gene deletion that represses gene expression the most. It is worth noting 
that the mixed K2 algorithm gives a canonical form to identify the vital nodes in indi-
vidual regulatory factors, however, the gene regulation is often multiplexed and cell 
fate is determined by recombination of regulatory factors [51–54]. We will combine 
our algorithm with SWATH-MS technology in the next step to apply it to large-scale 
networks to further investigate changes in cell life states through transitions between 
cell states, and identify key nodes in the process of cell state transition [52–56].
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