
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Kallenborn and Schmidt ﻿BMC Bioinformatics (2024) 25:186
https://doi.org/10.1186/s12859-024-05802-w

BMC Bioinformatics

CAREx: context‑aware read extension
of paired‑end sequencing data
Felix Kallenborn1*    and Bertil Schmidt1    

Abstract 

Background:  Commonly used next generation sequencing machines typically
produce large amounts of short reads of a few hundred base-pairs in length. However,
many downstream applications would generally benefit from longer reads.

Results:  We present CAREx—an algorithm for the generation of pseudo-long reads
from paired-end short-read Illumina data based on the concept of repeatedly com-
puting multiple-sequence-alignments to extend a read until its partner is found. Our
performance evaluation on both simulated data and real data shows that CAREx is able
to connect significantly more read pairs (up to 99% for simulated data) and to pro-
duce more error-free pseudo-long reads than previous approaches. When used prior
to assembly it can achieve superior de novo assembly results. Furthermore, the GPU-
accelerated version of CAREx exhibits the fastest execution times among all tested
tools.

Conclusion:  CAREx is a new MSA-based algorithm and software for producing
pseudo-long reads from paired-end short read data. It outperforms other state-of-the-
art programs in terms of (i) percentage of connected read pairs, (ii) reduction of error
rates of filled gaps, (iii) runtime, and (iv) downstream analysis using de novo assembly.
CAREx is open-source software written in C++ (CPU version) and in CUDA/C++ (GPU
version). It is licensed under GPLv3 and can be downloaded at (https://​github.​com/​fkall​
en/​CAREx).

Keywords:  Next-generation sequencing, Pseudo-long reads, GPU

Background
Next generation sequencing (NGS) platforms such as Illumina typically produce reads of
a few hundred base pairs in length with high coverage at low cost. Downstream analysis
of NGS data, however, often benefits from longer reads since repeat structures could
more easily be resolved.

Although third-generation sequencing technologies can generate significantly longer
reads of more than 10.000 bp, Illumina platforms are still frequently used in practice [1].

NGS technologies often use paired-end (PE) sequencing, where pairs of short reads
are produced from two ends of a DNA fragment. The average distance between the
far end of reads is called the insert size. Given such a read pair, the redundancy (high

*Correspondence:
kallenborn@uni-mainz.de

1 Department of Computer
Science, Johannes Gutenberg
University Mainz, Mainz,
Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05802-w&domain=pdf
https://orcid.org/0000-0003-4516-6357
https://orcid.org/0000-0003-2597-8331
https://github.com/fkallen/CAREx
https://github.com/fkallen/CAREx

Page 2 of 18Kallenborn and Schmidt ﻿BMC Bioinformatics (2024) 25:186

coverage) of the considered NGS data could be used to reconstruct the missing nucleo-
tides in-between the reads of the pair. This results in elongated reads, so called pseudo-
long reads. It has been shown that the construction of these artificially long reads from
real short reads can be beneficial for improving de novo genome assembly [2], metagen-
omics [3], and variant detection pipelines [4].

Early work addressed only the simple case, where the insert size is less than the sum of
read lengths of the pair. In this case both reads overlap. A pseudo-long read can then be
obtained by finding the best overlap with respect to the insert size. This approach is used
by FLASH [5], COPE [6], and PEAR [7].

Extending short read pairs to pseudo-long reads is more challenging if the insert size
exceeds the sum of read lengths. In this case, there are unknown nucleotides which need
to be determined from other overlapping reads in order to produce a pseudo-long read.
This problem can be formulated as a small local assembly operation, creating a small
contig that is delimited by the two reads of a pair.

Existing approaches which extend a given read until its partner (mate) is found are
based on detecting overlaps between k-mers. They can be distinguished by their utilized
data structures and specific extension rules. GapFiller [8] and Eloper [9] employ simple
seed-and-extend strategies based exact matches using hash tables. Konnector2 [4] con-
structs a deBruijn graph from the k-mers of all reads. Subsequently, the deBruijn graph
is traversed for each read pair to find a connecting path, which is then translated into a
pseudo-long read. MaSuRCA [10] is a genome assembler that is build around the con-
struction of super-reads. It extends a read on each end base per base as long as there is
only exactly one possible base to append. The k-mer spectrum of the input read dataset
is used to verify that only one possibility exists. Aside from contig assembly, the con-
struction of pseudo-long sequences can also be used by genome assemblers to bridge
gaps between contigs within a scaffold [11–13]. PLR-GEN [3] creates pseudo-long reads
from clustered metagenomic short reads based on given reference genome sequences.

Although these previous approaches can be computationally efficient, they might
fail to detect correct extensions in scenarios where exact matching based on k-mers is
insufficient.

We present CAREx—a new read extension algorithm for Illumina PE data based on
indel-free multiple-sequence-alignment (MSA). The key idea is to build MSAs of reads
sequenced from the same genomic region. Extension is performed based on consen-
sus MSA columns. While our approach aims to connect the reads of a read pair, lim-
ited extension in outward direction, i.e. extension at the 5′ end, can also be performed.
CAREx is inspired by our recent work on sequencing read error correction [14, 15].
MSA-based approaches have also been shown to be effective for long read self-cor-
rection and assembly polishing [16]. Although, such methods can be computationally
complex, we gain efficiency by applying a variant of minhashing to quickly find a set of
candidate reads which are similar to a query read with high probability and aligning with
fast bit-parallel algorithms.

We demonstrate that our approach is beneficial to the

•	 percentage of read pairs connected to pseudo-long reads,
•	 reduction of error rates of filled gaps,

Page 3 of 18Kallenborn and Schmidt ﻿BMC Bioinformatics (2024) 25:186 	

•	 runtime, and
•	 downstream analysis using de novo genome assembly.

The number of perfectly connected read pairs of CAREx exceeds the total number of
connected read pairs of other tools. In general, we are able to produce significantly more
connected read pairs on both simulated data and real-world data.

For example, CAREx and Konnector2 produce 181M and 107M error-free connec-
tions, respectively, on a real-world human dataset.

Our GPU-accelerated version of CAREx is up to 9.5 times faster than CPU-based
Konnector2 on the used datasets. Last, we show that de novo genome assembly of reads
connected with CAREx yields contigs with fewer misassemblies than those connected
by Konnector2.

Implementation
Algorithmic approach

We perform targeted local assembly to produce contigs which are delimited by the two
reads of a read pair. This is achieved by repeatedly constructing MSAs centered around
the 3′ end of the currently computed contig. The consensus sequence of an MSA is used
to elongate the contig.

MSAs are constructed from reads of the input NGS dataset, adapting the steps from
the well known center star alignment approximation algorithm [17]. Reads are aligned
to a center sequence, which is the contig. The computed alignments are subsequently
arranged into an MSA. We target Illumina reads where the dominant sources of errors
are substitutions. Thus, our alignments do not consider indels. Alignments are efficiently
computed using a bit-parallel hamming distance algorithm for each possible overlap
between center sequence and read.

A key challenge of this approach is to quickly identify reliable reads which are sim-
ilar to the 3′ end of the contig. Hash tables are utilized for this purpose. Minhashing
is a specific locality sensitive hashing subsampling technique that was originally intro-
duced by search engines to detect near duplicate web pages [18]. In recent years, it has
proven beneficial for the processing of NGS data in the context of genome assembly [19],
metagenomics [20, 21], read mapping [22], and error correction [15].

We apply the concept of minhashing to compute multiple k-mer hashes per read. Let
F = (f1, . . . , fh) be a collection of h hash functions, and T = (t1, . . . , th) a collection of
hash tables. The following operations are performed per read to construct a database of
k-mer hashes. Each hash function is applied to each k-mer of read ri to produce k-mer
hashes. Let mx be the smallest observed hash value for hash function fx . Then the so
called minhash signature S = (m1, . . . ,mh) is given by the set of all smallest hash val-
ues. Subsequently, the key-value pair (mx, i) is inserted into hash table tx , ∀x . After hash
tables are constructed, the minhash signature of any sequence, for example a substring
of a contig, can be queried to obtain read IDs of reads which are likely to share a k-mer
with that sequence.

Page 4 of 18Kallenborn and Schmidt ﻿BMC Bioinformatics (2024) 25:186

Workflow

Our algorithm consists of two separate phases:

1.	 database construction,
2.	 read extension.

During database construction the input FASTQ/A files are parsed and reads are
stored in memory. Sequences are converted into a 2-bit format. Ambiguous nucleo-
tides are deterministically replaced by A,C,G, or T. For quality scores, we offer an
optional lossy compression to reduce memory usage. Subsequently, hash tables are
constructed following the steps explained above.

Computation of pseudo-long reads in CAREx revolves around the processing of so
called extension tasks. Consider a starting sequence S. An extension task iteratively
appends suitable nucleotides to the 3′ end until a condition is met. This is performed
by constructing MSAs of reads similar to S. Then, a substring of the MSA consensus
is used to elongate S. The workflow is illustrated in Fig. 1.

Consider two DNA sequences S1 and S2 that form a read pair. RC1 and RC2 denote
their respective reverse complement sequences. For this read pair, four extension
tasks (T1, T2, T3, T4) are created with different starting sequences as shown in Fig. 2.

T1 and T2 are considered partner tasks, as well as T3 and T4. T1 and T3 are pri-
mary tasks with the goal of finding the end of a pseudo-long read, i.e. T1 (T3) will
stop if RC2 (RC1) has been reached. T2 and T4 are auxiliary tasks connected to tasks
T1 and T3, respectively. Their main purpose is to identify reliable pairs of candidate
reads. T2 (T4) stops as soon task T1 (T3) stops. In addition, each of the four tasks
can end if it is no longer possible to perform an extension of the sequence. The tasks

Fig. 1  Workflow of a primary extension task for a given read pair: a The current sequence S is extracted from
the 5′ end. b The sketch of S is determined by minhashing and used to query the hash tables. The retrieved
reads form the candidate read set C. c All reads in C are aligned to S. Reads with a relatively low pairwise
alignment quality are removed, resulting in the filtered candidate reads. d An initial MSA is constructed and
refined by removing candidate reads with a significantly different pattern from S. e The consensus string is
computed leading to an extended sequence S′ . f Depending on the termination conditions (see text) the
iteration proceeds using the extended sequence S′ at the 5′ end

Page 5 of 18Kallenborn and Schmidt ﻿BMC Bioinformatics (2024) 25:186 	

are processed simultaneously. After all tasks are completed, a pseudo-long read of the
read pair is constructed, if possible, from the generated extended sequences of T1 and
T3. In addition, if outward extension is requested, the sequences produced by T2 and
T4 can be appended to the result at the appropriate ends.

In the following we explain the individual steps performed in a single processing itera-
tion of an extension task.

(a)	 The minhash sketch of the task’s current sequence S is computed and subsequently
queried against the database. This results in a set C of query results consisting of
read IDs (candidate read set).

(b)	 Candidate read sequences are fetched from memory, and are aligned to S via mul-
tiple fast hamming distance calculations. Only alignments with 50% overlap and at
most 5 mismatches are considered. Additionally, since we aim to extend S on the 3′
end, only alignments are computed where the first letter of a candidate is included
in the alignment overlap, i.e. the candidate cannot be positioned left of S.

(c)	 Candidate reads are filtered by their alignment quality. Our filter can use the infor-
mation about paired reads to simultaneously apply a filter to the candidate reads,
and the candidate reads of the partner task. If the mate of a candidate read is pre-
sent in the candidate list of the partner task, both candidate reads are kept uncon-
ditionally. Unpaired candidates are removed depending on their alignment overlap.
Let Oi = overlap/|S| denote the relative overlap size between aligned unpaired can-
didate i and S and T = maxi(⌊Oi ∗ 10⌋/10) . Then unpaired candidates with Oi < T
are removed. In case the partner task has terminated, all candidates are treated as
unpaired.

Fig. 2  Layout of the four starting sequences for extension tasks. T1: starting sequence S1, T2: starting
sequence RC2, T3: starting sequence S2, T4: starting sequence RC1

Page 6 of 18Kallenborn and Schmidt ﻿BMC Bioinformatics (2024) 25:186

(d)	 The remaining, filtered candidates are arranged into an initial MSA M centered
around S. M is further refined by inspecting its column contents to remove candi-
dates which may originate from inexact repeat regions. Those candidates may lead
to columns with unclear consensus nucleotides. Specifically, the filter identifies col-
umns that are covered by S where a non-consensus nucleotide x of this column
occurs in at least 0.3× coverage of the rows for that specific column. If S has the
same nucleotide x in this column, all candidate reads without x in this column are
removed. Otherwise, those candidates with x are removed.

(e)	 The consensus string of the refined MSA Mr is used to compute an extended
sequence S′ from S. Let i be the first column of Mr that is not part of the anchor
read S. The algorithm determines column j > i where j − i ≤ stepsize , the coverage
of column j ≥ m , and j maximal. Using n = j + 1− i the extended sequence S′ is
computed as S′ = S[n : |S|] + consensus[i : j + 1] ; i.e., S′ is obtained by appending
the consensus substring of length n to S and removing the first n nucleotides from
S. stepsize and m are parameters with default values of stepsize = 20 , and m = 3.

There are three different outcomes of the computation of S′ .

1	 The algorithm may fail to compute S′ if either column i or column j do not exist. This
can be the case if the number of columns in Mr is |S|, or if all columns to the right of
column i have low coverage. If computation fails, the task terminates.

2	 When computing S′ in a primary task the algorithm may find that the target
sequence, i.e. the read’s mate, has been reached. In that case, the task terminates, as
well.

3	 Extension succeeds without reaching the mate. The task’s sequence S is updated to S′
and the next task iteration begins

After all four tasks of a read pair are finished, a post-processing step merges the con-
structed pseudo-long reads of each task.

The construction of the final extended read from the four tasks can be controlled
by a parameter called strict mode. We currently provide three different types of
strictness.

Strict mode 2 is the most restrictive. If both T1 and T3 have finished after finding
the target sequence, and both tasks produced a connection of same length between
the reads, this connection is used if the hamming distance between the connections
of the two tasks is less than some parameter x. By default, we require an exact match.
In all other cases, the read pair remains unconnected.

Strict mode 1 includes mode 2. In addition, mode 1 can handle the case when only
one of T1 or T3 found the mate. Assume T1 found its mate and the size of the filled
gap is s. Then the connection is used if the overlap between the filled gap of T1 and
the incomplete filled gap of T3 is at least of size y (default: 50% of s), and the overlap
contains at least z% matches (default: 95% of s).

Strict mode 0 is the least restrictive. If either T1 or T3 have finished after finding the
target sequence, their corresponding result sequence is used as the pseudo-long read.
For some read pairs, neither of both primary tasks may have finished successfully.

Page 7 of 18Kallenborn and Schmidt ﻿BMC Bioinformatics (2024) 25:186 	

Yet, they may have computed sufficiently long, but incomplete, pseudo-long reads. If
agreeable with the estimated insert size, the result sequences of both tasks are merged
to form the pseudo-long read of that read pair. Otherwise, the read pair is not con-
nected. The merge will only be performed if the suffix of one sequence can be over-
lapped with the prefix of the reverse complement of the second sequence by at least
40 positions with at most 5% mismatches. In case of multiple possible overlaps, the
longest overlap is chosen.

For all levels of strictness, if it was possible to connect S1 and S2, results of T2 and T4
may be used to further elongate the pseudo-long read on both ends. It is achieved by simply
appending the extended nucleotides of those tasks to the appropriate ends of the pseudo-
long read, respecting the correct strand.

In all cases, for positions in the pseudo-long reads which correspond to the original reads
the original nucleotides are used, i.e. no modifications to the original reads are performed.

Parallelization

CAREx employs two different parallelization strategies to enable fast computation on mod-
ern workstations. Our C++ implementation targets CPU workstations using C++ threads
for multi-threading. The core algorithm is trivially parallelizable because different read
pairs can be processed independently.

In addition, we provide a CUDA implementation targeting GPUs. CUDA-capable GPUs
use a many-core architecture that can process thousands of threads in parallel. For best uti-
lization, multiple batches of read pairs are extended simultaneously. GPUs allow for dif-
ferent parallelization schemes. For example, all alignments of candidate reads to their
respective sequence S are computed in parallel using a single GPU thread per alignment.
In contrast, MSAs are constructed in cooperative fashion where multiple GPU threads per
MSA are used to update multiple columns at the same time.

For best performance, hash tables can be stored in GPU memory. However, they require
a significant amount of memory and GPU memory can be scarce. Since GPU memory can
be a limiting factor hash tables can be placed in either CPU memory or GPU memory. Our
GPU hash tables are based on the Warpcore library [23].

If the hash tables are not placed on the GPU, read signatures are calculated on the GPU
and are subsequently transferred to the CPU for hash table queries. Query results then
need to be copied back to the GPU. CPU-side hash table queries are significantly slower
than GPU-side hash table queries and are a performance bottleneck. To improve the per-
formance with CPU-side hash tables, we use two sets of threads of different size which can
communicate via queues. The first set of threads is responsible for hash table accesses on
the CPU whereas the second set of threads performs read extension using the GPU. After
each extension iteration the batch is transferred to the hasher threads and read extension
resumes using a (possibly) different batch for which hash table accesses have already com-
pleted. Depending on the actual hardware, one or two threads which perform extension are
sufficient, but need to be complemented with 8 or more threads responsible for (slow) hash
table lookups.

Page 8 of 18Kallenborn and Schmidt ﻿BMC Bioinformatics (2024) 25:186

Results
To assess performance, we present results based on both simulated and real Illumina
datasets. We used standalone tools that can produce one pseudo-long read per input
read pair. We did not consider the build-in gap closing functionality of assemblers
since they only operate at contig-level. Thus, the results of CAREx are compared to
GapFiller 2.1.2 and Konnector 2.2.4. MaSuRCA and Eloper are not used because they
do not output individual pseudo-long reads per read pair. Additionally, Eloper did not
finish on the used datasets. Furthermore, PLR-GEN is only applicable to metagenomic
data with provided reference genomes while the other tested tools are reference-free.

For both types of datasets, the number of connected read pairs is determined, as
well as the accuracy of extensions. In addition, the quality of de novo assembly using
extended real-world reads is investigated.

Simulated datasets were generated using the ART read simulator [24]. We have used
three different reference genomes: Drosophila melanogaster (D. melanogaster), Cae-
norhabditis elegans (C. elegans), and Human Chromosome 14. Most of our generated
datasets have a coverage 30x or 60x and read length 100, with insert sizes (stddev) of:
300(5), 500(10), 1000(30). We also include a simulated dataset with read length 150
and insert size 500(150). Additionally, we include a simulated mate-pair dataset with
a significantly larger insert size (2500) compared to the other datasets. Note that read
lengths l of a read pair are included in the specified insert size; i.e., the average gap
size between the two reads of a read pair is insert size −2 · l . Table 1 lists the datasets.

All tools provide different settings. The exact list of program arguments can be
found in Additional file 1: Section A. For GapFiller we specified insert size and stand-
ard deviation. Konnector2 was run with k-mer size 32. The size of the Bloom filter
was set such that the reported false-positive rate is around 0.3% . CAREx used 48 hash
tables with k-mer size 20. For both Konnector2 and CAREx we set the maximum
allowed pseudo-read length to insertsize + 4 × stddev , and the minimum length to
max(2 · readlength, insertsize − 4 × stddev) . Thus, we do not consider the simple case
of overlapping reads.

Table 1  Simulated (S1–S8) and real (R1–R4) paired-end datasets used for evaluation

S8 is a mate-pair dataset

Name Organism Cov. Read pairs (M) Length Insert size SD

S1 C. elegans 30x 15.0 100 300 5

S2 C. elegans 30x 15.0 100 500 10

S3 C. elegans 30x 15.0 100 1000 30

S4 C. elegans 60x 30.1 100 1000 30

S5 D. melanogaster 30x 18.0 100 500 10

S6 Human Chr. 14 30x 13.2 100 500 10

S7 C. elegans 30x 10.1 150 500 150

S8 C. elegans 30x 10.1 150 2500 100

R1 D. melanogaster 64x 37.9 101 598 39

R2 Human Chr. 21 33x 6.7 100 312 14

R3 Human (NA12878) 30x 304.6 148 546 117

R4 Human (NA24385) 31x 311.8 148 568 159

Page 9 of 18Kallenborn and Schmidt ﻿BMC Bioinformatics (2024) 25:186 	

Real-world datasets come from D. melanogaster (SRR988075), Human Chromosome
21 (NA19240 Illumina Data Library), and full Human (NA12878, NA24385) and are
also listed in Table 1. For R3 we concatenated the data of SRR2052337, SRR2052338,
SRR2052339, SRR2052342, SRR2052348, SRR2052352, and SRR2052354. For R4
we concatenated the data of SRR1766553, SRR1766558, SRR1766560, SRR1766562,
SRR1766581, SRR1766585, and SRR1766588.

Extension of simulated reads

Since the location of each simulated read in its reference genome is known, detailed
statistics of the generated pseudo-long reads are possible. This allows us to compute
the edit-distance in the filled gap. We evaluate read extension by the number of con-
nected reads pairs, as well as their error rate within the gap filled between the reads.
Error rate is computed as the sum of edits over the sum of filled gap lengths. The edit-
distance is computed by comparing the filled gap to the corresponding positions in
the reference genome.

Figure 3 shows the percentage of connected read pairs per dataset and the percent-
age of error-free connected read pairs for all three tools. The size of the Bloom filter
was set to 10 GB for Konnector2 for all simulated datasets which yields an average
reported false-positive rate of around 0.27%.

CAREx achieves a high percentage of connected read pairs and error-free con-
nected read pairs across all simulated datasets, with up to 99% connections for dataset
S7 with strictness 0. As expected, using a more conservative mode (strict mode 1 or 2)
decreases the number of successful connections by around 10% of all pairs. CAREx is
able to produce significantly more pseudo-long reads than Konnector2 and GapFiller.
With only around 6% of reads connected, GapFiller consistently performs worst.

Fig. 3  Percentage of connected read pairs on simulated data and their error numbers. C0: CAREx strict 0, C1:
CAREx strict 1, C2: CAREx strict 2, K: Konnector2, G: GapFiller. GapFiller did not finish (DNF) for S3, S4, S6, S7, S8

Page 10 of 18Kallenborn and Schmidt ﻿BMC Bioinformatics (2024) 25:186

Increasing the dataset coverage to 60x seems to be beneficial for CAREx. Both the
percentage of connected read pairs and percentage of error-free extensions increases.

Table 2 lists the total rate within the filled gap for all tools. Konnector2 and CAREx
(strict 0) have a similar error-rate on S1-S6,S8, whereas Konnector2 produces much
less edits on dataset S7. With strict mode set to 1, error-rate of CAREx drops by up to
one order-of-magnitude, and further decreases by a factor of 2 on average with strict
mode 2.

The computation of edit-distance measures the combined effect of two sources of
errors in the filled gap. First, an extension algorithm may select the wrong nucleotide to
append and thus introduces a substitution error. Second, the algorithm may produce a
pseudo-long read of incorrect total length which leads to indels compared to the refer-
ence genome region. To be able to find our main contributor to errors, substitutions or
indels, we computed a second set of error-rates that use a modified edit-distance score.
The modified edit-distance is computed by subtracting the absolute length difference
between expected gap size and produced gap size from the original edit-distance.

Table 3 lists the corresponding error rates for the modified edit-distance. Compared to
the original edit-distance, the error-rates are reduced and have less variation across the
different datasets. For dataset S7, modified error-rates for CAREx are up to fifty times
smaller, indicating significant contribution to the error-rate by length differences. This
large difference can be explained by the standard deviation of insert size which affects

Table 2  Total error rate of filled gaps

Dataset CAREx Konnector2 GapFiller

Strict 0 Strict 1 Strict 2

S1 0.00059 0.00013 0.00006 0.00078 0.00278

S2 0.00081 0.00012 0.00005 0.00063 0.00396

S3 0.00128 0.00009 0.00003 0.00070 DNF

S4 0.00127 0.00010 0.00003 0.00111 DNF

S5 0.00026 0.00006 0.00004 0.00056 0.00371

S6 0.00030 0.00004 0.00002 0.00062 DNF

S7 0.01072 0.00252 0.00151 0.00216 DNF

S8 0.00268 0.00012 0.00005 0.00122 DNF

Table 3  Total error rate of filled gaps excluding length differences

Dataset CAREx Konnector2 GapFiller

Strict 0 Strict 1 Strict 2

S1 0.00035 0.00009 0.00004 0.00071 0.00270

S2 0.00041 0.00006 0.00003 0.00053 0.00385

S3 0.00045 0.00003 0.00001 0.00041 DNF

S4 0.00042 0.00003 0.00001 0.00082 DNF

S5 0.00015 0.00004 0.00002 0.00051 0.00365

S6 0.00020 0.00002 0.00001 0.00050 DNF

S7 0.00029 0.00005 0.00003 0.00032 DNF

S8 0.00045 0.00002 0.00001 0.00018 DNF

Page 11 of 18Kallenborn and Schmidt ﻿BMC Bioinformatics (2024) 25:186 	

the target pseudo-long read length. For S7, a target length between 300 and 1100 was
specified. CAREx terminates extension as soon as the mate can be placed at the end of
the pseudo-long read within that range with a small hamming distance. However, this
leads to issues with (inexact) repeat regions that allow multiple target positions for the
mate, especially if those positions are far apart. We always choose the first position.
Thus, if the length is incorrect, the produced pseudo-long read is more likely too short
rather than too long. If the insert size was known precisely, this would not be an issue.

To provide more insights into this source of length errors, we performed an additional
evaluation of the results for dataset S7. From the set of extended read pairs we used the
known locations within the reference genome to identify those pairs where any of the
two reads could be placed at multiple positions in the target range, subject to a maxi-
mum hamming distance of 9. We separated those read pairs and re-evaluated the error-
rate of the resulting two sets of read pairs using the standard edit-distance. The results
are presented in Table 4. For CAREx it shows that the number of read pairs with such
ambiguous mate locations is a tiny fraction of the total connected pairs. However, their
error-rate is up to four orders-of-magnitude greater than those of the remaining pairs,
thus having a significant contribution to the reported overall error-rate. For Konnector2,
the gain in accuracy is less prominent that in CAREx meaning that there are substan-
tial contributions by other types of read pairs. When comparing Tables 3 and 4 it can
be noticed that although leaving out those pairs with ambiguous mate locations greatly
increases accuracy (Column B), not considering any length errors still yields a one order-
of-magnitude better accuracy. This indicates the presence of different sources of length
errors. For example, there could be a repeat in the genome section preceding the mate.
CAREx does not perform any special handling of repeats, and may or may not recognize
or resolve this repeat correctly.

Table 4  Total error rate of filled gaps of dataset S7

Category A contains all read pairs with multiple potential mate positions. Category B contains the remaining read pairs

All A B

CAREx strict 0

Pairs connected 10,016,848 80,296 9,936,552

Error-free pairs 9,695,451 5127 9,690,324

Error-rate 0.01072 2.05549 0.00397

CAREx strict 1

Pairs connected 9,558,861 20,232 9,538,629

Error-free pairs 9,488,850 372 9,488,478

Error-rate 0.00250 4.5121 0.00050

CAREx strict 2

Pairs connected 9,487,590 12,348 9,475,242

Error-free pairs 9,442,647 317 9,442,330

Error-rate 0.00151 4.05969 0.00028

Konnector2

Pairs connected 8,185,781 3840 8,181,941

Error-free pairs 7,595,997 375 7,595,622

Error-rate 0.00216 1.46986 0.00180

Page 12 of 18Kallenborn and Schmidt ﻿BMC Bioinformatics (2024) 25:186

Last, we have briefly evaluated the error rate and pseudo-long read lengths of out-
ward extensions of CAREx. The following values are averaged over datasets S1-S7 for
strict mode 0. The average pseudo-long read length is 1.9× (insertsize + 4 × stddev) ,
with a maximum length of 2.7× (insertsize + 4 × stddev) . The error rate of nucleotides
extended in outward direction is 3.5 times higher than the error rate within the filled
gap.

Overall, CAREx produces the best results on these datasets; i.e., it produces the most
pseudo-long reads, as well as the most error-free pseudo-long reads. Exact numbers of
error-free connections per program and dataset are listed in Additional file 1: Section B.

Extension of real datasets

For our real-world evaluation we chose a similar approach to simulated reads in terms of
error-rate comparison. In addition, we performed de novo assembly of extended reads of
Konnector2 and CAREx.

For the real-word datasets no reference positions are known. To be able to determine
the error rate in the gap, extended reads were aligned to a reference genome using BWA
0.7.17 [25]. Alignments were filtered to remove secondary and supplementary align-
ments which results in at most one alignment per read. In addition, clipped alignments
are removed, as well. Positions of the filled gaps were then extracted from the alignments
and compared to the reference genome to compute the edit-distance. Note that since
only edits within the filled gaps are considered, the total edit-distance already computed
by BWA cannot be used.

The Bloom filter size for Konnector2 was set to produce a false-positive rate similar
to the simulated reads. Specifically, it was set to 15G and 3G for R1 and R2, respectively.
We used a size of 200G for R3 and R4. This results in a reported false-positive rate of
0.26% , 0.29% , 0.31% , and 0.31% , respectively. For datasets R3 and R4, we set the mini-
mum / maximum insert size to 300 / 1100. For R1 and R2 we follow the previously stated
formula for target pseudo-read length. To be able to fit the whole dataset in GPU mem-
ory, CAREx employed a lossy compression of the quality scores on dataset R3 and R4,
using 2 bits instead of 8 bits per letter.

Recall that in CAREx original read positions in the pseudo-reads are left unmodified.
Konnector2, however, performs error-correction on these positions by default. These
differences could impact the mapping process and the assembly when read pairs from
Konnector2 and CAREx are processed differently solely based on original read positions,
despite having the exact same filled gap. Thus, for our real-world evaluation we per-
formed additional extensions with Konnector2 with disabled built-in error-correction
via program argument –preserve-reads.

Figure 4 shows the percentage of connected read pairs and the corresponding frac-
tion of edit-free filled gaps, as well as the fraction of filled gaps with edit-distance ≤ 2 .
Addtionally, the error-rate is reported, as well. Neither CAREx nor Konnector2 were
run with enabled outward extension. CAREx produces the most connected read pairs
and the highest amount of error-free connections on all three datasets. In terms of
error-rate, Konnector2 is better than CAREx with strict mode 0 because the fraction
of pseudo-reads with more than two errors is smaller. This is especially true for R1

Page 13 of 18Kallenborn and Schmidt ﻿BMC Bioinformatics (2024) 25:186 	

where the error-rate of CAREx remains greater than Konnector2’s regardless of the
selected strictness. Still, more restrictive extension leads to a decrease in error-rate,
and reaches smaller values than Konnector2 on R2, R3, and R4. Results for the two
human datasets R3 and R4 are very similar. Note that edits may also be caused from
genomic variations, for example single nucleotide polymorphisms (SNPs), compared
to the used reference genome. Thus, the actual number of wrong nucleotides, for all
tools, may be lower. As with simulated reads, the results of GapFiller are not competi-
tive. We did not attempt the extension of R3 with GapFiller.

Fig. 4  Percentage of connected read pairs on real-world datasets. The total error-rate is displayed at the
top. C0: CAREx strict 0, C1: CAREx strict 1, C2: CAREx strict 2, K0: Konnector2 with preserve-reads option, K1:
Konnector2 without preserve-reads option, G: GapFiller

Table 5  A selection of assembly metrics reported by QUAST for real datasets R1 and R2 assembled
with SPAdes

Unprocessed CAREx Konnector2

Strict 0 Strict 1 Strict 2 Standard Preserve

R1

Contigs ≥ 50,000 bp 540 670 629 650 633 642

N50 40,264 96,480 114,381 107,806 124,966 115,631

Misassembled contigs 672 626 608 638 639 648

R2

Contigs ≥ 50,000 bp 25 44 28 23 16 14

N50 16,287 17,903 16,500 15,384 13,703 13,686

Misassembled contigs 200 195 293 327 512 474

Page 14 of 18Kallenborn and Schmidt ﻿BMC Bioinformatics (2024) 25:186

De novo assembly was performed with SPAdes v3.13.1 [26] and MEGAHIT v1.2.9
[27]. For each assembly we passed both connected reads and remaining uncon-
nected reads to the software. Assembled contigs were analysed using QUAST v5.0.2
[28]. GapFiller was excluded from this analysis because of the previously reported
sub-optimal results. Both Konnector2 and CAREx were run with disabled outward
extension. We were unable to generate assemblies for R3 and R4 because of resource
limitations.

Excerpts of the assembly reports generated by QUAST are presented in Table 5 for
SPAdes and in Table 6 for MEGAHIT. Full reports are provided in Additional file 1: Sec-
tion C.

On dataset R1 with SPAdes, both CAREx and Konnector2 are able to improve the N50
value and the number of misassembled contigs compared to an assembly with unpro-
cessed reads. Konnector2 achieves the greatest N50 value whereas CAREx produces
the lowest number of misassemblies. On dataset R2 with SPAdes only CAREx is able to
achieve a better assembly than with unprocessed reads.

For assemblies produced by MEGAHIT, read extension leads to improved results for
both R1 and R2 with extended reads from both Konnector2 and CAREx. In direct com-
parison of the extension tools, CAREx produced the best results on R1 whereas Konnec-
tor produced the best results on R2. This is in contrast to the SPAdes assemblies where
the order is reversed.

Overall, read extension prior to genome assembly can be beneficial. For CAREx, the
strictness of extension affects the assembly but judging from the presented results no
level of strictness immediately outperforms the others. A lower strictness may produce
more errors in the generated pseudo-long reads but at the same time will also produce a
greater total number of pseudo-long reads with few or zero errors. Similarly, the benefits
of disabling the integrated error-correction of Konnector2 depend on the dataset and on
the used assembler.

Runtime and memory consumption

Benchmarks were conducted on a single-socket Linux workstation comprising an AMD
EPYC 7713P 64-Core processor, 512 GB DDR4 RAM, and an NVIDIA A100 PCIe GPU

Table 6  A selection of assembly metrics reported by QUAST for real datasets R1 and R2 assembled
with MEGAHIT

Unprocessed CAREx Konnector2

Strict 0 Strict 1 Strict 2 Standard Preserve

R1

Contigs ≥ 50,000 bp 660 620 695 703 656 667

N50 58,667 50,952 63,487 76,406 66,296 65,654

Misassembled contigs 1,235 1,463 1,437 1,411 1,379 1,429

R2

Contigs ≥ 50,000 bp 124 111 138 139 148 136

N50 29,625 29,676 33,338 32,784 33,744 33,669

Misassembled contigs 243 332 263 259 230 240

Page 15 of 18Kallenborn and Schmidt ﻿BMC Bioinformatics (2024) 25:186 	

with 80 GB HBM2e memory. CUDA Toolkit 11.8 was used. Total program runtime and
peak memory consumption for read extension of datasets S2, S3, S4, and R3 are pre-
sented in Table 7, showing the scaling of runtime with different insert sizes and number
of reads. CAREx was run with a memory limit of 200 GB. CAREx GPU with CPU tables
used 20 threads for hashing on the CPU and 2 threads for read extension on the GPU.

On the simulated datasets Konnector2 is the fastest of the CPU-based tools. CAREx
(CPU) is up to three times slower. GapFiller does not provide an option for multi-
threading which results in a much longer processing time compared to Konnector2 and
CAREx (CPU). On real-world dataset R3, CAREx (CPU) is faster than Konnector2.

The GPU-accelerated versions of CAREx are significantly faster than the CPU-based
tools. Our GPU-based implementation is around seven times faster than our CPU ver-
sion, allowing for the processing of 600 M human reads of length 148 in a few hours
instead of a day.

Our peak memory usage is reached during hash table construction, when all key-value
pairs of all tables are materialized before compacting them into buckets. If the mem-
ory limit prohibits the construction of all tables at once, tables are created in batches
to reduce the memory consumption which in turn leads to slightly increased construc-
tion times. For example, if a memory limit of 480 GB is set for R3, construction times
decreases by 9 min and 1 min for (CPU) and (GPU, CPU tables), respectively. However,
these gains in runtime are negligible compared to the total runtime. The peak memory
usage in this case is around 380 GB.

Table 7  Total program runtime and CPU (GPU) peak memory consumption in GB for the datasets
S2, S3, S4, and R3

S2 Threads Runtime [minutes] Memory [GB]

CAREx (CPU) 64 43 21

CAREx (GPU, CPU tables) 2+20 8 21 (8)

CAREx (GPU, GPU tables) 2 6 7 (37)

GapFiller 1 3855 4

Konnector2 64 24 11

S3 Threads Runtime [minutes] Memory [GB]

CAREx (CPU) 64 99 21

CAREx (GPU, CPU tables) 2+20 19 21 (8)

CAREx (GPU, GPU tables) 2 14 7 (37)

Konnector2 64 62 11

S4 Threads Runtime [minutes] Memory [GB]

CAREx (CPU) 64 365 42

CAREx (GPU, CPU tables) 2+20 44 40 (14)

CAREx (GPU, GPU tables) 2 38 14 (72)

Konnector2 64 126 11

R3 Threads Runtime [hours:minutes] Memory [GB]

CAREx (CPU) 64 23:18 196

CAREx (GPU, CPU tables) 2+20 3:20 187 (63)

Konnector2 64 32:27 201

Konnector2 (preserve) 64 27:43 201

Page 16 of 18Kallenborn and Schmidt ﻿BMC Bioinformatics (2024) 25:186

Conclusions
In recent years, third-generation sequencing technologies have emerged, which can pro-
vide longer reads. Nevertheless, NGS is still widely used today because of high through-
put and low error rates. In addition, PE sequencing strategies are often used, where pairs
of short reads are produced from two ends of a DNA fragment. However, producing
pseudo-long reads from PE short read data can be challenging when insert sizes exceed
twice the read length. CAREx addresses this task by iterative MSA construction. It is
able to accurately connect a large fraction of read pairs and exceeds the total number of
pseudo-long reads produced by other tools.

To tackle the inevitable computational overhead of computing large amounts of MSAs
CAREx can take advantage of both multiple CPU threads, and GPUs, for faster process-
ing. Our GPU-accelerated version is up to 8 times faster than the fastest CPU tool (Kon-
nector2). However, we require many hash tables for best results which in turn increases
memory consumption. Users of CAREx can therefore set the number of hash tables to
less than 48 to reduce memory usage on platforms with limited amount of RAM which
may decrease the number of connected read pairs.

As seen from the results, when a dataset has a large variation in insert size a large frac-
tion of edits is caused by incorrect pseudo-read lengths. To further improve CAREx, we
would need to identify those cases during computation, and either handle them differ-
ently, or discard their extension entirely. One possible approach to identification would
be to first extend all read pairs to maximum insert size, and then determine whether
there are multiple possible positions where the mate could be placed. However, this
approach could significantly increase the runtime.

In the future we may extend our approach to metagenomic samples. This would
require additional preprocessing to separate input reads by species. Another topic of
interest is the applicability of our approach to long-read sequencing platforms. As we
have shown, using MSAs can produce accurate extensions of reads. We believe that this
method can also be adapted to long reads by using a pair-wise alignment method that
can handle insertions and deletions, such as a semi-global alignment. Another inter-
esting research direction is the application of machine learning methods (such deep
neural networks) for making extension decisions based on constructed MSAs. Similar
approaches have recently been demonstrated to improve the accuracy of variant calling
[29].

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​024-​05802-w.

Additional file 1. 

Acknowledgements
Not applicable.

Author contributions
FK is the main developer of CAREx. BS proposed and supervised the project. FK and BS contributed to the manuscript. All
authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

https://doi.org/10.1186/s12859-024-05802-w

Page 17 of 18Kallenborn and Schmidt ﻿BMC Bioinformatics (2024) 25:186 	

Availability of data and materials
Instructions to generated simulated datasets are given in Additional file 1. Dataset S1 can be downloaded from: (https://​
zenodo.​org/​doi/​10.​5281/​zenodo.​10378​907). Real-world datasets are publicly available. R1: Accession number SRR988075.
(https://​trace.​ncbi.​nlm.​nih.​gov/​Trace​s/?​view=​run_​brows​er &​acc=​SRR98​8075). R2: Was used by [30]. (https://​cloud​stor.​
aarnet.​edu.​au/​plus/s/​f0f6c​b1385​704ae​8403d​fbf86​dd622​d8/​downl​oad?​path=%​2F &​files=​Human_​NA192​40.​7z). R3:
Accession numbers SRR2052337, SRR2052338, SRR2052339, SRR2052342, SRR2052348, SRR2052352, and SRR2052354.
(https://​www.​ebi.​ac.​uk/​ena/​brows​er/​view/​SRR20​52337). R4: Accession numbers SRR1766553, SRR1766558, SRR1766560,
SRR1766562, SRR1766581, SRR1766585, and SRR1766588. (https://​www.​ebi.​ac.​uk/​ena/​brows​er/​view/​SRR17​66553).
Project name: CAREx. Project home page: https://​github.​com/​fkall​en/​CAREx. Operating system(s): Linux. Programming
language: C++, CUDA. Other requirements: The GPU version requires CUDA toolkit ≥ 11. License: GPLv3. Any restric-
tions to use by non-academics: No additional restrictions.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 23 June 2023 Accepted: 3 May 2024

References
	1.	 Byrska-Bishop M, Evani US, Zhao X, Basile AO, Abel HJ, Regier AA, Corvelo A, Clarke WE, Musunuri R, Nagulapalli K,

Fairley S, Runnels A, Winterkorn L, Lowy E, Eichler EE, Korbel JO, Lee C, Marschall T, Devine SE, Harvey WT, Zhou W,
Mills RE, Rausch T, Kumar S, Alkan C, Hormozdiari F, Chong Z, Chen Y, Yang X, Lin J, Gerstein MB, Kai Y, Zhu Q, Yilmaz
F, Xiao C, Flicek Paul, Germer S, Brand H, Hall IM, Talkowski ME, Narzisi G, Zody MC. High-coverage whole-genome
sequencing of the expanded 1000 genomes project cohort including 602 trios. Cell. 2022;185(18):3426–344019.
https://​doi.​org/​10.​1016/j.​cell.​2022.​08.​004.

	2.	 Hammond SA, Warren RL, Vandervalk BP, Kucuk E, Khan H, Gibb EA, Pandoh P, Kirk H, Zhao Y, Jones M, et al. The
North American bullfrog draft genome provides insight into hormonal regulation of long noncoding RNA. Nat
Commun. 2017;8(1):1–8.

	3.	 Sim M, Lee J, Wy S, Park N, Lee D, Kwon D, Kim J. Generation and application of pseudo-long reads for metagenome
assembly. GigaScience. 2022;11:giac044.

	4.	 Vandervalk BP, Yang C, Xue Z, Raghavan K, Chu J, Mohamadi H, Jackman SD, Chiu R, Warren RL, Birol I. Konnector
v2.0: pseudo-long reads from paired-end sequencing data. BMC Med Genomics. 2015;8(3):1.

	5.	 Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics.
2011;27(21):2957–63. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btr507.

	6.	 Liu B, Yuan J, Yiu S-M, Li Z, Xie Y, Chen Y, Shi Y, Zhang H, Li Y, Lam T-W, Luo R. COPE: an accurate k-mer-based pair-end
reads connection tool to facilitate genome assembly. Bioinformatics. 2012;28(22):2870–4. https://​doi.​org/​10.​1093/​
bioin​forma​tics/​bts563.

	7.	 Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate illumina paired-end read merger. Bioinformatics.
2014;30(5):614–20.

	8.	 Nadalin F, Vezzi F, Policriti A. GapFiller: a de novo assembly approach to fill the gap within paired reads. BMC Bioin-
form. 2012;13(14):8. https://​doi.​org/​10.​1186/​1471-​2105-​13-​S14-​S8.

	9.	 Silver DH, Ben-Elazar S, Bogoslavsky A, Yanai I. ELOPER: elongation of paired-end reads as a pre-processing tool for
improved de novo genome assembly. Bioinformatics. 2013;29(11):1455–7. https://​doi.​org/​10.​1093/​bioin​forma​tics/​
btt169.

	10.	 Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. The MaSuRCA genome assembler. Bioinformatics.
2013;29(21):2669–77. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btt476.

	11.	 Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, Jahesh G, Khan H, Coombe L, Warren RL, Birol
I. ABySS 2.0: resource-efficient assembly of large genomes using a bloom filter. Genome Res. 2017;27(5):768–77.

	12.	 Boetzer M, Pirovano W. Toward almost closed genomes with GapFiller. Genome Biol. 2012;13(6):56. https://​doi.​org/​
10.​1186/​gb-​2012-​13-6-​r56.

	13.	 ...Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B,
Lu Y, Han C, Cheung DW, Yiu SM, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J. SOAPde-
novo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience. 2012. https://​doi.​org/​
10.​1186/​2047-​217X-1-​18.

	14.	 Kallenborn F, Hildebrandt A, Schmidt B. CARE: context-aware sequencing read error correction. Bioinformatics.
2021;37(7):889–95.

	15.	 Kallenborn F, Cascitti J, Schmidt B. CARE 2.0: reducing false-positive sequencing error corrections using machine
learning. BMC Bioinform. 2022;23(1):227. https://​doi.​org/​10.​1186/​s12859-​022-​04754-3.

	16.	 Morisse P, Marchet C, Limasset A, Lecroq T, Lefebvre A. Scalable long read self-correction and assembly polishing
with multiple sequence alignment. Sci Rep. 2021;11(1):1–13.

https://zenodo.org/doi/10.5281/zenodo.10378907
https://zenodo.org/doi/10.5281/zenodo.10378907
https://trace.ncbi.nlm.nih.gov/Traces/?view=run_browser%20&acc=SRR988075
https://cloudstor.aarnet.edu.au/plus/s/f0f6cb1385704ae8403dfbf86dd622d8/download?path=%2F%20&files=Human_NA19240.7z
https://cloudstor.aarnet.edu.au/plus/s/f0f6cb1385704ae8403dfbf86dd622d8/download?path=%2F%20&files=Human_NA19240.7z
https://www.ebi.ac.uk/ena/browser/view/SRR2052337
https://www.ebi.ac.uk/ena/browser/view/SRR1766553
https://github.com/fkallen/CAREx
https://doi.org/10.1016/j.cell.2022.08.004
https://doi.org/10.1093/bioinformatics/btr507
https://doi.org/10.1093/bioinformatics/bts563
https://doi.org/10.1093/bioinformatics/bts563
https://doi.org/10.1186/1471-2105-13-S14-S8
https://doi.org/10.1093/bioinformatics/btt169
https://doi.org/10.1093/bioinformatics/btt169
https://doi.org/10.1093/bioinformatics/btt476
https://doi.org/10.1186/gb-2012-13-6-r56
https://doi.org/10.1186/gb-2012-13-6-r56
https://doi.org/10.1186/2047-217X-1-18
https://doi.org/10.1186/2047-217X-1-18
https://doi.org/10.1186/s12859-022-04754-3

Page 18 of 18Kallenborn and Schmidt ﻿BMC Bioinformatics (2024) 25:186

	17.	 Gusfield D. Algorithms on stings, trees, and sequences: computer science and computational biology. ACM Sigact
News. 1997;28(4):41–60.

	18.	 Broder AZ. Identifying and filtering near-duplicate documents. In: Annual symposium on combinatorial pattern
matching. Springer; 2000.

	19.	 Berlin K, Koren S, Chin CS, et al. Assembling large genomes with single-molecule sequencing and locality-sensitive
hashing. Nat Biotech. 2015. https://​doi.​org/​10.​1038/​nbt.​3238.

	20.	 Ondov BD, Treangen TJ, Melsted P, et al. Mash: fast genome and metagenome distance estimation using MinHash.
Genome Biol. 2016;17:132.

	21.	 Müller A, Hundt C, Hildebrandt A, et al. MetaCache: context-aware classification of metagenomic reads using min-
hashing. Bioinformatics. 2017;33(23):3740–8.

	22.	 Popic V, Batzoglou S. Privacy-preserving read mapping using locality sensitive hashing and secure kmer voting.
bioRxiv. 2016. https://​doi.​org/​10.​1101/​046920.

	23.	 Jünger D, Kobus R, Müller A, Hundt C, Xu K, Liu W, Schmidt B. Warpcore: a library for fast hash tables on gpus. In:
HiPC 2020. IEEE; 2020, pp. 11–20. https://​doi.​org/​10.​1109/​HiPC5​0609.​2020.​00015.

	24.	 Huang W, Li L, Myers JR, et al. Art: a next-generation sequencing read simulator. Bioinformatics. 2012;28(4):593–4.
	25.	 Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics.

2009;25(14):1754–60.
	26.	 Bankevich A, Nurk S, Antipov D, et al. Spades: a new genome assembly algorithm and its applications to single-cell

sequencing. J Comput Biol. 2012;19(5):455–77.
	27.	 Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex

metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31(10):1674–6.
	28.	 Gurevich A, Saveliev V, Vyahhi N, et al. Quast: quality assessment tool for genome assemblies. Bioinformatics.

2013;29(8):1072–5.
	29.	 Baid G, Cook DE, Shafin K, Yun T, Llinares-López F, Berthet Q, Belyaeva A, Töpfer A, Wenger AM, Rowell WJ, et al.

Deepconsensus improves the accuracy of sequences with a gap-aware sequence transformer. Nat Biotechnol.
2022;41:232–8.

	30.	 Heydari M, Miclotte G, Van de Peer Y, et al. Illumina error correction near highly repetitive DNA regions improves de
novo genome assembly. BMC Bioinform. 2019;20(1):1–13.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/nbt.3238
https://doi.org/10.1101/046920
https://doi.org/10.1109/HiPC50609.2020.00015

	CAREx: context-aware read extension of paired-end sequencing data
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Implementation
	Algorithmic approach
	Workflow
	Parallelization

	Results
	Extension of simulated reads
	Extension of real datasets
	Runtime and memory consumption

	Conclusions
	Acknowledgements
	References

