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Abstract 

Background:  Multivariate synchronization index (MSI) has been successfully applied 
for frequency detection in steady state visual evoked potential (SSVEP) based brain–
computer interface (BCI) systems. However, the standard MSI algorithm and its variants 
cannot simultaneously take full advantage of the time-local structure and the har-
monic components in SSVEP signals, which are both crucial for frequency detection 
performance. To overcome the limitation, we propose a novel filter bank temporally 
local MSI (FBTMSI) algorithm to further improve SSVEP frequency detection accuracy. 
The method explicitly utilizes the temporal information of signal for covariance matrix 
estimation and employs filter bank decomposition to exploits SSVEP-related harmonic 
components.

Results:  We employed the cross-validation strategy on the public Benchmark dataset 
to optimize the parameters and evaluate the performance of the FBTMSI algorithm. 
Experimental results show that FBTMSI outperforms the standard MSI, temporally local 
MSI (TMSI) and filter bank driven MSI (FBMSI) algorithms across multiple experimental 
settings. In the case of data length of one second, the average accuracy of FBTMSI 
is 9.85% and 3.15% higher than that of the FBMSI and the TMSI, respectively.

Conclusions:  The promising results demonstrate the effectiveness of the FBTMSI algo-
rithm for frequency recognition and show its potential in SSVEP-based BCI applications.

Keywords:  Brain–computer interface (BCI), Filter bank, Multivariate synchronization 
index (MSI), Steady-state visual evoked potential (SSVEP), Temporal local information

Background
Brain–computer interface (BCI) is an emerging technology that provides a direct com-
munication pathway between the brain and the external environment or devices [1, 
2]. Steady-state visual evoked potential (SSVEP) measured by electroencephalography 
(EEG) is currently one of the most widely used control signals in BCI systems [3, 4]. 
SSVEP is defined as the brain response to a visual stimulus flickering at a fixed frequency. 
When users look at a target stimulus, the SSVEP signals can be observed at the same 
fundamental frequency as the stimulus, as well as the harmonics of the driving stimulus 
[5]. Due to high information transfer rate (ITR) [5, 6], little training [7, 8] and high reli-
ability [9], SSVEP has been successfully applied in various BCI applications, including 
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virtual keyboard systems [10, 11], brain-controlled wheelchairs [12], and robotic arm 
control systems [13].

For SSVEP-based BCI, a key problem is to identify the target frequency from the SSVEP 
signals. Currently, two mainstream SSVEP frequency detection methods are the canoni-
cal correlation analysis (CCA) [14] and multivariate synchronization index (MSI) [15]. The 
standard CCA method and its derivatives, such as filter bank CCA (FBCCA) [16], individual 
template based CCA (IT-CCA) [17], discriminative multiple CCA (DMCCA) [18], and filter 
bank temporally local CCA (FBTCCA) [19], calculate the canonical correlation coefficients 
between the multi-channel SSVEP signals and the reference signals. Different from CCA, 
the MSI algorithm estimates the synchronization index between the multi-channel signals 
and the reference signal, which has shown superior frequency recognition performance 
compared to CCA [15, 20]. Recently, several extended methods are proposed to improve the 
performance of standard MSI [20–23], including temporally local multivariate synchroni-
zation index (TMSI) [20], extension to MSI (EMSI) [21], inter- and intra-subject template-
based MSI (IIST-MSI) [22], and filter bank MSI (FBMSI) [23]. The TMSI method improved 
MSI performance by utilizing the time-local information of SSVEP signal when modeling the 
covariance matrix [20]. The EMSI method combined the delayed version of EEG signal to 
improve the effectiveness of the CSP algorithm, resulting in higher recognition accuracy and 
ITR [21]. The IIST-MSI method employed the inter-subject similarity and variability through 
template transfer to enhance the robustness of SSVEP recognition [22]. The FBMSI method 
takes into account the information in EEG harmonic components and employed filter bank 
strategy to improve the frequency detection accuracy of SSVEP [23].

Although standard MSI and its variants have been successfully applied in various 
SSVEP-BCI systems, they are limited by not simultaneously utilizing the time-local 
structure and the harmonic components in SSVEP signals, both of which are crucial for 
frequency detection performance. On the one hand, the EEG signal is non-stationery 
and changes slowly over time [24]. The temporally local variances of signal have been 
proven to provide important information for capturing brain activity features in previ-
ous EEG studies [19, 20]. On the other hand, through multi-band decomposition strat-
egy, the harmonic components in SSVEP signal have also shown its effectiveness in 
decoding EEG patterns in various BCI applications [19, 23].

In this study, we propose a novel FBTMSI algorithm for SSVEP frequency detection. 
Compared with the standard MSI algorithm, the proposed FBTMSI algorithm adds mul-
tiple frequency subbands containing different harmonics for analysis, which takes full 
advantage of the harmonic components in SSVEP. It also integrates the temporal struc-
ture of signals into the covariance matrix of the standard MSI, which further improves 
the identification performance. More specifically, multiple filter banks are designed to 
separate the SSVEP signal into several sub-bands in specific frequency ranges to improve 
the frequency resolution. The sub-band signals are then processed in the time domain 
for TMSI analysis, which captures the temporal local synchronization of SSVEP signals. 
Finally, the temporal local MSI of each sub-band is combined with specific weights to 
obtain a synchronization index that reflect the correlation between the original EEG sig-
nal and the reference signal, based on which the target frequency is determined. Fol-
lowing the cross validation scheme, we conduct extensive experiments on the public 
Benchmark dataset [25] to optimize the parameters and evaluate the performance of the 
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proposed FBTMSI algorithm. Experimental results indicate that FBTMSI has higher rec-
ognition accuracy and ITR across multiple experimental settings, when compared with 
standard MSI [15], as well as the state-of-the-art TMSI [20] and FBMSI [23] algorithms.

The rest of this paper is organized as follows. In Section  “Methods”, we present a 
detailed description of the proposed FBTMSI algorithm. Section  "SSVEP dataset and 
performance evaluation” describes the SSVEP datasets and the performance evaluation 
procedure. Section  “Parameter optimization and results analysis” discusses parameter 
optimization and analyzes the results of the FBTMSI algorithm. Section  “Discussions 
and conclusions” presents the discussions and conclusions of this work.

Methods
The standard MSI method

The standard MSI method estimates the synchronization between the EEG signal and 
the reference signal as a potential indicator to identify the stimulus frequency. Since the 
SSVEP signal spectrum not only shows maximum amplitude at the fundamental fre-
quency of the stimulus, but also local peaks at the harmonics, the harmonic components 
of the stimulus signal are incorporated in the reference signal.

Let X ∈ RNc×M denotes the multichannel EEG signal. Nc represents the number of 
channels and M is the number of time samples. The reference signal Y ∈ R2Nh×M is 
defined as:

where Nh is the number of harmonics, fn represents the n th stimulus frequency, and 
Fs represents the sampling frequency. In this study, there are 40 stimulus frequencies, 
fn ∈ f1, f2, . . . , f40  . Without loss of generality, the EEG signal X and the reference sig-
nal Y  need to be normalized to have zero mean and unit variance. The joint covariance 
matrix of X and Y  can be calculated as:

To reduce the impact of the autocorrelation of X and Y  on subsequent synchroniza-
tion calculations, the following linear transformation is applied:

Then, the new joint correlation matrix can be described as:
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where INc and I2Nh
 are identity matrices.

�1, �2, . . . , �p are the eigenvalues of the matrix R . The normalized eigenvalue �′i is calcu-
lated as follows:

Let P = Nc + 2Nh . The synchronization index, i.e., the normalized entropy between two 
multi-channel signals can be obtained as:

According to (6), we can calculate the multivariate synchronization index Sn between the 
EEG signal X and the different reference frequency signals Yn . Finally, the target frequency 
ft can be determined as the reference frequency corresponding to the maximum value of Sn
.

Temporally local MSI

In the standard MSI method, the mutual synchronization of multichannel EEG signals is 
evaluated by calculating the eigenvalues and eigenvectors of the covariance matrix, as well 
as the normalized entropy, which has been shown to be an effective method for frequency 
identification in SSVEP-BCI systems. However, the standard MSI method ignores the tem-
poral local information of EEG signals. To address this problem, the TMSI algorithm was 
proposed which has shown superior frequency recognition accuracy compared with stand-
ard MSI [20].

The TMSI algorithm defines the adjacency matrix W ∈ RM×M and multiple signals 
Z = [z1, z2, . . . , zM] ∈ RNc×M , respectively. Nc denotes the number of variables or channels 
while M denotes the number of time samples. Then, the temporal local covariance matrix is 
expressed as follows:
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where D is the diagonal matrix, for i = 1, 2, . . . ,M,Di,i =
∑M

j=1Wi,j . L is the Laplacian 
matrix andL = D −W  . The adjacency matrix W  can be generated by in a variety of 
ways. In this paper, it is determined by Tukey’s tricube weighting function [26]:

Based on (2) and (9), a new temporal local covariance matrix can be calculated as

When C′ is determined, we can use (2)–(6) to calculate the synchronization index, and 
use (7) to implement frequency identification.

FBTMSI

TMSI benefits from exploiting the temporal local structure of EEG signals. However, it 
ignores the harmonic components of SSVEP, which have been shown to be informative 
for frequency identification [16, 27]. Filter bank approach has been successfully applied 
in previous studies to extract the information contained in harmonics [16, 19, 23]. Based 
on these ideas, we propose a novel FBTMSI method that takes into account both the 
temporal local structure and the harmonic components in SSVEP signal to improve fre-
quency detection performance. The flowchart of FBTMSI algorithm is shown in Fig. 1.

First, filter banks are applied on the original EEG signal to decompose the signal into 
multiple frequency subbands. According to the filter bank design method in [16], a 
zero-phase Chebyshev type I IIR filter is employed to extract each subband component 
( FBl , l = 1, 2, · · · ,Nsb , where l denotes the subband index) from the original EEG sig-
nal X . After the filter bank analysis, the temporally local multivariate synchronization 
index between each subband component and the reference signal corresponding to each 
stimulus frequency is then calculated respectively.

In this study, the bandwidth of the stimulation frequency (8–15.8 Hz) was 8 Hz. Accord-
ing to [16], the fundamental and harmonic components exhibit high signal-to-noise ratio 
(SNR) in the upper-frequency band from the stimulation frequency to about 90 Hz. There-
fore, we chose the frequency range within [8 Hz, 88 Hz] (10 times the bandwidth of the 
stimulus frequency) as the filter bank. The frequency range is divided into Nsb subbands, 
each with a frequency range of[8,88]Hz, [16,88]Hz, [l, 88]Hz . . . [Nsb × 8, 88Hz] , as shown 
in Fig. 2. Then, TMSI is performed on each subband signal and the reference signalYn , to 
calculate the corresponding TMSI indexSln . Since the SNR of the harmonic component of 
the SSVEP signal decreases with increasing frequency [23], we performed a weighted sum 
of Sln corresponding to each subband, and the weighting factor ωl corresponding to each Sln 
is shown in (12):
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where a and b are constants. Then, the weighted sum Sn of each subband’s TMSI is calcu-
lated as an indicator of FBTMSI, as shown in (13). Finally, the same (7) is used to imple-
ment frequency identification.

SSVEP dataset and performance evaluation
SSVEP dataset

The EEG data used in this study are from the public SSVEP Benchmark dataset of 35 
subjects [25]. The experiment consisted of 6 blocks, each containing 40 frequency trials, 
and each trial used 40 characters presented in random order corresponding to different 
frequencies (8–15.8 Hz with an interval of 0.2 Hz) of flicker. The schematic is detailed in 
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Fig. 1  Flow chart of FBTMSI method

Fig. 2  Frequency range corresponding to each subband of the FBTMSI algorithm
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Fig. 3. Experiments were recorded using the Neuroscan Synamps2 EEG system with a 
sampling rate of 1000 Hz, and the signals were pre-processed with a 0.15–200 Hz band-
pass filter and a 50 Hz trap filter. The recorded SSVEP signals were down-sampled to 
250 Hz to improve data processing efficiency. Each trial contained 1500 time points last-
ing a total of 6 s, with the first 0.5 s used for cue presentation, 5 s for stimulus presenta-
tion, and the remaining 0.5 s for blanking and rest. Figure 4 shows an example of EEG 
spectrum of SSVEP triggered by 10 Hz visual stimulation frequency.

Performance evaluation

A five-fold cross-validation procedure was employed to optimize the algorithm param-
eters and evaluate the performance of the proposed FBTMSI algorithm. For each fold, all 
data blocks of 7 subjects were left out for testing while the rest data blocks of 28 subjects 

Fig. 3  Stimulation frequencies corresponding to the 40 targets [25]

Fig. 4  EEG spectrum of SSVEP triggered by 10 Hz visual stimulation frequency
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were used for parameter optimization. The procedure was repeated 5 times until all sub-
jects were tested. We conducted cross-validation in different time windows. This proce-
dure takes into account the variability in brain signal among different individuals, which 
grantees the generalization ability of the proposed algorithm.

To evaluate the performance of the proposed FBTMSI algorithm, we compare the fre-
quency detection accuracy and ITR of FBTMSI under different time windows (TW) 
with the standard MSI [15], as well as the state-of-the-art TMSI [20] and FBMSI [23] 
algorithms. Detection accuracy was defined asNcorrect identification trials

Ntotal number of trials
 . The time windows were 

chosen to be [0.5 s: 0.5 s: 3 s]. The frequency band range was consistently set to [8, 88] 
Hz in different methods.

In this study, nine EEG electrodes from the parietal and occipital brain regions were 
chosen for SSVEP analysis, as they contain the most informative SSVEP components 
[28]. The locations of these electrodes are shown in Fig. 5. In vision systems, the visual 
delay process needs to be considered [29]. Based on the recommendations of previous 
studies, a time delay of 140 ms was chosen for SSVEP analysis [16]. For each time win-
dow in the ITR calculation, a time interval of 0.5 s and a time delay of 140 ms were added 
for subjects to shift their vision.

Parameter optimization and results analysis
Performance evaluation

Optimization of harmonic number Nh

Previous studies have shown that the number of harmonics Nh in the reference signal has 
a considerable influence on recognition accuracy. For example, satisfactory results were 
achieved when Nh = 2 in [20] and Nh = 3 in [21], respectively. As shown in Fig. 6, when 
TW = 0.5 s, the highest recognition accuracy of the FBTMSI algorithm is achieved at Nh 
= 3. When TW = 1 s, 1.5 s, 2 s and 2.5 s, the highest recognition accuracy is achieved at 
Nh = 4. When TW = 3 s, the highest recognition accuracy is achieved at Nh = 5.

It can be seen from Fig. 6 that the recognition accuracy of FBTMSI gradually improves 
as the length of the time window increases. It can be inferred that when the length of 

Fig. 5  Channel location
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SSVEP signal is too short, the high-frequency harmonic peaks are not obvious and the 
corresponding SNR is low. As the SSVEP signal length increases, the SNR of the higher 
harmonics reaches a certain level and increasing the number of reference signal har-
monics will improve the recognition accuracy. Since this study mainly investigates the 
performance of the FBTMSI at 0 to 3 s signal length, Nh = 4 is the most suitable refer-
ence signal harmonic number for the FBTMSI algorithm.

Optimization of the number of filter banks Nsb

Figure  7 shows the effect of the number of filter banks on the recognition accuracy 
under different time windows ( Nsb range set to [2, 10], FBTMSI is equivalent to TMSI 
when Nsb = 1). Overall, the recognition accuracy increases with the increase of the num-
ber of filter banks, but meanwhile, the computational cost increases, which affects the 
transmission efficiency. As can be seen from Fig. 7, for TW = 0.5 s to 3 s, the FBTMSI 
algorithm achieves the highest recognition accuracy when Nsb = 7. To ensure that the 
SSVEP signals of different lengths are identified with high accuracy without sacrificing 
transmission efficiency, Nsb = 7 was chosen as the filter bank number for the FBTMSI 
algorithm.

Optimization of temporal local parameters τ and weighting formula ω

In the FBTMSI algorithm, three parameters need to be determined, namely the tempo-
ral local parameter τ , a and b in the correlation coefficient weight ω corresponding to 
each subband. This is because the frequency range contained in each sub-band varies 
and the weight ω corresponding to TMSI in each subband changes. In this study, τ , a , 
b are determined using a 3D grid search method and screened in the ranges of [2:1:19], 
[0.25:0.25:2.5], and [0:0.25:1], respectively. It can be seen from Figs. 8 and 9 that the cor-
responding FBTMSI algorithm achieves the highest average recognition accuracy when 
( τ , a , b) = (15,1,0).

Fig. 6  Relationship between recognition accuracy and the number of harmonics of the reference signal
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Fig. 7  Recognition accuracy at different number of sub-bands

Fig. 8  Optimization of the 3D grid search for parameters τ , a , b
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Results analysis

Tables 1 and 2 show the average recognition accuracy and ITR of all subjects under dif-
ferent TW (0.5–3 s, step size 0.5 s) of the proposed FBTMSI algorithm, as well as the 
standard MSI, TMSI and FBMSI algorithms for comparison. The performance of FBT-
MSI were higher than those of FBMSI and MSI at all six TWs, and higher than those of 
TMSI at TW from 1 to 3 s. In Fig. 10, we show the statistical analysis results using paired 
T-test in SPSS. The performance of FBTMSI of the 35 subjects was significantly higher 
than that of FBMSI and MSI in all six time windows and was significantly higher than 
that of TMSI at TW = 2.5 s and TW = 3.0 s.

Fig. 9  Optimization of the 2D grid search for parameters a and b at τ=15

Table 1  Average recognition accuracy (%) of the MSI, FBMSI, TMSI and FBTMSI algorithms at 
different TWs

TW Method

MSI FBMSI TMSI FBTMSI

0.5s 13.36 ± 5.97 16.67 ± 7.22 20.32 ± 9.60 19.93 ± 7.76

1.0s 45.25 ± 18.21 52.29 ± 20.09 58.99 ± 21.46 62.14 ± 18.94

1.5s 65.62 ± 22.33 73.44 ± 20.85 78.01 ± 20.11 82.62 ± 16.85

2.0s 77.04 ± 22.08 82.98 ± 18.21 86.07 ± 15.80 90.07 ± 12.54

2.5s 81.42 ± 20.45 88.10 ± 14.42 89.64 ± 12.30 93.21 ± 8.81

3.0s 85.75 ± 17.41 91.26 ± 11.95 92.24 ± 10.38 95.58 ± 6.02

Table 2  Average ITR (bits/min) of the MSI, FBMSI, TMSI and FBTMSI algorithms at different TWs

TW Method

MSI FBMSI TMSI FBTMSI

0.5s 10.41 ± 8.07 15.51 ± 11.38 22.30 ± 17.01 20.90 ± 13.32

1.0s 56.18 ± 32.51 70.34 ± 38.66 84.86 ± 43.89 90.56 ± 39.14

1.5s 76.68 ± 36.09 90.83 ± 36.91 99.83 ± 37.09 108.22 ± 31.98

2.0s 80.01 ± 32.52 89.14 ± 29.06 94.11 ± 26.36 100.77 ± 21.75

2.5s 73.35 ± 27.03 82.06 ± 20.74 84.12 ± 18.54 89.38 ± 13.96

3.0s 68.33 ± 20.92 74.88 ± 15.51 76.04 ± 14.04 80.42 ± 8.95
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In Fig.  11, we show an example of frequency detection results at visual stimulation 
frequency of 12.6 Hz. FBTMSI and FBMSI achieve the highest Sn value at 12.6 Hz and 
correctly identify the target frequency while TMSI reaches its peak at a different fre-
quency of 12.4 Hz and MSI reaches its peak at 12.2 Hz, causing frequency recognition 
errors. This shows that by utilizing multiple filter banks, FBTMSI captures the frequency 
information more accurately compared to TMSI. The averaging of the filter banks also 
reduces the effect of noise, leading to more stable and robust results. Table 3 shows the 
frequency detection results at 40 visual stimulation frequencies in one block. Overall, 
the performance of FBTMSI is better than FBMSI and TMSI, and significantly better 
than standard MSI algorithm.

With other conditions being equal, we compared the effect of channel numbers on fre-
quency identification accuracy of the four methods, as shown in Fig. 12. These channels 

Fig. 10  Average accuracy (a) and ITR (b) of 35 subjects at different TWs. Asterisks indicate significant 
differences between FBTMSI and the other method (*p < 0:05, **p < 0:01)
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all come from the parietal and occipital lobes of the brain [28]. In Fig. 12, when chan-
nel = 3, the recognition accuracy of FBTMSI, FBMSI, and TMSI is significantly higher 
than that of MSI, but the improvement of FBTMSI is not obvious compared to FBMSI 
and TMSI. As the number of channels increases, the recognition accuracy of FBTMSI 
improves more significantly than that of FBMSI and TMSI.

Discussions and conclusions
Discussions

Design of filter banks

In order to study the influence of different filter banks on the accuracy of FBTMSI, three 
other sub-band design methods (a-c) were compared with the filter banks used in this 
paper (d).

(a) The full frequency band of the SSVEP component is divided into sub-bands with 
equal intervals of bandwidth (frequency range of the stimulated signal), Fig. 13. (a) Filter 
range:[8× l, 8× l + 8] Hz.

(b) Each subband contains three times the bandwidth of the stimulated signal, Fig. 13. 
(b) Filter range:[8× l,min(16× l + 32, 88)] Hz.

(c) The lower cutoff frequency of each subband is 8  Hz, Fig.  13. (c) Filter 
range:[8, 8× (12− l)] Hz.

(d) The upper cutoff frequency of each subband is 88  Hz, Fig.  13. (d) Filter range: 
[8× l, 88] Hz. 

The SSVEP recognition accuracies of the four subband methods at different TWs are 
given in Fig. 14. Method (d) used in this study outperforms the other three methods in 
terms of recognition accuracy. The paired t-test shows a significant difference between 
(a) and the other methods (p < 0.05), while the difference between (b) and (d) is not sig-
nificant (p > 0.05). These results suggest that the recognition improves as the bandwidth 
of each sub-band increases.

Fig. 11  Frequency detection results of the MSI, FBMSI, TMSI and FBTMSI at visual stimulation frequency of 
12.6 Hz
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Methods (c) and (d) have an equal number of harmonics but differ in sub-band bias: 
(c) toward lower harmonics, while (d) toward higher harmonics. There is a significant 
difference in recognition accuracy between these two methods (p < 0.001). The results 
indicate that high harmonics play a crucial role in SSVEP frequency identification. 

Table 3  Frequency detection results of the MSI, FBMSI, TMSI and FBTMSI in one block

The bold font denotes the correct frequency detection

Target frequency Method

MSI TMSI FBMSI FBTMSI

8 10.8 10.8 10.8 8
9 9 9 9 9
10 10 10 10 10
11 11 11 11 11
12 11.2 12 12 12
13 13 13 13 13
14 10.8 14 10.8 14
15 13 13 15 15
8.2 8.2 8.2 8.2 8.2
9.2 9.2 9.2 11.4 9.2
10.2 10.4 11.4 10.2 10.2
11.2 11.4 11.2 11.2 11.2
12.2 11.4 12.2 12.2 12.2
13.2 13.2 13.2 13.2 13.2
14.2 14.2 14.2 14.2 14.2
15.2 11 15.2 15.2 15.2
8.4 8.4 8.4 8.4 8.4
9.4 9.4 9.4 9.4 9.4
10.4 10.4 10.4 10.4 10.4
11.4 11.4 11.4 11.4 11.4
12.4 12.2 12.2 12.2 12.2

13.4 10.4 10.4 10.4 13.4
14.4 13.4 14.2 11.6 14.2

15.4 11.2 14.2 11.4 14.2

8.6 8.6 8.6 8.6 8.6
9.6 9.6 9.6 9.6 9.6
10.6 10.6 12.4 10.4 10.4

11.6 11.6 11.6 11.6 11.6
12.6 12.2 12.4 12.6 12.6
13.6 10.2 13.6 13.6 13.6
14.6 13.8 14.8 14.8 14.8

15.6 13.2 15.6 15.6 15.6
8.8 12.8 8.8 8.8 8.8
9.8 9.8 9.8 9.8 9.8
10.8 10.8 10.8 10.8 10.8
11.8 11.6 11.8 11.6 11.6

12.8 12.8 12.8 12.8 12.8
13.8 11.4 13.8 13.8 13.8
14.8 10.4 14.8 10.4 14.8
15.8 10.6 15.8 15.8 15.8
Correct number 19 30 29 34
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Furthermore, with an increase in the length of SSVEP signal, the SNR of high harmon-
ics also increases, indicating a higher available value. Figure 14 shows that as the signal 
length increases, the advantage of method (d) becomes more pronounced. These find-
ings confirm the previous inference regarding harmonic optimization.

Fig. 12  Average recognition accuracy of the MSI, TMSI, FBMSI and FBTMSI methods under different channels. 
Channel = 3, 6, 9 and time window lengths (TWs) from 1 s to 2.5 s. Channel = 3: Oz, O1 and O2; Channel = 6: 
PO3, PO4, Poz, Oz, O1 and O2; Channel = 9: PO3, PO4, PO5, PO6, Poz, Oz, O1 and O2. The errorbar denotes the 
standard deviation of accuracy on all the 35 subjects

Fig. 13  Four filter bank design methods for the FBTMSI algorithm
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Weighting formula for the subbands

The grid search method was employed to determine the three parameters τ , a and b for 
FBTMSI. τ establishes the relationship between two data points in the neighboring time 
range in TMSI, a , b determines the weighting factor ω for each sub-band after through 
the filter bank. In this paper, the power exponential formula in (12) was used to deter-
mine the weights for each subband components. The rationale is that the SNR of the 
SSVEP harmonics decreases as the frequency increases. SNR is an important quanti-
fier in SSVEP studies [30]. The SNR of an SSVEP at frequency fn is defined as the ratio 
of the power of the SSVEP at frequency fn to the average power at the surrounding m 
frequencies:

where P(fn) denotes the power of the SSVEP at frequency fn . In this paper, m = 10 and 
the interval between adjacent frequencies is �f = 0.2 Hz. As frequency increases, the 
SNR of harmonic components decreases, which affects the performance of frequency 
detection. Therefore, in the weight assignment formula, high-frequency harmonic com-
ponents are given higher weights to low-frequency components.

Comparison with other methods

In recent years, a number of SSVEP frequency detection methods have been proposed, 
such as FBCCA [16], FBTCCA [19], TMSI [20], EMSI [21] and EBMSI [23].These meth-
ods are all based on reference signals without training, which greatly reduces the experi-
mental and training costs while ensuring recognition performance. We compared the 
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Fig. 14  Recognition accuracy of the FBTMSI algorithm at different TWs under four filter subband design 
approaches
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performance of the proposed FBTMSI method with the above methods. To ensure a fair 
comparison, we conducted cross-validation for all above methods based on the Bench-
mark dataset [25]. All data blocks of 35 subjects were intercepted for analysis at [0.64 2.64]
s (stimulation started at 0.5 s), and the frequency band range was set to [8, 88] Hz. Table 4 
shows the average recognition accuracy and ITR of all 35 subjects for different methods.

As can be seen from Table 4, compared with methods based on no training reference 
signals proposed in recent years, the proposed FBTMSI method has improved both 
accuracy and ITR. This demonstrates the effectiveness of FBTMSI in SSVEP-based BCI.

Conclusions

In this paper, we propose a novel FBTMSI algorithm to improve SSVEP frequency detec-
tion performance based on MSI, which takes the full advantage of the time-local structure 
and the harmonic components in SSVEP signals. To our knowledge, no related work has 
combined the temporal and spectral features of SSVEP signal in MSI, which are both cru-
cial for frequency detection performance. The proposed FBTMSI method explicitly utilizes 
the temporal information of signal for estimating covariance matrix and employs filter bank 
decomposition to exploits SSVEP-related harmonic components. Following the cross vali-
dation procedure, FBTMSI showed superior performance regarding recognition accuracy 
and ITR compared with the standard MSI, as well as the state-of-the art TMSI and FBMSI 
algorithms. These promising results demonstrate the effectiveness of the FBTMSI algo-
rithm for frequency recognition and show its potential in SSVEP-based BCI applications.
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