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Abstract 

Background:  Fungi play a key role in several important ecological functions, ranging 
from organic matter decomposition to symbiotic associations with plants. Moreover, 
fungi naturally inhabit the human body and can be beneficial when administered 
as probiotics. In mycology, the internal transcribed spacer (ITS) region was adopted 
as the universal marker for classifying fungi. Hence, an accurate and robust method 
for ITS classification is not only desired for the purpose of better diversity estima-
tion, but it can also help us gain a deeper insight into the dynamics of environmental 
communities and ultimately comprehend whether the abundance of certain species 
correlate with health and disease. Although many methods have been proposed 
for taxonomic classification, to the best of our knowledge, none of them fully explore 
the taxonomic tree hierarchy when building their models. This in turn, leads to lower 
generalization power and higher risk of committing classification errors.

Results:  Here we introduce HiTaC, a robust hierarchical machine learning model 
for accurate ITS classification, which requires a small amount of data for training 
and can handle imbalanced datasets. HiTaC was thoroughly evaluated with the estab-
lished TAXXI benchmark and could correctly classify fungal ITS sequences of varying 
lengths and a range of identity differences between the training and test data. HiTaC 
outperforms state-of-the-art methods when trained over noisy data, consistently 
achieving higher F1-score and sensitivity across different taxonomic ranks, improving 
sensitivity by 6.9 percentage points over top methods in the most noisy dataset avail-
able on TAXXI.

Conclusions:  HiTaC is publicly available at the Python package index, BIOCONDA 
and Docker Hub. It is released under the new BSD license, allowing free use in aca-
demia and industry. Source code and documentation, which includes installation 
and usage instructions, are available at https://​gitlab.​com/​dacs-​hpi/​hitac.
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Background
In the last decades, there has been a surge of interest in characterizing the myco-
flora of communities. This is due to the fact that fungi are key organisms in several 
important ecological functions, ranging from nutrient recycling to mycorrhizal asso-
ciations and decomposition of wood and litter [1]. Moreover, fungi naturally inhabit 
the human body and may benefit the host when administered as probiotics [2], yet lit-
tle is known about the fungal microbiota of healthy individuals when compared to the 
bacterial microbiome [3]. Furthermore, identifying the presence of fungi can be chal-
lenging, as they rarely form structures visible to the naked eye, and similar structures 
are frequently composed of several distinct species [4]. Hence, it became common 
practice to use DNA sequencing in addition to morphological studies in contempo-
rary mycology [5].

One of the approaches that can be employed in environmental studies is whole-
genome shotgun sequencing (WGS), where the purpose is to obtain the genetic material 
of all organisms present in a given microbiome simultaneously [6]. Nonetheless, in stud-
ies where the end goal is only to estimate the diversity or discover the evolutionary dis-
tance of organisms in a microbiome, it is cheaper and more convenient to sequence only 
genetic markers such as 16 S rRNA, which is well conserved in all bacteria [7] and also 
widely used to classify and identify archaea [8]. In mycology, the internal transcribed 
spacer (ITS) region was adopted as the universal marker for classifying fungi [9].

The main characteristic of 16 S rRNA that makes it a good genetic marker is the pres-
ence of nine hypervariable regions V1–V9, which are flanked by conserved regions that 
can be used to amplify target sequences using universal primers [10]. However, 16  S 
rRNA has fewer hypervariable domains in fungi, and consequently, it is more appropri-
ate to use the ITS region (Fig. 1), which is flanked by the 18 S and 28 S rRNA genes and 
interrupted by the conserved 5.8S rRNA gene [11]. Additionally, the ease with which ITS 
is amplified makes it an appealing target for sequencing samples from environments as 
challenging as soil and wood, where the initial quantity and quality of DNA is low [4].

From a computational perspective, the taxonomic classification of ITS fungal 
sequences can be performed by using either similarity-based or machine learning tech-
niques. Similarity-based approaches, such as BLAST [12], require the alignment of a 
query sequence against all sequences available in a reference database, e.g., Silva [13] and 
UNITE [14]. However, a major limitation of similarity-based methods is the dependence 
on homologs in databases, which are not always available, while machine learning meth-
ods can learn only the relevant features and criteria for classification and can, therefore, 
be applied to any new sequence [15].

One of the first machine learning software proposed to perform taxonomic classifica-
tion was the RDP-Classifier, which uses 8-mer frequencies to train a Naive Bayes classifi-
cation algorithm [16]. Improving upon the RDP-Classifier, a novel Naive Bayes classifier 

18S SSU 5.8S 28S LSU
ITS1 ITS2

Fig. 1  Visual representation of the ITS region. The ITS region consists of the ITS1 and ITS2 regions, which are 
flanked by the 18 S and 28 S rRNA genes and separated by the conserved 5.8S rRNA gene [11]
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with multinomial models was developed to increase the accuracy [17]. This multinomial 
classifier was later reimplemented and optimized on Microclass [18].

Other machine learning approaches have also been proposed in the literature, such 
as the k-Nearest Neighbor (KNN) algorithm [19]. Given a query sequence, the KNN 
algorithm identifies the k-most similar sequences in a database and uses the taxonomic 
information from each of those sequences to determine the consensus taxonomy. Q2_
SK [20] implements several supervised learning classifiers from scikit-learn [21], e.g., 
Random Forest, Support Vector Machines (SVM) and Gradient Boosting. Q2_SK is flex-
ible and allows the selection of features and classifiers.

Despite the advances made in taxonomic classification, there are still opportunities for 
enhancement due to the complexity of the data. Furthermore, to the best of our knowl-
edge, the machine learning software available may lack in predictive performance since 
they perform flat classification, which means that they are only trained on leaf node 
labels and do not fully explore the hierarchical structure of the taxonomic tree when 
building their models (see Fig.  S1 for a depiction of the hierarchical structure of the 
taxonomic tree). The main disadvantage of this approach is that the information about 
parent–child class relationships in the hierarchical structure is not entirely considered, 
which may cause flat classifiers to commit more errors than hierarchical approaches 
[22]. Therefore, we developed a new hierarchical taxonomic classifier for fungal ITS 
sequences, denominated HiTaC, which explores the hierarchical structure of the taxo-
nomic tree during the training stage and improves the F1-score and sensitivity of fun-
gal ITS predictions. Furthermore, HiTaC can be easily installed and is compatible with 
QIIME2, facilitating its adoption in existing ITS sequence analysis pipelines.

Implementation
The local hierarchical taxonomic classifier

HiTaC performs feature extraction, building of the hierarchical model, taxonomic 
classification, and reporting of the predictions. Figure  2 illustrates the algorithmic 
steps of HiTaC, where it starts by decomposing the DNA sequences from both ref-
erence and query files into their constituents k-mers. Next, two k-mer frequency 
matrices are built for the reference and query sequences, respectively, where each row 
contains the k-mer frequency for a sequence. Logistic regression classifiers imple-
mented in the library scikit-learn [21] are trained for each parent node in the tax-
onomic hierarchy, using the local classifier per parent node implementation from a 
library called HiClass that we developed and published previously [23]. The k-mer 
frequency matrix and taxonomic labels of the reference sequences are used as training 

Fig. 2  Sketch of the key algorithmic components of HiTaC
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data to predict children labels (see Fig. 3 for a visual representation). The mycologi-
cal nomenclature used as labels for the internal nodes originates from the taxonomy 
provided by the user, which allows the user to decide whether to use Index Fungorum 
[24], Faces of Fungi [25], Mycobank [26], or The NCBI taxonomy database [27], for 
example. Predictions are performed using the k-mer frequency matrix computed for 
the query sequences and are reported in a top-down approach, based on the taxo-
nomic hierarchy. For example, if the classifier at the root node predicts that a query 

Fig. 3  HiTaC algorithm overview. To compute the k-mer frequency of DNA sequences, we first decompose 
them into their constituent k-mers. In the example shown in step 01, k = 3 , resulting in 5 sub-strings. 
Afterwards, HiTaC computes a matrix containing the k-mer frequency for all training sequences, where each 
row contains the k-mer frequency for a given sequence and the columns are all possible k-mers for a given 
k, i.e., all k nucleotide permutations of A, C, G and T. Next, HiTaC trains a logistic regression classifier for each 
parent node in the taxonomic tree, where the features are the k-mer frequencies computed in step 2 and the 
labels are the taxonomic annotations of the training sequences. In step 03, only the first 2 levels are shown for 
brevity. Lastly, HiTaC makes predictions in a top-down approach, based on the taxonomic hierarchy
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sequence belongs to the phylum Ascomycota, then only that branch of the taxonomic 
tree will be considered for the remaining taxonomic levels.

Classification uncertainty

To reduce classification errors when faced with uncertainties, we also construct a fil-
ter by training a logistic regression classifier for each level of the hierarchy. This filter 
computes confidence scores for all taxonomic ranks assigned by the local classifier per 
parent node and excludes labels that are below a user-defined threshold in a bottom-
up approach (Fig. 4). The confidence scores are computed using the predict_proba 
method implemented in scikit-learn’s logistic regression classifier, which in turn uses a 
one-vs-rest approach; that is, it calculates the probability of each class using the logistic 
function and assuming it to be positive, then it normalizes these values across all the 
classes [28].

Fig. 4  HiTaC filter overview. To build the filter, we first train a logistic regression classifier for each level of 
the hierarchy, using the same k-mer frequency algorithm introduced previously on Fig. 3. In the example 
shown in step 01, there are only 3 levels in the hierarchy for simplicity. Afterwards, HiTaC computes the 
confidence score for all taxonomic ranks assigned to a sample by the local classifier per parent node, then on 
a bottom-up approach it removes labels that are below a certain threshold. In step 02, supposing that the 
threshold is 0.7 and that the given sample has a confidence score of 0.2 assigned for the lowest rank, then the 
final prediction for this sample will only contain the labels Fungi and Ascomycota
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Code quality assurance

The code base adheres to the PEP 8 code style [29], which is enforced by flake8 and the 
uncompromising code formatter black to ensure high code quality. Versioning com-
plies with SemVer to increase reproducibility and facilitate dependency management by 
end users. The code is accompanied by unit tests that cover 98% of the code base and are 
automatically executed by our continuous integration workflow upon commits.

Installation and usage

HiTaC is hosted on GitLab1,  where there is also documentation with installation and 
usage instructions. HiTaC is compatible with Python 3.8+ and can be installed on GNU/
Linux, Windows and macOS. It can be easily obtained with pip install hitac, 
conda install -c bioconda hitac or docker pull mirand863/hitac. 
Listing 1 shows a basic example of how to fit a hierarchical model and predict the tax-
onomy using HiTaC. More elaborate examples can be found in the documentation.

Listing 1 Example of how to use HiTaC to train a hierarchical classifier and predict taxonomy

Evaluation

We evaluated HiTaC in five datasets with varying sequence lengths (Tables S2–S3) and 
compared its performance against seventeen taxonomic classifiers using the TAXXI 
benchmark [30]. All methods evaluated were trained and tested with the same data 
in order to avoid bias. The commands and parameters executed are summarized in 
Tables S4–S22.

To measure the performance of our model, we adopted all metrics available in the 
TAXXI benchmark and extended them by adding standard machine learning metrics. 
Furthermore, we also computed hierarchical metrics, which can give better insights into 
which algorithm is better at classifying hierarchical data [22]. The definitions of all these 
metrics are listed in the supporting information text.

The datasets in the TAXXI benchmark were created using real environmental data, 
publicly available on NCBI [31], RDP [32], the Warcup fungal ITS training set v2 (WITS) 
[33], UNITE [34] and other in  vivo samples [30]. These datasets were created with a 

1  https://​gitlab.​com/​dacs-​hpi/​hitac.

https://gitlab.com/dacs-hpi/hitac
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strategy known as cross-validation by identity, where varying distances between query 
sequences and the reference database are accounted for. In practice, this means that in 
the dataset with 90% identity all species are novel and there is a mix of novel and known 
taxa at the genus level, making it the most difficult dataset in the benchmark. As the 
identity increases, so does the amount of known labels at all taxonomic ranks; hence, the 
dataset with 100% identity can be considered the easiest in the benchmark.

Results and discussion
First, we evaluated HiTaC on the dataset with 90% identity to assess its behavior under 
uncertainty. In order to do this, we computed the hierarchical precision to measure the 
proportion of correct predictions, the hierarchical recall to measure the proportion of 
detected positive samples and the hierarchical F1-score, which is the harmonic mean 
of the precision and recall. As shown in Fig.  5, HiTaC_Filter was one of the top-per-
forming methods in terms of precision, scoring 96.05 while maintaining a recall of 78.86, 
equivalent to other high-ranking methods. Although other software obtained similar or 
slightly better precision, it cost them a steeper decline in recall, which is also evidenced 

Fig. 5  Hierarchical f1-score, precision and recall computed for all taxonomic ranks for the dataset with 
90% identity, sorted by f1-score. HiTaC_Filter was one of the best-performing methods when dealing with 
uncertainty, achieving high f1-score, precision and recall, while the filter-less version obtained the highest 
recall of all methods
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by the lower F1 scores. This result shows that HiTaC performed well in the presence of 
uncertainty.

To appraise HiTaC’s behavior when classifying known organisms, we evaluated it on 
the dataset with 100% identity. As shown in Fig. 6, HiTaC_Filter achieved a perfect pre-
cision score of 100 when the taxonomy was fully annotated in the reference database. 
Furthermore, the recall persisted at 99.68; that is, there was no prominent decrease 
in recall when compared with the filter-less version. This result shows the potential of 
HiTaC in accurately classifying known organisms, given that query sequences have per-
fect matches in the reference database.

In Fig. 7, we summarize the results achieved for the hierarchical metrics by computing 
the F1-score for all five datasets and sorting by the average of F1 scores. HiTaC_Filter 
obtained an F1-score equivalent or higher to the top-performing approaches for all data-
sets, corroborating the results presented in the previous paragraphs. This result demon-
strates that HiTaC_Filter can positively identify organisms annotated in databases while 
being able to leave most new species unannotated.

Similar conclusions can be drawn from Fig. 8, in which we evaluated the percentage 
of known sequences correctly predicted, i.e., the true positive rate (TPR) for all methods 
and datasets available in the benchmark. The trend is that HiTaC achieved a TPR higher 

Fig. 6  Hierarchical f1-score, precision and recall computed for all taxonomic ranks for the dataset with 100% 
identity. Both HiTaC and HiTaC_Filter achieved almost perfect scores when all organisms were known
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or equal to top methods. For instance, the best true positive rate at the genus level for 
the dataset with 90% identity was achieved by HiTaC, which sharply increased the TPR 
by 6.9 percentage points when compared with BTOP. Regarding the dataset with 95% 
identity at the genus level, HiTaC obtained a 1.7 percentage points improvement over 
Microclass, while for the dataset with 97% identity at the genus level, HiTaC surpassed 
Microclass with a 0.5 increase in percentage points. At the species level, HiTaC achieved 
a 0.7 percentage points gain over BTOP for the dataset with 99% identity, while for the 
dataset with 100% identity, HiTaC tied with BTOP, obtaining a perfect score of 100% 
TPR. These results suggest that the local hierarchical classification approach imple-
mented in HiTaC commits fewer errors than flat classifiers as long as the sequences are 
previously known.

By default, HiTaC uses 6-mer frequency as a feature extraction method, but the user 
can change this parameter. Nevertheless, increasing the k-mer size provides small gains 
in predictive performance and comes with higher computational costs. The k-mer fre-
quency computation method discards substrings with ambiguous nucleotides since they 
do not often occur in short reads, and accounting for them would require a slower algo-
rithm. For example, a V means that there is either an A, C, or G in that position, and 
computing all these possibilities would make the method slower. Hence, we opted to dis-
regard ambiguous nucleotides to keep the k-mer counting process as fast as possible. 
In future releases, we intend to implement a flexible user interface to allow users to use 
third-party feature extraction methods. Furthermore, we believe allowing for third-party 
feature extraction methods could also enable accurate taxonomic classification for 16 S 
rRNA.

Training the filter is slower than most methods evaluated in the benchmark 
(Tables S23–S27). However, it must only be performed once for the reference database, 

Fig. 7  Hierarchical F1-score computed for all taxonomic ranks for the datasets with 90, 95, 97, 99 and 100% 
identity, sorted by average. HiTaC_Filter achieved F1-scores equal to or above the best methods available in 
the literature
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and after training, the filter can be used to estimate the uncertainty quickly. Moreo-
ver, some public databases, such as UNITE and SILVA, are not updated frequently. 
Nevertheless, we provide models pre-trained on the public database UNITE2,  speed-
ing up the process for users. Some of these pre-trained models contain all eukaryotic 
ITS sequences available on UNITE, which enable detection and removal of nonfungal 
sequences mistakenly amplified by polymerase chain reaction (PCR) [35]. At the time of 
writing, the current version of UNITE uses the mycological nomenclature published in 
Fungal Diversity [36]; hence, this is the nomenclature HiTaC learns when trained with 
the UNITE database and is reported to the user with the pre-trained models. Further-
more, HiTaC uses the unique species hypotheses identifiers provided in the database 
UNITE as the last taxonomic level in the hierarchy during training and reports them to 
the user, which increases taxonomic reproducibility.

Fig. 8  True positive rates for all methods for the datasets with 90%, 95% and 97% identity at the genus level, 
and 99% and 100% identity at the species level. The trend is that HiTaC achieved a sensitivity higher or equal 
to top methods. For instance, HiTaC tied with the best method for the dataset with 100% identity, obtaining 
a perfect score. Moreover, for the datasets with 90–99% identity, HiTaC improved the true positive rates upon 
top methods

2  https://​gitlab.​com/​dacs-​hpi/​hitac#​pre-​train​ed-​models

https://gitlab.com/dacs-hpi/hitac#pre-trained-models
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On average, the entire ITS region is approximately 600 base pairs (bp) in length [37]. 
This trend can also be observed in the UNITE database, with averages ranging from 578 
bp to 651 bp. However, in the UNITE database, the sequence lengths can vary from 250 
bp to 16,761 bp, while the ITS sequences in the TAXXI benchmark have a maximum 
length of 1373 bp.

In summary, HiTaC is a Python package optimized to produce accurate taxonomic 
classification of fungal ITS sequences. Due to the extensive use of the taxonomic hierar-
chy during training, HiTaC produces fewer errors than other methods compared in the 
benchmark. Furthermore, its filter is a reliable classifier under uncertainty. HiTaC pro-
vides standalone Python scripts and a QIIME 2 plugin that can be quickly adopted into 
existing analysis pipelines. HiTaC and its dependencies can be easily installed via pip, 
conda or docker, which is not the case for most of the taxonomic classifiers available 
in the literature. HiTaC is released under the new BSD license, allowing free use in aca-
demia and industry and free copy, modification, and redistribution of the code as long as 
a duplicate of the original license is kept and proper acknowledgments are given.

Conclusion
HiTaC is a Python package for the taxonomic classification of fungal ITS sequences, 
which applies local hierarchical classifiers for accurate predictions. It provides scripts 
to train classifiers on specialized datasets and to classify new sequences with the trained 
models. The standard version has high sensitivity and is ideal for exploratory analysis. 
HiTaC also implements a filter that can express uncertainties in classifications, indicat-
ing if the input sequences are complex to recognize. Thanks to its compatibility with 
QIIME 2, users can quickly adopt it in existing mycobiome analysis pipelines. HiTaC is 
an open-source software available at https://​gitlab.​com/​dacs-​hpi/​hitac.
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