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Abstract 

Background:  The growing abundance of in vitro omics data, coupled with the neces‑
sity to reduce animal testing in the safety assessment of chemical compounds 
and even eliminate it in the evaluation of cosmetics, highlights the need for adequate 
computational methodologies. Data from omics technologies allow the exploration 
of a wide range of biological processes, therefore providing a better understanding 
of mechanisms of action (MoA) related to chemical exposure in biological systems. 
However, the analysis of these large datasets remains difficult due to the complexity 
of modulations spanning multiple biological processes.

Results:  To address this, we propose a strategy to reduce information overload 
by computing, based on transcriptomics data, a comprehensive metabolic sub-
network reflecting the metabolic impact of a chemical. The proposed strategy inte‑
grates transcriptomic data to a genome scale metabolic network through enumera‑
tion of condition-specific metabolic models hence translating transcriptomics data 
into reaction activity probabilities. Based on these results, a graph algorithm is applied 
to retrieve user readable sub-networks reflecting the possible metabolic MoA (mMoA) 
of chemicals. This strategy has been implemented as a three-step workflow. The first 
step consists in building cell condition-specific models reflecting the metabolic impact 
of each exposure condition while taking into account the diversity of possible optimal 
solutions with a partial enumeration algorithm. In a second step, we address the chal‑
lenge of analyzing thousands of enumerated condition-specific networks by comput‑
ing differentially activated reactions (DARs) between the two sets of enumerated pos‑
sible condition-specific models. Finally, in the third step, DARs are grouped into clusters 
of functionally interconnected metabolic reactions, representing possible mMoA, 
using the distance-based clustering and subnetwork extraction method. The first part 
of the workflow was exemplified on eight molecules selected for their known human 
hepatotoxic outcomes associated with specific MoAs well described in the literature 
and for which we retrieved primary human hepatocytes transcriptomic data in Open 
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TG-GATEs. Then, we further applied this strategy to more precisely model and visualize 
associated mMoA for two of these eight molecules (amiodarone and valproic acid). The 
approach proved to go beyond gene-based analysis by identifying mMoA when few 
genes are significantly differentially expressed (2 differentially expressed genes 
(DEGs) for amiodarone), bringing additional information from the network topology, 
or when very large number of genes were differentially expressed (5709 DEGs for val‑
proic acid). In both cases, the results of our strategy well fitted evidence from the lit‑
erature regarding known MoA. Beyond these confirmations, the workflow highlighted 
potential other unexplored mMoA.

Conclusion:  The proposed strategy allows toxicology experts to decipher which part 
of cellular metabolism is expected to be affected by the exposition to a given chemical. 
The approach originality resides in the combination of different metabolic modelling 
approaches (constraint based and graph modelling). The application to two model 
molecules shows the strong potential of the approach for interpretation and visual 
mining of complex omics in vitro data. The presented strategy is freely available 
as a python module (https://​pypi.​org/​proje​ct/​manam​odell​er/) and jupyter notebooks 
(https://​github.​com/​Louis​onF/​MANA).

Keywords:  Metabolic modelling, Graph analysis, Constraint-Based Modelling, 
Transcriptomics data integration, Metabolic Mechanism of Action, Toxicogenomic

Introduction
Toxicology is entering a new era with the urgent need to follow a 3R (Reduce, Replace 
and Refine) policy when assessing risks of chemical molecules. The European Cosmet-
ics regulation (EC) No 1223/2009 banning animal testing for cosmetic ingredients is a 
striking example of the need to develop non-animal approaches, particularly for sys-
temic toxicity. In that context, new approach methodologies (NAMs) from the combi-
nation of in silico and in vitro methods are required to be fit for purpose and protective 
of human health. These NAMs are now being developed to support the so-called next 
generation risk assessment (NGRA) [1]. NAMs are already evolving at a fast pace thanks 
to the ever-increasing amount of omics data generated from in vitro experiments, cre-
ating unprecedented capacity to study biological systems. Omics screening allows, for 
instance, a more holistic classification of compounds based on their global effects [2, 3] 
and it can be integrated to improve quantitative structure–activity relationships strate-
gies [4]. The exploration of most biological processes is covered by transcriptomics or 
proteomics data. Among these processes, endogenous metabolism is becoming a source 
of concern since chemicals have the capacity to affect metabolism at a cellular and tis-
sue level, potentially leading to adverse effects for humans such as diabetes, obesity, or 
even organ dysfunction [5–9]. Moreover, generating and analyzing several large-omics 
datasets can be expensive and methodologically challenging. Such datasets are usually 
of large dimensions (thousands of genes, proteins, and metabolites) that will contain 
information for broader insights on how an organism or a cell is globally impacted by 
a chemical. One of the current key challenges in the field is to extract knowledge from 
these rich but complex datasets.

The volumes of data generated by omics approaches and their complexity require 
advanced statistical and computational solutions to pinpoint patterns of interest among 
thousands of variables. Dimension reduction (PCA, MDS, t-SNE, etc.) methods are widely 
used to describe and visualize these large multidimensional datasets, but they are not 
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designed for functional interpretation of omics data. From that perspective, enrichment-
based methods, which allow the identification of biological modules (gene sets, metabolic 
pathways and cellular functions) in which identified modulated variables are over-rep-
resented, have the advantage of providing an overview of the studied biological modula-
tions [10]. Nevertheless, these methods rely on arbitrary definitions of the pathways and 
functional sets, which might differ depending on the selected database, and tend to hide 
functional processes spanning several pathways [11, 12]. Many studies [13–16] aim to take 
advantage of published gene expression data available in databases such as DrugMatrix 
[17], Connectivity Map [18, 19], ToxicoDB [20] and Open TG-GATEs [21] (https://​toxico.​
nibio​hn.​go.​jp) to improve chemical toxicity assessment. For instance, Heusinkveld et  al. 
[22] implemented an approach based on the comparison of Open TG-GATEs top 50 DEG 
signatures ranked according to their t-statistic. They aimed at providing both a score to 
compare compounds and a mechanistic understanding based on enrichment-based meth-
ods. On the other hand, Ting Li et al. [2] trained a deep neural network model for drug-
induced liver injury prediction based on the LINCS L1000 dataset [19]. In both cases, 
metabolism is not the primary focus of the study, and the functional interpretation relies 
on enrichment-based methods, with the limitations explained above.

Therefore, to improve our understanding of how chemicals impact endogenous 
metabolism and can trigger potential adverse effects, it is necessary to develop new 
computational methods that would allow provision of functional metabolic information 
from omics data including the diversity of possible mMoAs leading to adverse outcomes. 
Genome-scale metabolic networks (GSMNs) are biological networks representing all 
the possible biochemical reactions occurring in an organism. They are therefore well 
suited to consider the diversity of endogenous metabolic disruptions potentially asso-
ciated with adverse outcomes at a cellular or at an organ level. These networks are 
reconstructed from an annotated genome, curated, and refined thanks to biochemical 
knowledge retrieved from the literature [23, 24]. Several GSMNs representing human 
metabolism such as Recon2 [25], Recon2.2 [26], Recon3D [27] and Human-GEM [28] 
have been published. GSMNs are composed of thousands of reactions and metabolites 
interconnected according to the stoichiometric matrix of the network. For instance, 
Recon2.2, which is one of the most used human GSMNs, is composed of 7785 reactions, 
5324 metabolites, and 1675 associated genes distributed over 10 cellular compartments. 
The relationships between reactions and metabolites in the metabolic network are mod-
elled by the stoichiometric matrix, which is the mathematical representation containing 
the proportions of substrates and products involved in each reaction. The stoichiometric 
matrix is the ground for constraint-based modeling approaches, which are largely used 
to model metabolic networks at the scale of cells, tissues, or organisms. Genes and reac-
tions are linked by gene-protein-reaction (GPR) associations, which are formulated as 
Boolean rules, including all genes coding for either the isoenzymes (OR association) or 
the enzymatic complex subunits (AND association) catalyzing a reaction. Since these 
networks include all the reactions that can potentially be expressed in any tissue or cell 
type, and any condition for a given organism, they represent the global metabolism 
of this organism. It is then crucial to tailor these models to specifically represent the 
metabolism of one tissue, one cell, or one condition in order to accurately decipher the 
mMoA of chemical compounds.

https://toxico.nibiohn.go.jp
https://toxico.nibiohn.go.jp


Page 4 of 32Fresnais et al. BMC Bioinformatics          (2024) 25:234 

Preliminary to any interpretation, it is essential to perform a condition-specific 
metabolic network reconstruction to avoid interpreting metabolic functions that 
would involve reactions that are not active in the biological condition or cell type 
under study. Condition-specific modeling approaches aim at exploiting experimental 
data to assemble a GSMN that more closely represents the condition under study. 
Many algorithms such as iMAT [29, 30] or FASTCORE [31] have been developed to 
build condition-specific metabolic networks, most of which rely on transcriptomic 
data. Unlike other algorithms, these 2 algorithms do not require optimizing a physi-
ological objective function such as biomass production maximization: this is espe-
cially more relevant for studying eukaryotic differentiated cells which are usually not 
growing anymore and might be oriented toward performing several other objective 
metabolic tasks.

FASTCORE aims to find a minimal flux consistent metabolic network that contains 
a list of “core” reactions and as few reactions from the global GSMN as possible. These 
“core” reactions correspond to all the reactions that are strongly assumed to be active in 
the studied condition and are defined by the user with the method of its choice, mak-
ing FASTCORE a generic algorithm for reconstructing condition-specific metabolic net-
works [31]. The iMAT algorithm aims to find the best consensus between the reaction 
activity inferred from categorized gene expression data and the activity inferred from the 
GSMN structure, which defines the biochemical interdependencies between reactions 
through consumed and produced metabolites. The output is a condition-specific subnet-
work that more faithfully represents the metabolic state of the cell in the condition of the 
transcriptomic experiment. Selecting the best algorithm among all these possibilities is 
not trivial as several benchmarking studies stated that none of the benchmarked meth-
ods outperforms the others for all cases [32] and that selection of the method should be 
mainly guided by the aim of the study and the available data [33].

One issue that is overlooked by most of these algorithms and that we tackled in our 
strategy is the alternative optimal solutions [34] issue. Indeed, due to the high com-
plexity of GSMNs and the relatively low amount of biological data, the mathematical 
problem solved by algorithms such as iMAT and FASTCORE to find a condition-spe-
cific metabolic network is under-constrained. Practically, it means that many equally 
optimal condition-specific metabolic networks exist for a single biological condition 
and that arbitrarily taking one optimal condition-specific network would limit the 
reproducibility and bias further analyses made for that condition [34].

To avoid this problem, partial enumeration methods have been developed [34–37]. 
These methods explore the solution space (i.e., the range of possible optimal condi-
tion-specific metabolic networks for this condition) to find a representative set of 
possible condition-specific metabolic networks. Rodriguez et  al. formally described 
the enumeration problem by designing a network model with a finite and calculable 
set of alternative solutions which was used as a ground truth for evaluating partial 
enumeration performance. They highlighted that considering thousands of condition-
specific metabolic networks is more robust and less error-prone than considering 
only one network in the solution space [34]. Nevertheless, it makes the interpreta-
tion more difficult since a condition will be associated with thousands of potential 
network configurations. There is therefore a need to define a new strategy to extract 
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mechanistic information from these numerous condition-specific metabolic networks 
to allow the final identification of the mMoA.

In this study, we propose a strategy designed to reduce the increased analysis com-
plexity resulting from constraint-based modelling coupled with partial enumeration 
by calculating DARs and exploiting them with graph analysis methods with the final 
aim to predict and visualize chemicals’ mMoA. To develop our strategy, we used gene 
expression data from the Open TG-GATEs database and we built condition-specific 
metabolic networks with a partial enumeration method adapted from the DEXOM [34] 
approach. Open TG-GATEs has been created from two projects spanning several years: 
Toxicogenomics Project One [38] (TGP1: 2004–2007) and Toxicogenomics Project 
Two [39] (TGP2: 2010–2011). Open TG-GATEs contains gene expression data gener-
ated on Crl:CD Sprague–Dawley rats and on primary human hepatocytes (PHH) and 
primary rat hepatocytes, after exposure to low cytotoxic doses of 150 pharmaceutical 
molecules. We selected gene expression data generated on PHH exposed for 24 h to the 
maximum dose, which corresponds to a dose inducing less than 20% of cytotoxicity. In 
order to evaluate the metabolic impact of a given chemical at a specific dose, we devel-
oped a statistical approach consisting of identifying DARs between two distinct sets of 
condition-specific metabolic networks representing respectively the exposure condi-
tion and the control (i.e., without exposure) condition. We took advantage of the GSMN 
structure to compute the metabolic distance between DARs in order to identify clusters 
of functionally interdependent metabolic reactions. We then extracted a minimal sub-
network for each cluster to better understand how these small biological processes are 
constructed and how reactions are interconnected. Finally, we used MetExploreViz [40] 
to interactively visualize the subnetworks and overlay additional annotation on the net-
work such as cellular compartments, metabolic pathways, and custom mappings. This 
approach enables the analysis of the metabolic impact of a chemical at a global level but 
also at a very precise level such as the biochemical reaction scale. The workflow has been 
applied to eight molecules (ethanol, valproic acid, indomethacin, amiodarone, allopuri-
nol, rifampicin, sulindac, and tetracycline) selected for their known hepatotoxic effects 
and the large amount of scientific literature describing their MoA. We further highlight 
capabilities of our strategy by predicting and analyzing the metabolic impact of two 
known hepatotoxic compounds: amiodarone and valproic acid.

Results
We set up a strategy to better understand the mMoA of chemicals through transcrip-
tomic data integration with condition-specific modelling enhanced by partial enumera-
tion: this strategy combines constraint-based modelling methods and graph techniques 
in a three-step workflow.

The first step (Fig. 1, box A) consists of building condition-specific metabolic net-
works. Indeed, GSMNs encompass all possible metabolic reactions regardless of the 
tissue, cell, or condition. Performing computational analysis on this generic model 
may raise inaccurate results (e.g., highlighting a pathway which is known to be inac-
tive for a cell type). Condition-specific metabolic networks are composed of reac-
tions predicted as active by a modeling algorithm for a given biological condition 
based on the generic GSMN and a set of gene expression data. In this study, we used 
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Recon2.2 [26] as the initial GSMN to build reconstructions for several biological con-
ditions (i.e., cells exposed to a chemical) and transcriptomic data obtained from the 
Open TG-GATEs database (described in “Methods” in the section “Transcriptomic 
data processing”). For each studied condition, a set of condition-specific metabolic 
networks optimally matching gene expression data, network topology and the stoi-
chiometry of reactions is computed with an adapted version of DEXOM [34]. Our 
major adaptation of the DEXOM method consisted in combining two of the proposed 
algorithms (reaction-enum followed by diversity-enum) while reducing the number 
of enumerated solutions by randomly selecting 1% of the reaction-enum solutions as 
starting solutions for diversity-enum, rather than using all of them (details are pro-
vided in the “Methods” section “).We assessed the impact of this random selection on 
our final results by performing five different runs of our approach for the amiodar-
one control and treated conditions (S1 Appendix). These robustness tests showed that 
the diversity of enumerated solutions was not significantly impacted by this random 
and partial selection. We therefore consider that this adaptation is relevant to allow 
a drastic reduction in computing time while providing robust and consistent results.

The output is a dataset that gathers, for each reaction, the number of times it has 
been predicted as active by the algorithm across all optimal enumerated solutions. 

Fig. 1  General overview of the three-step strategy. In the first step (A), transcriptomics data are 
integrated to a GSMN with a partial enumeration approach adapted from DEXOM. In the second step (B), 
DARs are computed from the large number of metabolic networks obtained after the optimization and 
sampling step. Finally, in the third step (C), network analysis methods are developed and employed to 
interpret DARs and improve our understanding of the chemicals’ mMoA
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This result highlights the likelihood of each reaction of being active for a specific con-
dition. Note that this step allows the prediction of activity for reactions, even if they 
are not associated with any gene (e.g., passive transport reactions), by inferring their 
activity from the activity of surrounding reactions.

In the second step (Fig. 1, box B) of the workflow, the objective is to identify reactions 
which activity changes in a significant manner between control and treated conditions. 
We therefore apply a statistical test between sets of reactions’ predicted activity in order 
to identify perturbed reactions between the two conditions (described in “Methods” in 
the section “Identification of differentially activated reactions”). Since some reactions 
cannot be correctly constrained by transcriptomic data (e.g., associated with less specific 
genes or no gene at all), they are more likely to be indiscriminately predicted as active 
or inactive while maintaining the same optimal fit with the data. The predicted activ-
ity of these reactions may therefore be more variable even across optimal subnetworks 
representing the same condition. We implemented a “baseline noise” calculation and fil-
tration approach (described in “Methods” in the section “Baseline noise calculation”) to 
identify these reactions. Perturbed reactions passing this final filter are then considered 
as DARs. The list of DARs by itself is a very insightful result since it allows the listing of 
reactions whose activity is significantly affected by the studied condition (exposed vs. 
control cells).

The last step (Fig. 1, box C) of the workflow consists of deciphering where and how cell 
metabolism is perturbed by chemical exposure. DARs are not independent and may act 
in a coordinated manner through sequences of reactions, hence highlighting the poten-
tial modulated cascade of enzymatic reactions. To do so, a network-based approach has 
been developed to detect, visualize, and analyze the functional role of previously identi-
fied DARs. The method aims at stratifying the list of DARs into clusters of close reac-
tions in the metabolic network (detailed in “Methods” in the section “DARs clustering”). 
Two reactions are considered to be close when they are connected to each other with 
only a few intermediary reactions. Once these clusters were identified, close reactions 
were used to extract small human-readable subnetworks (detailed in “Methods” in the 
section “Subnetwork extraction”) that would describe parts of the metabolic network 
that are specifically modulated in the studied condition, suggesting potential mMoA of 
the molecules.

Identification of differentially activated reactions (DAR) associated with exposure to eight 

chemicals

The strategy has been applied to eight molecules present in the Open TG-Gates database 
(ethanol, valproic acid, indomethacin, amiodarone, allopurinol, rifampicin, sulindac, and 
tetracycline) selected for their known liver toxicity and the associated MoAs reported 
in the literature. We used gene expression data generated in PHH exposed for 24 h at 
the highest concentration of each of these eight molecules along with their associated 
controls. Condition-specific metabolic networks were reconstructed (Fig. 1, box A) from 
gene expression data for each retrieved sample (two replicates per condition). On aver-
age, 10,000 alternative optimal solutions were enumerated for each sample. Each opti-
mal solution is composed of a unique set of active and inactive reactions. In Table 1, the 
minimal, maximal, and average number of active reactions for the solutions calculated 
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by DEXOM for each chemical and two vehicle controls (i.e., medium and DMSO) are 
reported. It is worth noting that the size (i.e., the number of active reactions) of DEXOM 
optimal solutions is in the same order of magnitude for all conditions (treatment or con-
trols, see Table 1) with a minimal number of active reactions ranging from 3423 (DMSO 
condition) to 3639 (tetracycline 25  µM, 24  h), a maximal number of active reactions 
ranging from 4396 (valproic acid 5000 µM, 24 h) to 4645 (indomethacin 200 µM, 24 h), 
and a mean number of active reactions ranging from 4070 (valproic acid 5000 µM, 24 h) 
to 4570 (amiodarone 7 µM, 24 h).

DARs were computed to identify metabolic reactions modulated following exposure 
to each selected molecule (Fig. 1, box B) compared to the corresponding control con-
dition, after filtering out reactions that show a large variability in the baseline condi-
tion. Valproic acid, indomethacin, amiodarone and allopurinol perturbed reaction lists 
were only slightly affected by the noise filtration procedure with 12.6, 5.3, 6.7 and 11.4%, 
respectively, of reactions filtered out (Table 2). Conversely, for tetracycline and ethanol, 
43.4 and 62.8% of perturbed reactions were respectively filtered out (i.e., reactions being 
modulated by both molecules and control conditions (S1 Table)). The number of pre-
dicted DARs ranged from 35 for PHH exposed to ethanol (10 mM, 24 h) to a maximum 
of 417 for PHH exposed to valproic acid (5000 µM, 24 h) (Table 2). For each condition, 
we also computed the DARs specificity ratio as the number of DARs retrieved solely in 
this condition and not in any other studied condition (i.e., DARs specific to the condi-
tion) divided by the total number of DARs retrieved for this condition (S2 Table). Calcu-
lated DARs specificity ratios ranged from 22.2% for indomethacin to 91.1% for valproic 
acid, indicating that the predicted mMoA for indomethacin was at least similar to one 
other condition in the study, whereas in contrast, the predicted mMoA for valproic acid 
was quite different from any other condition in the study.

Global analysis of DARs within the context of the metabolic network

We performed a pathway over-representation analysis with DARs on Recon2.2 path-
ways (S1 Fig and S2 Fig) for the eight molecules. For amiodarone, predicted DARs were 

Table 2  Number of perturbed reactions and DARs calculated for each condition. DARs were 
identified by the developed workflow for PHH after 24  h exposure to eight molecules known for 
their hepatotoxicity at dose levels yielding an 80–90% survival ratio

Ethanol
(10000 µM, 
24 h)

Valproic 
acid
(5000 µM, 
24 h)

Indomethacin
(200 µM, 24 h)

Amiodarone
(7 µM, 24 h)

Allopurinol
(140 µM, 
24 h)

Rifampicin
(70 µM, 
24 h)

Sulindac
(3000 µM, 
24 h)

Tetracycline 
(25 µM, 
24 h)

Number 
of per‑
turbed 
reac‑
tions

94 477 57 60 88 121 242 99

Number 
of DARs

35 417 54 56 78 98 181 56

% of 
per‑
turbed 
reac‑
tions 
filtered 
out

62.8 12.6 5.3 6.7 11.4 19 25.2 43.4
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significantly enriched for four metabolic pathways: “Fatty acid synthesis”, “Pyrimidine 
synthesis”, “Aminosugar metabolism” and “Purine synthesis”. Similarly, DARs predicted 
for valproic acid were significantly enriched for 12 metabolic pathways: “Pyrimidine syn-
thesis”, “Aminosugar metabolism”, “Sphingolipid metabolism”, “NAD metabolism”, “Thia-
mine metabolism”, “Glycolysis/gluconeogenesis”, “Fructose and mannose metabolism”, 
“Lysine metabolism”, “Tryptophan metabolism”, “Urea cycle”, “Limonene and pinene 
degradation”, and “Hyaluronan metabolism”. Interestingly, pathway enrichment results 
are very different when artificial reactions (S3 Table) (i.e. sink, pool and extracellular 
exchange reactions) are kept in the list of DARs, suggesting that the list of DARs should 
be carefully processed before performing pathway enrichment (see S1 Appendix). We 
observed that the fatty acid synthesis pathway was evidenced as significantly enriched 
from DARs for four molecules and compared how these four molecules were impacting 
this pathway (Fig. 2) by visually comparing the metabolic footprint of each chemical on 
the fatty acid synthesis pathway. Amiodarone and allopurinol affected the same reac-
tions (Fig. 2A and C), which suggested that they share similar mMoAs regarding fatty 
acid synthesis. On the other hand, rifampicin and sulindac seemed to impact another 
part of the fatty acid synthesis pathway (Fig. 2B and D). These observations showed that, 
although pathway enrichment can provide information on which general pathways are 
impacted by a chemical, it is not sufficient to evidence more precise modulated func-
tions or to differentiate between potential different mechanisms of action. Even if these 
four compounds are identified as being able to induce liver steatosis, underlying MoAs 
might differ [41].

Two of the eight molecules were selected for further analysis: amiodarone (7 µM, 24 h) 
and valproic acid (5000 µM, 24 h). These two molecules were selected because (1) They 
are well described hepatotoxic compounds with several MoAs known to induce liver 
damage such as steatosis [42, 43], and (2) Their level of transcriptomics-based informa-
tion differs, with 5709 and two differentially expressed genes (DEGs) for PHH exposed 
to valproic acid and amiodarone, respectively (described in “Methods” in the section 
“DEG identification”). Despite the low number of DEGs observed for amiodarone, 56 
DARs were identified in PHH after 24 h exposure to 7 µM amiodarone using the devel-
oped method.

Figure 3 shows the visualization produced by MetExploreViz for DARs identified for 
amiodarone and valproic acid in the context of human GSMNs using Recon 2.2. For 
amiodarone (Fig.  3A), a main group is composed of well interconnected up-activated 
reactions, while few other groups of up- or down-activated DARs are disconnected with 
no shared substrates or products. For valproic acid (Fig. 3B), many small groups of DARs 
are disconnected from each other without any particular area of the metabolic network 
specifically impacted. Hence, this general observation indicates that the mMoAs might 
differ between these two molecules, and further in-depth analysis is required.

Identifying subnetworks of DARs with graph‑distance clustering and subnetwork 

extraction

In order to capture the mMoA of a molecule without having to rely on subjectively 
defined pathways [11, 12], it is assumed that the closeness within the network can be 
used as a measure of the metabolic proximity between reactions. Indeed, reactions are 
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linked through compounds being produced and consumed by others. The shorter the 
chain between two reactions, the stronger the expected interdependency. Therefore, the 
metabolic distance, which is the length of the chain or path between two reactions in the 
metabolic network, is used to estimate interdependency. Hence, we propose grouping 
reactions that are closely located as a proxy to identify reactions involved in the same 
metabolic function.

Fig. 2  Comparison of the metabolic impact of four molecules with fatty-acid synthesis pathway 
significantly enriched. Each metabolic graph represents which fatty acid pathway reactions are differentially 
activated (in blue) after in vitro exposure to amiodarone (A), sulindac (B), allopurinol (C), and rifampicin (D). 
Nodes represented by a square are metabolic reactions and nodes represented by a circle are metabolites. 
DARs links have been highlighted in blue to identify which part of the pathway is perturbed by the molecule
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The pairwise distance matrix between all reactions identified as differentially active 
for each of the two molecules, amiodarone and valproic acid, was computed based on 
the list of DARs. As described in the “Methods” section, the computation of pairwise 
distances was performed on the metabolic reaction undirected graph of Recon2.2, 
using the shortest path distance metric. Then, subsets of DARs were identified by 
clustering the pairwise distance matrix with a hierarchical clustering approach. Two 
clusters were selected for PHH exposed to 7 µM amiodarone for 24 h (Fig. 4A) and 
three clusters for PHH exposed to 5000 µM valproic acid for 24 h (Fig. 4B).

To go further in the interpretation and to better understand how these reactions 
interact and are implicated in the mMoA of our chemicals of interest, a subnetwork 
extraction step was implemented and applied to each cluster of DARs. Extracting a 
subnetwork allows one to visualize how the DARs are interconnected and fill gaps 
between disconnected DARs by adding the necessary intermediate reactions. The 
subnetwork extraction was performed using the Met4J library (https://​forge​mia.​
inra.​fr/​metex​plore/​met4j) implementation of the minimal Steiner tree on a pruned 
reaction graph of Recon2.2. The minimal Steiner tree extraction algorithm enables 
the extraction of a subnetwork connecting two lists of nodes (i.e., DARs) while mini-
mizing the size of the final subnetwork. Therefore, this algorithm fits well with our 

Fig. 3  Visualization of DARs identified for amiodarone and valproic acid within the Recon2.2 
metabolic network. This visualization was performed with MetExploreViz while removing side compounds 
(S4 Table). DARs identified for amiodarone (7 µM, 24 h) are highlighted in panel A and DARs identified for 
valproic acid (5000 µM, 24 h) are highlighted in panel B, with more frequently active reactions in the exposed 
versus control condition colored in red and less frequently active reactions in green. Nodes represent 
reactions and metabolites and are connected if a metabolite is a product or a substrate of a reaction. The 
two figures are based on the same network layout; thus, each reaction and metabolite is located at the same 
coordinates, allowing visual comparison. Interactive visualizations can be accessed through the following 
links: https://​metex​plore.​toulo​use.​inrae.​fr/​userF​iles/​metEx​plore​Viz/​index.​html?​dir=/​5b6c8​86c49​16c1d​e9e6c​
16a77​6cc6d​64/​netwo​rkSav​ed_​17267​26315 and https://​metex​plore.​toulo​use.​inrae.​fr/​userF​iles/​metEx​plore​Viz/​
index.​html?​dir=/​5b6c8​86c49​16c1d​e9e6c​16a77​6cc6d​64/​netwo​rkSav​ed_​15226​83843. The same visualization, 
with DARs colored according to their cluster’s group rather than their activity status, is also provided as 
supplementary material (S4 Fig)

https://forgemia.inra.fr/metexplore/met4j
https://forgemia.inra.fr/metexplore/met4j
https://metexplore.toulouse.inrae.fr/userFiles/metExploreViz/index.html?dir=/5b6c886c4916c1de9e6c16a776cc6d64/networkSaved_1726726315
https://metexplore.toulouse.inrae.fr/userFiles/metExploreViz/index.html?dir=/5b6c886c4916c1de9e6c16a776cc6d64/networkSaved_1726726315
https://metexplore.toulouse.inrae.fr/userFiles/metExploreViz/index.html?dir=/5b6c886c4916c1de9e6c16a776cc6d64/networkSaved_1522683843
https://metexplore.toulouse.inrae.fr/userFiles/metExploreViz/index.html?dir=/5b6c886c4916c1de9e6c16a776cc6d64/networkSaved_1522683843
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objective of visualizing interactions between DARs while keeping it human-readable. 
To guide our analysis, the “DARs subnetwork coverage” metric was defined, which 
is calculated as the number of DARs in a subnetwork divided by the total number of 
reactions in this subnetwork. This metric provides an estimate of how rich in DARs a 
subnetwork is. A high DARs subnetwork coverage score indicates closely located and 
tightly interacting DARs.

For PHH exposed to 5000 µM of valproic acid for 24 h, a subnetwork with a 77% DARs 
subnetwork coverage was extracted (Cluster C2 in Fig.  4B, see S5 Table for details), 
meaning that most reactions within the extracted subnetwork were DARs that were 
closely interconnected. Among the DARs of this subnetwork, 21 were up-activated while 
only four were down-activated (Fig. 5A). Five DARs predicted as up-activated were asso-
ciated with -oses metabolism such as fructose/mannose metabolism and glycolysis/glu-
coneogenesis pathway, some of which are involved in the phosphorylation of hexoses 
(Fig. 5B). Another group of up-activated DARs is associated with lysine metabolism in 
mitochondria (html links for visualization in S1 Appendix) and especially the degrada-
tion of lysine through production of L-saccharopinate from 2-oxoglutarate. One up-acti-
vated reaction is associated with transport of L-asparagine into the mitochondria, which 
is then used by the L-asparaginase to produce L-aspartate. The resulting L-aspartate is 
finally transported by an aspartate-glutamate shuttle that was not differentially modu-
lated. The phosphatidate cytidylyltransferase associated with the glycerophospholipid 
metabolism was also predicted to be up-activated in PHH after exposure to 5000  µM 
valproic acid for 24  h. Finally, eight differentially up-activated reactions were associ-
ated with tryptophan metabolism and involved in reactions associated with kynurenate, 
L-glutamate and 2-oxoglutarate. Down-activated reactions were more sparsely located in 
the extracted subnetwork and were associated with hyaluronan metabolism, propanoate 

Fig. 4  Biclustered heatmap of the pairwise reaction distance matrix for amiodarone and valproic 
acid. Hierarchical biclustering on the pairwise reaction distance matrix for amiodarone and valproic acid was 
performed with the Ward algorithm. Reactions corresponding to “pool” reactions and extracellular transports, 
as well as isolated reactions, were excluded from the distance matrix before performing the clustering. The 
biclustering was visualized as a heatmap computed with the Pheatmap R package. The color scale depicts 
the distance between two reactions. The distance ranges between zero (cells colored in blue) to eight 
for amiodarone (A) and 14 for valproic acid (B) (cells colored in red). Two main clusters (C1 and C2) were 
identified for amiodarone (A) and three (C1, C2, and C3) for valproic acid (B)
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Fig. 5  Metabolic visualization of the metabolic subnetwork extracted from one of the DARs clusters 
predicted for valproic acid. DARs were predicted by performing condition-specific reconstructions for 
PHH exposed to 5000 µM valproic acid for 24 h. The visualized subnetwork was computed from DARs in 
cluster #2, which is the cluster with the highest DARs subnetwork coverage among the clusters identified in 
the distance matrix (see Fig. 4B) for this condition. Nodes represented by a square are metabolic reactions 
and nodes represented by a circle are metabolites. A and B represent the same subnetwork with the same 
topology. Links in A are highlighted according to the direction of the perturbation (e.g., if the reaction is more 
frequently active in the exposed vs. control condition) and links in B are colored according to the metabolic 
pathway of the associated reaction. Interactive visualizations can be accessed through the following links: 
https://​metex​plore.​toulo​use.​inrae.​fr/​userF​iles/​metEx​plore​Viz/​index.​html?​dir=/​5b6c8​86c49​16c1d​e9e6c​16a77​
6cc6d​64/​netwo​rkSav​ed_​29293​7465 and https://​metex​plore.​toulo​use.​inrae.​fr/​userF​iles/​metEx​plore​Viz/​index.​
html?​dir=/​5b6c8​86c49​16c1d​e9e6c​16a77​6cc6d​64/​netwo​rkSav​ed_​19940​92833

https://metexplore.toulouse.inrae.fr/userFiles/metExploreViz/index.html?dir=/5b6c886c4916c1de9e6c16a776cc6d64/networkSaved_292937465
https://metexplore.toulouse.inrae.fr/userFiles/metExploreViz/index.html?dir=/5b6c886c4916c1de9e6c16a776cc6d64/networkSaved_292937465
https://metexplore.toulouse.inrae.fr/userFiles/metExploreViz/index.html?dir=/5b6c886c4916c1de9e6c16a776cc6d64/networkSaved_1994092833
https://metexplore.toulouse.inrae.fr/userFiles/metExploreViz/index.html?dir=/5b6c886c4916c1de9e6c16a776cc6d64/networkSaved_1994092833
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metabolism, where acetoacetate and coenzyme A are conjugated to produce acetoacetyl-
CoA, and finally with pyrimidine synthesis, where glutamate and aspartate production/
consumption were disturbed. The subnetwork extraction algorithm could add reactions 
that were not identified as DARs but were necessary for the connectivity of the subnet-
work. These added reactions were associated with pathways also associated with DARs 
such as mitochondrial transport, glycolysis/gluconeogenesis, pyrimidine synthesis and 
lysine metabolism (Fig. 5B).

For PHH exposed to 7 µM of amiodarone for 24 h, a subnetwork with a DARs cover-
age of 95% (S5 Table) was extracted, indicating that nearly all the reactions that make 
up this subnetwork are DARs. 36 DARs are up-activated in the treated condition and 
only one DAR is down-activated in the treated condition (Fig. 6A). Most of the up-acti-
vated reactions (i.e., 31) of this subnetwork are associated with the fatty acid synthesis, 
four reactions are linked to the fatty acid oxidation pathway and one reaction is asso-
ciated with aminosugar metabolism. Regarding the fatty acid synthesis pathway, many 
reactions associated with conjugation/deconjugation of acyl carrier protein (ACP) to 
fatty acids were perturbed. Fatty-acyl-CoA synthase reactions were also perturbed with 
many reactions involved in the addition of malonyl-CoA to fatty acids as being differen-
tially up-activated. Some up-activated reactions associated with the fatty-acid oxidation 
pathway were also disturbed, such as the acetyl-CoA-ACP transacylase and the malo-
nyl-CoA-ACP transacylase as well as two fatty-acyl-ACP hydrolases. Finally, the only 
down-activated reaction of this subnetwork is a reaction associated with the aminosugar 
metabolism involved in N-acetylglucosamine-6-phosphate’s production from acetyl-
CoA and D-glucosamine-6-phosphate. In the subnetwork presented in Fig. 6, only two 
reactions associated with fatty-acyl-CoA elongation from the fatty-acid synthesis path-
way were added by the subnetwork extraction algorithm.

Discussion
Choosing a modelling algorithm able to explore alternative solutions

The proposed strategy has been applied to Recon2.2 for demonstration purposes. It 
can also be used with other Human GSMN like HumanGEM, Recon3D or any another 
GSMN following SBML standard. In fact, the only requirement is to be able to map tran-
scriptomics data using adequate identifiers for gene expression integration. Choosing 
which GSMN to use among the variety of published GSMNs can be a challenging task 
due to the difficulty of comparing these metabolic networks [44, 45]. To our knowledge, 
no standard procedure exists to compare in an objective manner GSMNs [46]. Accord-
ing to [44, 45], the main challenge to compare GSMNs is the lack of a standardized 
procedure, the lack of published differences between GSMNs, and the lack of common 
identifiers. Therefore, each author should define their own criteria for selecting the best 
GSMN to answer the question raised in their study.

Integration of gene expression data into GSMNs allows additional information to be 
uncovered that could not be retrieved from transcriptomics data, such as the activity of 
reactions not associated with the expression of specific genes (passive transports, spon-
taneous reactions, etc.) and cellular localization. To be predicted as active, a reaction 
must have its source metabolite(s) being produced by another reaction in the metabolic 
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network, and its product(s) being consumed by another reaction. Therefore, the objec-
tive of the modeling algorithm is to find the best consensus between reactions predicted 
as active according to gene expression data and these production/consumption con-
straints from the metabolic network.

As mentioned previously, the amount of information available in gene expression data 
for the modeling is not sufficient to allow the algorithm to find a unique condition-spe-
cific network. This limit has already been described by several authors [34–36, 47] and 
Rodriguez et al. demonstrated that the analysis of a single solution as it is usually done 
with standard implementations of widely used constraint-based algorithms (i.e. iMAT, 
FASTCORE, GIMME, …) return less robust results [34]. To circumvent this issue, par-
tial enumeration approaches have been developed [34, 35, 37, 47] to obtain a set of alter-
native solutions that is representative of the diversity of solutions existing in the solution 
space. Such methods provide many similarly adequate optimal subnetworks based on 
the gene expression data. Rossell et al. proposed EXAMO to reconstruct a minimal 
condition-specific network from the alternative optimal solution space that prioritizes 
reactions found to be active in all alternative solutions. This strategy tends, however, to 
emphasize central metabolism although it might not necessarily be the part of metabo-
lism most affected by chemical compound exposure. Poupin et al. identified required, 
inactive, and potentially active reactions, based on how frequently the reactions were 
found to be active in the alternative optimal solution space. In this method, the group of 
reactions defined as potentially active is difficult to interpret and ended up being merged 
with required reactions to perform the pathway enrichments analyses in their study. 
MOOMIN [37] also provides an alternative approach able to explore the solution space, 
by predicting whether reactions are likely to be up or down activated based on differen-
tial expression data.

In our strategy we chose to use the DEXOM method for its ability to explore the solu-
tion space and to return a set of alternative solutions that were shown to represent the 
diversity of solutions that can be found in the solution space [34]. DEXOM also has 
the advantage of outputting a qualitative prediction of reactions activity, not relying on 
computed metabolic flux values. Indeed, several studies [48–50] reported a low corre-
lation between gene expression intensities and metabolic fluxes values, whereas other 
studies [32, 51] showed that gene expression data can be used as a good proxy for pre-
dicting metabolic fluxes. Given the lack of consensus and formal proof on a direct and 

Fig. 6  Metabolic visualization of the subnetwork extracted from one the DARs cluster predicted for 
amiodarone. DARs were predicted by performing condition-specific reconstructions for PHH exposed to 
7 µM amiodarone for 24 h. The visualized subnetwork was computed with DARs from cluster #2, which is 
the cluster with the highest DARs subnetwork coverage among the clusters identified in the distance matrix 
(Fig. 4A) for this condition. Nodes represented by a square are metabolic reactions and nodes represented 
by a circle are metabolites. A and B represent the same subnetwork with the same topology. Links in A are 
highlighted according to the direction of the perturbation (e.g., if the reaction is more frequently active in 
the exposed condition vs. control condition) and links in B are colored according to the metabolic pathway 
of the associated reaction. Interactive visualizations can be accessed through these links: https://​metex​plore.​
toulo​use.​inrae.​fr/​userF​iles/​metEx​plore​Viz/​index.​html?​dir=/​5b6c8​86c49​16c1d​e9e6c​16a77​6cc6d​64/​netwo​
rkSav​ed_​37342​3088 and https://​metex​plore.​toulo​use.​inrae.​fr/​userF​iles/​metEx​plore​Viz/​index.​html?​dir=/​5b6c8​
86c49​16c1d​e9e6c​16a77​6cc6d​64/​netwo​rkSav​ed_​72593​5955

(See figure on next page.)

https://metexplore.toulouse.inrae.fr/userFiles/metExploreViz/index.html?dir=/5b6c886c4916c1de9e6c16a776cc6d64/networkSaved_373423088
https://metexplore.toulouse.inrae.fr/userFiles/metExploreViz/index.html?dir=/5b6c886c4916c1de9e6c16a776cc6d64/networkSaved_373423088
https://metexplore.toulouse.inrae.fr/userFiles/metExploreViz/index.html?dir=/5b6c886c4916c1de9e6c16a776cc6d64/networkSaved_373423088
https://metexplore.toulouse.inrae.fr/userFiles/metExploreViz/index.html?dir=/5b6c886c4916c1de9e6c16a776cc6d64/networkSaved_725935955
https://metexplore.toulouse.inrae.fr/userFiles/metExploreViz/index.html?dir=/5b6c886c4916c1de9e6c16a776cc6d64/networkSaved_725935955
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quantitative relation between gene expression data and metabolic fluxes, the strategy 
adopted in DEXOM consists in binarizing flux values and considering a reaction as 
active if it is predicted to carry a non-zero flux.

Fig. 6  (See legend on previous page.)
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As discussed above, exploring the alternative solution space is important to obtain 
more robust results. A complementary approach not explored in this study is to fur-
ther constrain the space of solutions by combining gene expression data with medium 
metabolomics data (exometabolomics) that would add further constraints on metabolic 
fluxes, thereby reducing the uncertainty related to the number of possible alternative 
solutions and obtain more accurate metabolic fluxes predictions.

It should be noted, that as many methods that use gene expression data for building 
context-specific models, our strategy is based on the binarization of the gene expression 
data. As a first pre-processing step, genes are classified using percentile threshold on 
the z-score issued from barcode package. The choice of the threshold should be care-
fully considered with regard to the biological question, as it has been shown that it can 
impact the generated models [33]: a more stringent threshold will allow a larger diversity 
in the optimal retrieved subnetworks but will conversely increase the number of false 
possible alternatives [34]. In our strategy, we chose to use a threshold-based method for 
the classification of gene expression levels because of its simplicity and widespreadness, 
but other methods could be used instead. Indeed, changing the method would change 
the set of highly/not expressed genes, but does not change the purpose of our strategy. 
Also, we applied the threshold on z-score values calculated with BARCODE rather than 
directly on the gene expression values: this limits the issue related to probe effects, which 
usually prevents from directly comparing intensities between genes on a single array.

Identification of DARs from the partial enumeration of condition‑specific reconstructions

Using DEXOM to explore the alternative solution space of each modelled condition is 
crucial to increase the robustness of the results. However, the subsequent results analy-
sis is a challenging task because, for each condition, thousands of different condition-
specific metabolic networks need to be analyzed. To solve this challenge, we introduce 
the DAR calculation approach, which aims to compare two sets of condition-specific 
metabolic networks and identify reactions that are significantly perturbed in one con-
dition compared to the other one (e.g., treated vs. control). For that purpose, we chose 
to compare the activation frequency of each reaction between the two conditions using 
the R2 metrics. The identification of DAR based on the results of this measure, although 
relying on the choice of the threshold, avoids the biases that would be introduced if we 
were using classical tests for comparing the proportions between two populations, such 
as the sensitivity to extreme values, as with the odd ratio metric, or the sensitivity to 
the sample size as with the Fisher test for instance. However, some metabolic reactions 
are more sensitive to the under-constrained problem and will be predicted as active or 
inactive independently of experimental data specificity. To limit this effect, we added a 
filtration step called “baseline noise filter” that takes into account the uncertainty of pre-
dicting the activation status associated with some reactions. The baseline noise filter had 
a different impact on perturbed reactions lists depending on the condition. Most of the 
perturbed reactions filtered out for ethanol and tetracycline, which are the conditions 
the most impacted by the noise filtration, are transport and peroxisomal β-oxidation 
reactions. Indeed, these reactions are more prone to noisy predictions either because 
they are not associated with any genes (e.g., exchange reactions) or they are associated 
with complex GPR rules that tend to result in unconstrained reactions. The baseline 
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noise filter is a rather conservative approach, but it ensures that the predicted perturba-
tion is not due to a lack of constraints on the model. Indeed, one key point in the devel-
opment of condition-specific reconstructions was to get enough biological constraints. 
Both the DAR computation and the baseline noise filtration steps implemented in our 
workflow can be adapted to other partial enumeration approaches as they only require 
activation frequencies for each metabolic reaction in two distinct conditions.

Comparison and complementarity with DEGs and pathway enrichment

To evaluate the added value of our workflow, in comparison with directly using gene 
expression data through approaches such as pathway over-representation on DEG, we 
performed a pathway ORA on DEGs for the valproic acid condition (S3 Fig). The first 
limit of this DEG-based approach is that it becomes inapplicable or unreliable when the 
list of DEGs is short, which is often the case for cells exposed to a low concentration of 
chemicals triggering subtle metabolic impacts. It is indeed the case in our study for the 
24 h treatment of PHH with 7 µM amiodarone, where only two DEGs were evidenced. 
On the contrary, we showed that using our strategy, it is possible to analyze the meta-
bolic impact of a chemical starting from transcriptomic data even when the DEGs list is 
short. Another limit of using DEG-based approaches to explore metabolic alterations is 
that it provides information on changes that are often not directly linked to metabolism 
but involve more generic cellular processes. For instance, when performing pathway 
ORA on DEGs with Reactome [52] (i.e., including all genes, not just metabolic genes) 
for PHH exposed to 5000 µM valproic acid for 24 h, we observed that many of the top 
50 enriched terms are related to cell cycle, gene expression regulation, and cell signal-
ing (S3 Fig). Although this is valuable information about the MoA of valproic acid, it is 
not directly associated with its metabolic impact in liver cells, suggesting that combining 
both gene expression data analysis and condition-specific reconstruction is beneficial. 
The purpose of integrating transcriptomics data in the metabolic network is to bring 
some additional information to the one that can be drawn directly from gene differential 
expression. This is quite clear for the Amiodarone example, for which no metabolic DEG 
can be evidenced although we could identify more than 50 DARs which were coherent 
with the literature. Regarding the valproic acid example, we noticed that conversely 87% 
of the DARs (347/417) were associated to at least 1 DEG, showing that DARs and DEG 
are consistent even if the method does not directly used differential expression informa-
tion, but in addition, 70 DARs were inferred thanks to the topology of the network. More 
broadly, DEG and DARs are not designed for the same purposes. While DEG focus on 
differential expression between 2 conditions, allowing to evidence slight changes in the 
expression of genes, DARs are designed to detect strong switches in reaction activities 
between two conditions. This approach would therefore put more emphasis on reactions 
and/or pathways that are globally activated or inactivated under exposure than slightly 
modulated. The two approaches provide a complementary vision of the metabolism. 
One of the future challenges will be to integrate both approaches so we are able to quan-
tify the flux modulations through DARs.
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Metabolic distance‑based clustering and subnetwork extraction for mMoA interpretation

To go beyond pathway enrichment-based analysis, we propose a clustering approach 
based on the metabolic distance in the network, which ensures the identification of 
groups of functionally interdependent modulated reactions. These groups can involve 
reactions belonging to different pathways, therefore enabling the study of the mMoA 
as a continuous phenomenon instead of a binary (i.e., enriched/not enriched pathway) 
phenomenon. However, hierarchical clustering suffers from some limitations. Indeed, 
hierarchical clustering is not designed to capture communities (i.e., groups of densely 
interconnected elements in a graph) and tends to consider reactions implicated at the 
ends of linear cascade as distant, therefore not biochemically related, even if according 
to the network topology these reactions are biochemically related and highly dependent. 
Community detection approaches could be an answer to some of these limitations but 
their performance may be affected by the particular topological properties of large net-
works [53] such as GSMNs, therefore requiring a thorough evaluation to find the most 
effective method.

To add metabolic context and functional information to the lists of DARs and find 
connected subnetworks that include clustered DARs, we extracted minimal subnetworks 
with an algorithm based on the Steiner minimal tree problem. This algorithm is well 
adapted to our principal objective of visualizing human-readable subnetworks because 
it will find the smallest subnetwork connecting all the nodes of interest (i.e., DARs) while 
adding as few nodes as possible for connectivity. However, the Steiner minimal tree 
problem is computationally hard (proven to be NP-Complete [54]). The metric closure 
graph [55] (or shortest distance graph) approximation was thus used. While employing 
an approximation is necessary, it introduces an arbitrary decision-making process within 
the algorithm, leading to the selection of a single alternative minimal Steiner tree among 
various possibilities. This choice, although necessary to extract a minimal subnetwork 
representative of the mMoA, could miss biologically interesting connections between 
DARs. The drawback of favoring the obtention of small graphs is that some interesting 
alternatives could be omitted. Another option could therefore be the k-shortest paths 
algorithm, which would make it possible to find these alternatives, at the expense of 
readability. Hence, regarding subnetwork extraction, method choice is guided by finding 
the right trade-off between readability and exhaustivity.

Because metabolic disruptions can impact a wide range of cellular functions span-
ning several metabolic pathways, the clustering and subnetwork extraction methods are 
key to connect and analyze disruptions. Interestingly, in the subnetwork presented in 
Fig. 5, most of the reactions added by the subnetwork extraction algorithm are transport 
reactions, which highlight how the subnetwork extraction algorithm can help to better 
understand the mMoA of the molecule as a continuous phenomenon spanning several 
pathways and compartments rather than localized and disconnected perturbations. The 
graph-based analysis developed in this strategy could be used with other approaches 
able to identify perturbed reactions between two conditions, such as MOOMIN.

In addition to elucidate and compare MoA of different chemical compounds, the same 
strategy could be interestingly applied for investigating the treatment duration-related 
effect of one specific molecule, by comparing how the clusters of identified DARs evolve 
with the treatment duration. This could be especially relevant in the context where 
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the kinetic of the metabolic effects of a molecule is unknown and might differ across 
compounds.

mMoA analysis of PHH exposed to amiodarone or valproic acid

The perturbations predicted by our workflow and visualized in Figs. 5 and 6 for Amiodar-
one and valproic acid are mainly associated with -oses and lipid metabolism, which is line 
with Amiodarone and valproic acid being known to induce hepatotoxicity via the occur-
rence of steatosis [42, 43]. Valproic acid is also widely known for its impact on mitochon-
drial function [43] and is a histone de-acetylase inhibitor [56], a class of molecules known to 
impair many cell functions: the wide diversity of pathways subparts identified in the mMoA 
of valproic acid tend to support this mechanism (Fig. 5B).

To study the metabolic impact of valproic acid on PHH after 24 h exposure, we focused 
on visualizing cluster 2 (Fig. 5), which is the cluster with the highest DARs coverage for 
this condition. We observed that DARs from this cluster were associated with 12 path-
ways. We were also able to identify another group of four up-activated reactions that is 
associated with lysine degradation in mitochondria, a phenomenon associated with mito-
chondrial homeostasis disruption in mice [57]. This phenomenon could also be due to a 
decrease in the L-carnitine pool associated with valproic acid exposure [58, 59] that could 
trigger a compensating mechanism to restore L-carnitine which requires lysine as a sub-
strate. Finally, a group of eight reactions predicted as up-activated is associated with the 
metabolism of tryptophan. Interestingly, an increase in the metabolism of tryptophan and 
kynurenine has already been reported as a potential effect of valproic acid in rats [60], and 
the valproic acid-induced increased conversion of tryptophan to nicotinamide has been 
observed in rats [61].

The impact of amiodarone on the fatty acid synthesis pathway predicted by our work-
flow (Fig. 6) has already been observed in HepaRG cell cultures [41]. It is suggested that 
the increase in fatty acid synthesis could be due to the activation of SREBP1, which is a 
transcription factor mediating the expression of several important genes for de novo lipo-
genesis. One of these genes, FASN, encodes the fatty-acid synthase, which our workflow 
predicted as DAR in the treated state (Fig. 6A). Interestingly, SREBP1 and FASN were not 
identified as differentially expressed in amiodarone’s transcriptomic data, suggesting that 
our workflow is able to retrieve mechanistic information from lowly informative transcrip-
tomic data. A similar increase of de novo lipogenesis on 3T3L1 adipocytes has also been 
reported [62] and is linked to an increase in palmitate production, which is in line with the 
predicted up-activation of the fatty-acyl-ACP hydrolase hydrolyzing palmitoyl-ACP to pal-
mitate (Fig. 6). In the subnetwork presented in Fig. 6, only two reactions have been added 
by the subnetwork extraction algorithm, suggesting that DARs identified in this cluster are 
closely located in the metabolic network, therefore functionally interdependent. Moreover, 
the visualized subnetwork accounts for 74% of predicted DARs for amiodarone. Since the 
majority of DARs in the visualized subnetwork (Fig. 6) are associated with fatty acid synthe-
sis, predictions from our workflow suggest that amiodarone mMoA is mostly related to this 
pathway and quite localized in the metabolic network. This mechanistic observation would 
not have been possible with the initial transcriptomic data analysis that yielded only two 
DEGs for PHH exposed 24 h at 7 µM amiodarone, thus emphasizing the capacity of our 
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workflow to extract mechanistic information from condition-specific metabolic networks 
constructed with lowly informative transcriptomic data.

Conclusion
In this study, we proposed a strategy dealing with the increased complexity of perform-
ing partial enumeration during condition-specific modeling by identifying DARs and 
visualizing the chemical’s mMoA with a graph-based approach. The proposed strategy 
starts by integrating metabolic gene expression data to a GSMN to construct sets of con-
dition-specific metabolic networks. These sets of condition-specific metabolic networks 
are then analyzed through an original statistical approach to identify reactions that are 
likely to be differentially activated between the two compared conditions. To go further 
on the mechanistic understanding, we implemented a graph-based network analysis 
step to extract and visualize subnetworks corresponding to metabolic functional and 
connected groups of DARs. Finally, we showed that the strategy that we developed suc-
ceeded in retrieving parts of the mMoA described in the literature for two well-known 
hepatotoxic molecules (amiodarone and valproic acid), even when only few genes were 
significantly disrupted.

The presented strategy provides a way to take advantage of the increased robust-
ness obtained with condition-specific enumerated networks while keeping the analysis 
doable and human readable, allowing a better and deeper understanding of chemicals’ 
mMoA. This strategy can be divided in several independent parts: data integration, 
condition-specific modelling and graph-based analysis, so that it can be combined with 
other condition-specific modelling approaches. This comprehensive metabolic network 
exploration and visualization comes at the expense of the computation time, which 
could make it challenging to apply this strategy in large-scale safety assessment studies 
and would require development in parallel of complementary methods providing a more 
global assessment of the metabolic impact of a compound. These complementary devel-
opments could be plugged into the current workflow quite easily thanks to its flexibility. 
Although we focused on studying the metabolic impact of chemicals on PHH, our work-
flow could also be used to model the metabolic impact of chemicals on different cellular 
types from different tissues, therefore paving the way for a more precise understanding 
of how a chemical impacts the metabolism of many organs.

Methods
Transcriptomic data processing

Transcriptomic data used in this study were obtained from the Open TG-GATEs [21] 
database. For this study, we selected in  vitro data generated on PHH. Raw transcrip-
tomic data were downloaded as CEL files from https://​dbarc​hive.​biosc​ience​dbc.​jp/​en/​
open-​tggat​es/​downl​oad.​html. CEL files were read with the affy [63] package and the 
resulting dataset was normalized with the robust multiarray average method [64] from 
the limma R package. Information about the different PHH cell batches used in the 
different experiments was obtained from the authors (S6 Table) and was used to cor-
rect the batch effect with Combat [65], available in the SVA package. We annotated the 
probes with the annotation database corresponding to the Affymetrix HG133U Plus 2 
chips available in the hgu133plus2.db package [66] and the AnnotationDbi package [67]. 

https://dbarchive.biosciencedbc.jp/en/open-tggates/download.html
https://dbarchive.biosciencedbc.jp/en/open-tggates/download.html
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Where several different probes mapped to the same gene, we selected the probe with the 
highest standard deviation of expression values in the dataset. Finally, to match DEXOM 
[34] requirements, we categorized transcriptomic data with Barcode [68–70]. We used 
the z-scores output available from the barcode package and applied a 25/75 percentiles 
cutoff to obtain a list of highly and lowly expressed genes. Genes below the 25th per-
centile were considered as lowly expressed genes and assigned a − 1 value, while genes 
above the 75th percentile were considered as highly expressed genes and assigned a + 1 
value. Genes between the 25th and 75th percentiles were not considered (i.e., 0 value) 
and therefore did not have any impact on the modeling process.

DEG identification

Lists of DEGs were obtained from the ToxicoDB [20] database, which provides pre-
processed differential gene expression data from several databases, including Open TG-
GATEs. A jupyter notebook querying ToxicoDB API was developed to automate the 
process. First, it downloads the ToxicoDB compounds json file and iterates over the list 
of compounds obtained from this file to query the ToxicoDB API to get analyzed data 
associated with each compound. The retrieved data were then filtered by selecting genes 
from the Open TG-GATEs human study with an absolute value of log2(FC) larger than 
0.26 and a q-value less than 0.05, from samples subjected to a “high” dose (three doses 
were investigated and available for this dataset: low, middle, and high) over 24 h. The fil-
tered DEGs list for each compound was then stored in a.tsv file.

Metabolic model preparation

We used the Recon2.2 [26] (downloaded from https://​www.​ebi.​ac.​uk/​biomo​dels/​
MODEL​16031​50001) GSMN as the initial framework for the modeling and network 
analysis steps. This GSMN is composed of 5324 metabolites, 7785 reactions, and 
1675 genes. We modified the model biomass reaction, to account only for the precur-
sors required for cell maintenance but not replication, in order to better represent the 
fact that PHH are differentiated cells with a short lifespan and do not proliferate under 
classical culture conditions [71]. To do so, we set the stoichiometric coefficient of the 
DNA precursor in the biomass reaction to zero and applied a correction coefficient (S1 
Appendix) to other metabolites to keep the reaction balanced for the production of one 
unit of biomass. Next, we forced the lower bound of the modified biomass reaction, 
which is now representing the cost of maintaining the cell viability, to a value of 1 instead 
of 0 to ensure that the generated models will be able to maintain cell viability (i.e., have 
a non-zero flux through the maintenance reaction). Exchange reactions were left uncon-
strained as we did not have information on cell medium composition.

Condition‑specific modeling with partial enumeration

We integrated the categorized transcriptomic data into the GSMN through GPRs to 
define an a priori set of active and inactive reactions. A highly expressed gene will be 
given the value of 1 whereas a lowly expressed gene will be given the value of − 1. Genes 
are associated with reactions by the GPRs. GPRs are Boolean rules that indicate which 
genes are required to produce a specific enzyme that catalyzes one or more reactions. 
When a reaction has an AND GPR, the algorithm will annotate the reaction as active if 

https://www.ebi.ac.uk/biomodels/MODEL1603150001
https://www.ebi.ac.uk/biomodels/MODEL1603150001
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the minimal value of the categorized GPR’s gene expression values equal 1 (i.e., all genes 
of the GPR are highly expressed) and inactive otherwise, such as:

In this case, if Gene1 is highly expressed AND Gene2 is lowly expressed, the reaction is 
considered inactive.

When a reaction has an OR GPR, the algorithm will annotate the reaction as active 
if the maximal value of the categorized GPR’s gene expression values equal one (i.e., at 
least one gene of the GPR is highly expressed) and inactive otherwise, such as:

In this case, if Gene1 or Gene2 is highly expressed, the reaction is considered active.
These rules can be applied to more complex GPRs such as:

In this case, if Gene1 or Gene2 is highly expressed and Gene3 or Gene4 is highly 
expressed, the reaction is considered active.

A reaction will be identified as a priori active if the resulting value equals 1 and as a 
priori inactive if the resulting value equals − 1. At the end of this process, we identi-
fied a list of a priori active/inactive reactions for each sample that was then provided to 
DEXOM. DEXOM is a constraint-based modeling algorithm based on iMAT [29, 30] 
whose objective is to find a steady state distribution of flux that maximizes the number 
of reactions whose flux is consistent with transcriptomic data levels [30].

To extract a representative set of solutions from the whole solution space, we adapted 
the partial enumeration from DEXOM and used the python implementation available 
in dexom-python (https://​github.​com/​MetEx​plore/​dexom-​python). First, we applied a 
full Reaction-enum strategy (see [34] for the complete description). This method iterates 
over all the reactions of the network, blocking each of them successively and solving the 
resulting mixed integer linear problem. Next, we applied the DEXOM Diversity-enum 
strategy, starting with a random solution picked per range of Reaction-enum solutions 
as a starting point. Diversity-enum aims to find new solutions that are gradually more 
different from the starting solution, allowing one to explore the limits of the solutions’ 
space. To reduce the computational costs of the original DEXOM partial enumeration 
approach, we reduced the number of starting solutions to a set of 1% of the solutions 
obtained with the Reaction-enum approach. We used an adapted version of system-
atic sampling (i.e., one random solution picked per batch of solutions, S1 appendix for 
details) to generate a starting set representative of the complete set of Reaction-enum 
solutions. Finally, all the optimal solutions for a sample were grouped in a single tabula-
tion-separated file. The list of parameters used for running the DEXOM algorithm can 
be found in S1 Appendix.

Identification of perturbed reactions

For each reaction, the predicted activation status across all optimal condition-specific 
metabolic networks enumerated by the DEXOM strategy (Table 1) is stored in a numeric 

For Gene1 = 1, Gene2 = −1, Gene3 = 1, Gene4 = −1 :

Gene1 AND Gene2 = min (Gene1,Gene2) = min (1,−1) = −1

Gene1 OR Gene2 = max (Gene1,Gene2) = max (Gene1,Gene2) = max (1,−1) = 1

((Gene1 OR Gene2)AND(Gene3 OR Gene4)) = min (max (Gene1,Gene2), max (Gene3,Gene4))

= min (max (1,−1), max (1,−1)) = min (1, 1) = 1

https://github.com/MetExplore/dexom-python
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vector. Therefore, for each condition, the output of the DEXOM enumeration is a matrix 
of binary vectors where columns correspond to reactions and rows correspond to enu-
merated optimal solutions (Table 3).

For each reaction and each condition, we can compute an activation frequency value f, 
as the number of solutions in which the reaction is predicted to be active, over the total 
number of solutions. To compare the activation frequency values of two conditions, we 
introduce a metric called R2.

where nActive is the number of times the reaction is predicted active and nTotal is the 
total number of solutions in the condition (i.e., nActive + nInactive ). fctrl is the activa-
tion frequency of a reaction under the control condition and ftrt is the activation fre-
quency of the same reaction under the treated condition.

We considered reactions as perturbed if the R2 value was higher than 0.2 when com-
paring treated versus non-treated conditions. This is a rather conservative threshold 
since it means that to be considered as differentially activated, a reaction needs to be at 
least almost twice (80%) more/less active in the treated condition compared to the non-
treated condition.

Baseline noise calculation

The absence of gene expression information for some reactions, and therefore the 
absence of constraints on those reactions when using the DEXOM algorithm, leads to 
uncertainty (or “noise”) in the reaction activation frequency prediction. Indeed, in the 
absence of transcriptomic data on reactions, DEXOM can predict these reactions as 
active or inactive without any impact on the optimality score. This uncertainty could lead 
to biased conclusions when comparing two conditions. To avoid considering reactions 
that are loosely constrained as DAR, we implemented a method that aims at estimating 
the baseline noise associated with each reaction in the network. The noise refers to the 
variation of the activation frequency of each reaction between pairs of control condi-
tions, which is due to the fact that the predicted activity of the reaction does not impact 
the consistency with the data. Because several control conditions and chemical exposure 
times have been used in this dataset, we computed the baseline noise for each reaction 
between control conditions at a specified time and a specified vehicle. Replicates were 
pooled for each molecule. Practically, for each reaction, we computed the R2 between all 
pairs of control conditions for a given vehicle at a given exposure time and calculated the 
median of all R2s for each reaction. Therefore, we obtained for each reaction a baseline 

R2 =
nActivectrl

nTotalctrl
−

nActivetrt

nTotaltrt

2

= fctrl − ftrt
2

Table 3  DEXOM output example for one condition. Alternative solutions obtained with partial 
enumeration are stored as binary vectors

DEXOM solution Reaction 1 Reaction 2 Reaction 3 … Reaction 
N − 1

Reaction N

Solution 1 0 0 0 … 1 1

… … … … … … …

Solution N 1 1 0 … 0 1
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noise estimation that is the median of all pairwise comparisons between selected control 
conditions.

Then we filtered out perturbed reactions with an R2 between two conditions of inter-
est (e.g., control vs. treatment) that was less than two times the noise estimate for this 
reaction. The remaining perturbed reactions are considered as DARs.

Metabolic reaction graph construction

A metabolic reaction graph can be formally defined as a directed graph G = (V,E) where:
V is a set of vertices, where each vertex ( vi ) corresponds to a distinct metabolic 

reaction
E is a set of directed edges, in which reaction ( vi ) and reaction ( vj ) are connected by an 

edge ( vi, vj ) if a metabolite produced by reaction ( vi ) is a substrate of reaction ( vj).
Edges can be annotated with the name of the metabolite consumed/produced by the 

two reaction nodes it connects. The metabolic reaction graph formalism allows to focus 
the attention on metabolic reactions and the interactions between these reactions there-
fore it is well adapted in our approach to study the identified DARs.

GSMNs, which are large and complex metabolic networks, contain hub nodes (i.e., 
nodes connected to many other nodes). In fact, as shown by Arita et al. [72], these com-
pounds will create shortcuts in the network since they are connected to a large number 
of reactions. Hence, these side compounds will strongly impact any topology based algo-
rithms like path search or subgraph extraction by resulting in non-relevant biochemical 
results [73]. Therefore, removing these side compounds is necessary to obtain a meta-
bolic reaction graph topology more biochemically representative of the direct interac-
tions between metabolic reactions and allow a precise understanding of the links and 
interdependencies between DARs. To solve this issue, we identified a list of “side com-
pounds” corresponding to the main hub nodes of the network (S4 Table) that will be 
removed during the metabolic graph construction. To improve the performance of the 
graph theory methods, we also identified a list of reactions (S6 Table) to be excluded 
during the reaction metabolic graph construction. These reactions are blocked reac-
tions (i.e., reactions that cannot carry a flux in the GSMN), reactions always inactive in 
our cellular model, pool, sink, and exchange reactions. Metabolic reaction graphs were 
constructed according to the parameters defined previously before applying any graph-
based methods such as the distance matrix calculation and subnetwork extractions.

Reaction distance matrix calculation

We computed the pairwise distance between reactions of interest by computing all the 
shortest paths between the nodes of the network corresponding to these reactions, 
resulting in a reaction pairwise distance matrix. To that purpose, we implemented a java 
app using the Met4j metabolic network toolbox (https://​forge​mia.​inra.​fr/​metex​plore/​
met4j). This app takes as input the GSMN (i.e., Recon2.2) SBML file, a list of side com-
pounds, a list of reactions to exclude, and a list of reactions between which the distances 
will be computed (e.g., DARs in our case).

After loading the SBML file, the GSMN is pruned by removing side compounds 
and reactions to exclude. Then the JGraphT [74] ManytoMany shortest path imple-
mentation [75] is used. This implementation has been preferred over more common 

https://forgemia.inra.fr/metexplore/met4j
https://forgemia.inra.fr/metexplore/met4j
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implementations such as Dijkstra [76] or Floyd–Warshall [77] due to its performance 
and its ability to take a specific list of reactions as input. The distance matrix is then 
saved in a comma separated file.

DARs clustering

For each DARs distance matrix computed with Met4J, we performed a hierarchical clus-
tering with the Ward algorithm implemented in the SciPy python module. To control 
the size of clusters, we visualized each clustering result with a dendrogram representa-
tion and manually determined the number of clusters. Clusters were then obtained with 
the cutree function.

Subnetwork extraction

For each cluster of DARs, we extracted a minimal subnetwork with the minimal Steiner 
tree algorithm implemented in Met4J. This algorithm searches for a minimum spanning 
tree that contains the set of DARs and a minimum set of nodes from the GSMN to con-
nect them according to the initial network topology.

Subnetwork visualization

We visualized the extracted subnetworks with MetExploreViz [40]. MetExploreViz is 
a JavaScript library dedicated to visualization for GSMNs that is integrated within the 
MetExplore [78] webserver. The list of metabolic reactions contained in the subnetwork 
is first mapped on the selected GSMN with MetExplore (https://​metex​plore.​toulo​use.​
inrae.​fr/​index.​html/). From this mapping, we can then visualize and prune (i.e., remove 
side compounds) the bipartite metabolic graph interactively with MetExploreViz. Two 
visualizations were done for each of the subnetworks. One with mapped up-activated 
DARs colored in red and down-activated DARs colored in green (Figs. 5A and 6A), and 
a second one with reaction links colored according to the pathway associated with the 
reaction (Figs. 5B and 6B). Interactive visualizations were saved online and are accessible 
via links provided in supplementary materials.

Workflow implementation

We partitioned the workflow into three jupyter notebooks with a common properties 
file. The first notebook, named “partial_enumeration.ipynb,” takes as input barcode 
z-scores and generates batch files to execute the partial enumeration protocol on a 
SLURM computing cluster. Of note, these batch files can also be executed directly on 
a standard Linux (i.e., Ubuntu, Debian, etc.) operating system. The second notebook, 
named “dars_calculation.ipynb,” takes as input the partial-enumeration results from 
the previous notebook and computes baseline noise and DARs. Finally, the third note-
book, named “analysis.ipynb,” handles the network analysis step of our workflow, which 
includes computing the distance matrix for each list of DARs, hierarchical clustering, 
and extracting subnetworks with Met4J.

These notebooks provide an example as to how to run the pipeline from the datasets 
used in this paper. The code has been packaged and published on pypi (https://​pypi.​org/​
proje​ct/​manam​odell​er/) with its associated API documentation (https://​manam​odell​er.​
readt​hedocs.​io/​en/​lates​t/?​badge=​latest). It provides the required functions to run the 

https://metexplore.toulouse.inrae.fr/index.html/
https://metexplore.toulouse.inrae.fr/index.html/
https://pypi.org/project/manamodeller/
https://pypi.org/project/manamodeller/
https://manamodeller.readthedocs.io/en/latest/?badge=latest
https://manamodeller.readthedocs.io/en/latest/?badge=latest
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pipeline and apply it to other datasets. Python library code and jupyter notebooks are 
available on GitHub: https://​github.​com/​Louis​onF/​MANA.

Computing environment

Condition-specific modeling and partial enumeration requires CPLEX v20.10 to be 
installed on your system. Batch files generated by the “partial_enumeration.ipynb” 
notebook are designed to be launched on a SLURM computing grid but can also be 
launched on a standard Linux operating system. A local version of dexom-python is 
also required and can be cloned from the dexom-python repository (https://​github.​
com/​MetEx​plore/​dexom-​python). Finally, the network analysis workflow calling 
Met4J apps requires at least Java 11 to be installed on your machine.
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network analysis stages.

Supplementary Material 10. S5 Table. DAR subnetwork coverage. This table lists the DAR subnetwork coverage for 
each identified subnetwork for amiodarone and valproic acid.

Supplementary Material 11. S6 Table: DEG lists size obtained from the ToxicoDB database. This table summarize key 
metadata for each compound such as the dose, exposure time, number of replicates, cell type, cell batch, control 
vehicle, DEG signature size and metabolic DEG signature size. Were considered differentially expressed, genes having 
a log2(abs(FC)) above 0.26 and a FDR corrected p-value below 0.05.
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Supplementary Material 12. S7 Table. DAR lists predicted for Amiodarone and Valproic Acid. This table lists the DARs 
identified for Amiodarone and Valproic Acid. DARs are stored by cluster.
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