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Abstract 

Motivation:  Categorizing cells into distinct types can shed light on biological tissue 
functions and interactions, and uncover specific mechanisms under pathological con-
ditions. Since gene expression throughout a population of cells is averaged out by con-
ventional sequencing techniques, it is challenging to distinguish between different 
cell types. The accumulation of single-cell RNA sequencing (scRNA-seq) data provides 
the foundation for a more precise classification of cell types. It is crucial building 
a high-accuracy clustering approach to categorize cell types since the imbalance of cell 
types and differences in the distribution of scRNA-seq data affect single-cell clustering 
and visualization outcomes.

Result:  To achieve single-cell type detection, we propose a meta-learning-based 
single-cell clustering model called ScLSTM. Specifically, ScLSTM transforms the single-
cell type detection problem into a hierarchical classification problem based on feature 
extraction by the siamese long-short term memory (LSTM) network. The similarity 
matrix derived from the improved sigmoid kernel is mapped to the siamese LSTM 
feature space to analyze the differences between cells. ScLSTM demonstrated superior 
classification performance on 8 scRNA-seq data sets of different platforms, species, 
and tissues. Further quantitative analysis and visualization of the human breast cancer 
data set validated the superiority and capability of ScLSTM in recognizing cell types.

Keywords:  Single-cell, ScRNA-seq, Siamese LSTM, Cell type detection

Introduction
The human body comprises roughly 40 trillion cells, each exhibiting a remarkable diver-
sity of shapes and functions [1]. Identifying and visualizing cell types offers valuable 
insight into cellular heterogeneity and reveals specific mechanisms underlying patholog-
ical conditions. Remarkable advancements in scRNA-seq technology have made it pos-
sible to cost-effectively and efficiently study genome-wide expression at the single-cell 
level. This allows us to determine cell types by examining the transcriptome status of 
thousands of individual cells.
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Traditional sequencing methods get overall heterogeneity at the transcriptome and 
phenotypic levels by detecting the total signal of a cell population and calculating the 
average, which fails to illustrate the individual states and differences among cells [2]. The 
objective of scRNA-seq technology is to sequence the genome at the single-cell level, 
offering a distinct advantage in uncovering the subtle variations unique to individual 
cells and comprehending the diversity in gene expression within biological tissues. Iden-
tifying single-cell types serves as the foundation for exploring cellular heterogeneity and 
developmental processes.

With the ongoing innovation and improvement of scRNA-seq technology, the 
throughput of single-cell technology has substantially improved, enabling the detec-
tion of both common and rare cell types. scRNA-seq technologies consist not only of 
low-throughput sequencing technologies like Smart-Seq and Celseq but also of high-
throughput sequencing technologies like inDrop, 10X-v2, and 10X-v3. The gene expres-
sion data generated by various types of scRNA-seq technologies constitute a vast and 
extensive database of scRNA-seq. Gene Expression Omnibus (GEO), ArrayExpress, 
PanglaoDB, and Human Cell Atlas (HCA), among others, are frequently used single-cell 
data repositories. The data used in this study were collected from the GEO database and 
ArrayExpress.

Among the cell type detection models based on scRNA-seq data, the models based 
on cell-cell similarity are the most classic. For example, Corr evaluates cell-cell associa-
tions from a global analysis of variance based on differential gene expression of cells [3]. 
POCR selects different kernel embedding techniques for single-cell data sets of vary-
ing sizes; Applying a Gaussian kernel for small-scale data sets and a linear kernel for 
large-scale data sets; On the resulting kernel similarity, spectral clustering analysis is 
then performed [4]. Based on the assumption that the same cell type is in the same sub-
space, SinNLRR describes the expression of the same cell type through a cell expression; 
SinNLRR finds the low-rank and non-negative representation of the expression matrix 
from all candidate subspaces and optimizes it using the alternating direction multiplier 
method (ADMM) [5]. SIMLR produces similar symmetric matrices by learning kernel 
functions with varying weights, then decomposes the similar matrices into approxima-
tion diagonal matrices based on the number of cell types [6]. SCENA sorts the gene 
expression levels in descending order of variance, selects genes to construct cell-cell 
similarity matrices, and combines the spectral clustering results of all matrices to obtain 
the final clustering results [7]. However, the above methods cannot reflect the complex 
nonlinear relationship between genes, affecting the cell type detection results.

Due to its robust feature learning capabilities, deep learning has proven to be advanta-
geous when dealing with large-scale scRNA-seq data with highly complicated features. 
Previous research has demonstrated that neural networks can extract insights from 
single-cell gene expression data. The scDCC model proposed by Tian et  al. encodes 
prior single-cell knowledge as constraint information and integrates it into the cluster-
ing procedure via a new loss function [8]. scAdapt combines domain adaptation with 
semi-supervised learning based on virtual adversarial training for accurate cell classifi-
cation using labeled sources and unlabeled target data [9]. Song et al. proposed to use a 
graph convolutional network for cell type detection by constructing a mixture of inter 
and intra-data set cell mapping graphs [10]. The success of deep learning depends on 
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massive datasets and robust computational resources. Despite the widespread applica-
tion of deep learning frameworks such as graph neural networks and capsule networks 
to various problems, they continue to face the challenge of limited sample sizes, par-
ticularly in the classification of single-cell types when the amount of data varies signif-
icantly between cell types [11]. Meta-learning has been proven effective in numerous 
fields, such as natural language processing and robotics, due to its crucial framework for 
addressing the sample imbalance problem in deep learning.

Due to the varied experimental sequencing platforms in different laboratories, the dis-
tribution features of the single-cell data collected from different laboratories will vary. 
As indicated in Table 1, the number of samples (cells) in single-cell data sets ranges from 
tens to hundreds. In addition, the number of cells of various types in a single-cell data 
set can vary by a factor of ten. The difference in feature distribution of single-cell data 
sets and the imbalance of the number of cells between cell types make it challenging to 
identify cell types with fewer cells.

Siamese network can calculate similarity based on the distance between two samples 
and simultaneously enhance the learning model with the knowledge gathered from sev-
eral learning events. LSTM is a unique type of recurrent neural network (RNN) that can 
tackle the problems of vanishing and exploding gradients during lengthy sequence train-
ing. We are interested in integrating siamese and LSTM networks to discover relevant 
feature representations with the potential to enhance cell type detection.

In this work, we propose a single-cell type detection model called ScLSTM, which 
integrates the siamese and LSTM networks. The network architecture of ScLSTM is 
shown in Fig. 1. ScLSTM employs an improved sigmoid kernel to calculate a measure of 
cell similarity. The “siamese” of a siamese LSTM is achieved by sharing weights between 
two identical LSTMs. Siamese LSTM takes two inputs and maps them to a new space 
using two LSTMs. ScLSTM learns how to minimize the distance between single-cell 
data of the same category and maximize the distance between different categories, ena-
bling us to obtain more discriminative features for each cell. Subsequently, the agglom-
erative clustering algorithm was used to cluster single cells. The superiority of ScLSTM, 
compared to several state-of-the-art approaches, is validated on 8 different human and 
mouse scRNA-seq datasets. When comparing the three evaluation indicators, ARI, 

Fig. 1  Network architecture of ScLSTM. The improved sigmoid kernel is used to build the scRNA-seq feature 
matrix, which is then fed into the siamese LSTM. Using the agglomerative clustering algorithm, determine 
the cell type of the output of the siamese LSTM
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NMI, ACC, and BAS, the performance of ScLSTM in clustering is superior to that of 
other methods. Additionally, we apply ScLSTM to the human breast cancer dataset and 
two 10x Genomics datasets, demonstrating that ScLSTM can effectively categorize can-
cer cell subtypes. We demonstrate that the semantic representation of cells (semantic 
correlation between cell pairs) generated by siamese LSTM networks is more suitable 
for representing cells in the cell type detection problem. ScLSTM, an enhanced version 
of the meta-learning framework, is more effective at balancing datasets and identifying a 
small proportion of cell subtypes, while also performing exceptionally well on large-scale 
data sets.

Methods
In single-cell-related research, the relationship between different cells can be assessed 
based on cell similarity calculated from gene expression. Since the scale and distribution 
of different single-cell transcriptome data sets are different, designing a similarity cal-
culation method for different types of single-cell data sets is one of the significant diffi-
culties. The Euclidean distance, Pearson, and Spearman similarity computation methods 
are all commonly utilized. The Euclidean distance represents the straight-line distance 
between two points, the Pearson correlation coefficient is used to test the linear cor-
relation between the data, and the Spearman tests the rank correlation coefficient. We 
employ an improved sigmoid kernel embedding approach to express cell similarity to 
fully extract the global information of the single-cell data set structure and the intra-
class information of the cell population.

The input of ScLSTM is the expression matrix A , where rows correspond to cells and 
columns correspond to genes. Suppose there are n cells in A , the gene expression of cell 
i is denoted by Ai = (ai1, ai2, . . . , aim) , i ∈ (1, 2, . . . , n) , where m represents the number 
of genes. Next, a logarithmic transformation is executed on each element in matrix A 
to obtain matrix L , where L = log(A + 1) . For the matrix L , the inner product matrix 
I is obtained by multiplying the row vectors, Iij = Li ∗ Lj , where Li and Lj are both row 
vectors of the matrix L . Due to the different sizes and distributions of different single-
cell data sets, the inner product matrix is updated, Iij = (Iij − Imin)/(Imax − Imin) , where 
Imax is the largest element in matrix I , and Imin is the the smallest element in matrix I . 
Finally, the sigmoid kernel similarity matrix S is calculated through the updated inner 
product matrix, Sij = (eIij − e−Iij )/(eIij + e−Iij ).

Siamese recurrent network architecture of the ScLSTM model

The siamese network two identical neural networks, each encoding different features of 
individual cells and mapping these features to a new embedding space for comparison. A 
siamese LSTM network is constructed by combining two identical LSTM networks with 
the same structure and characteristics. The LSTM structure is illustrated in Fig. 2. LSTM 
have two transmission states, ct (cell state) and ht (hidden state). ht can be seen as short- 
term memory for the current knowledge, which is transformed by the tanh function. The 
purpose of ct is to transform and process the memory of the last and current times using a 
linear transformation. LSTM is composed of three gates: 
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•	 Forget stage. The retention of past information is determined by assessing the impor-
tance of current input information. The first step in LSTM is to decide what informa-
tion to discard from the cell state. This decision is made through the forget gate layer. 
This gate reads ht − 1 and At , and outputs a number between 0 and 1 for each element 
in the cell state ct − 1 . The value of 1 means completely retained, while 0 means com-
pletely discarded.

•	 Input gate. The retention degree of input information is determined by assessing the 
importance of the current input information. The decision of how much new informa-
tion to add to the cell state is made. Firstly, the sigmoid layer of the input gate deter-
mines which information needs to be updated. Then, a tanh layer generates a vector, 
denoted as ct , which is an alternative for updating. These two parts are then combined 
to produce an update to the cell state.

•	 Output gate. How much the current output depends on the current memory cell. This 
output is based on the cell state, which is also a filtered version. First, a sigmoid layer is 
used to determine which part of the cell state will be output. Next, the cell state is pro-
cessed by tanh (producing a value between −1 and 1), and this result is multiplied by 
the output of the sigmoid gate, which selects the part that determines to the output.

After performing kernel embedding, we obtain the matrix S. Through a base model consist-
ing of two symmetric LSTMs, the matrix S is mapped to the head model. The structure of 
the head model is shown in Fig. 1, which consists of a concatenate layer, two dense layers, 
and two sigmoid layers. The output confusion matrix of the siamese LSTM serves as the 
input for the agglomerative clustering.

Agglomerative clustering

Agglomerative clustering is a  commonly used  hierarchical clustering algorithm that 
can partition data sets into multiple levels to create a tree-like clustering structure. Ini-
tially, agglomerative clustering  classifies each object as a cluster and subsequently  merges 
these clusters based on a distance measure function until the desired number of clusters 
is achieved. In the case of ScLSTM, we apply  the similarity matrix learned by the siamese 
LSTM to the agglomerative clustering process. Figure 1 depicts the agglomerative cluster-
ing process utilized by our method.

Fig. 2  The chain structure of LSTM; Each box represents a neural network layer, consisting of weights, biases, 
and activation functions; Each circle represents an element-level operation; The arrow indicates the vector 
flow direction. A forked arrow indicates a copy of the vector
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Results
Data sets and performance assessment

Human and mouse cells yielded 8 publically available scRNA-seq data sets (see 
Table 1 for a complete list) that were used to compare the performance of ScLSTM 
with other comparative techniques. Five scRNA-seq data sets were obtained from the 
NCBI GEO database (access IDs:  GSE36552, GSE81252, GSE57249, GSE59739, and 
GSE81861), and one scRNA-seq data set was downloaded from the NCBI SRA data-
base (access ID:  SRP041736). Two scRNA-seq data sets were downloaded from the 
ArrayExpress database (access IDs: E-MTAB-3321 and E-MTAB-2600). The scRNA-
seq data sets vary in size from tens to tens of thousands of cells.

Notably, the data sets we collected include those  with severely unbalanced cell 
type,s such as GSE36552, and data sets with extremely limited data, such as GSE57249 
and GSE36552. In   the GSE36552 data  set,  the sample size of the cell type with the 
largest proportion is 10 times that of the smallest proportion. There are 90 cells of 7 
cell types in the GSE36552 data set and 56 cells of 4 cell types in the GSE57249 data 
set. Additionally, we collected a gold standard labeled data set, the Chung data set 
[12] (GSE75688), to  further validate the robustness and generalization capability of 
ScLSTM. We also collected two 10x Genomics data sets to assess the performance of 
ScLSTM on large-scale data. The sc_10x_5cl data set (access ID: GSE118767) five cell 
lines (HCC827, H1975, H2228, H838, and A549) using the 10x Chromium Genomics 
protocol, totaling 3919 cells. The second data set is the Jurkat data set, which consist 
of two cell lines (293T cells and jurkat cells), using UMIs and the droplet-based proto-
col from 10x Genomics, with a total of 6143 cells (https://​suppo​rt.​10xge​nomics.​com/​
single-​cell-​gene-​expre​ssion/​datas​ets/1.​1.0/​jurkat, https://​suppo​rt.​10xge​nomics.​com/​
single-​cell-​gene-​expre​ssion/​datas​ets/1.​1.0/​293t). We applied the same preprocess-
ing step for both 10x Genomics datasets, filtering out genes expressed in fewer  than 
three cells.

We use three metric indicators to measure the performance of ScLSTM: normal-
ized mutual information (NMI), accuracy (ACC), adjusted rand index (ARI), and bal-
aced accuracy score (BAS). In particular, the ranges of NMI and ACC are between 
0 and 1, whereas ARI can be negative. A larger value indicates a more remarkable 
agreement between predicted and actual labels. NMI, ACC, ARI, and BAS are calcu-
lated as follows:

Table 1  The description of data sets used in experiments

Data set Cells Genes Cell types Protocol Units ID

Yan [13] 90 20,214 7 Tang RPKM GSE36552

Goolam [14] 124 41,480 5 SMART-Seq2 CPM E-MTAB-3321

Camp [15] 777 19,020 7 SMARTer FPKM GSE81252

Pollen [16] 301 23,730 11 SMARTer TPM SRP041736

Biase [17] 56 25,737 4 SMARTer FPKM GSE57249

Usoskin [18] 622 25,334 4 STRT-Seq RPM GSE59739

Kolodziejczyk [19] 704 38,653 3 SMARTer CPM E-MTAB-2600

Li [20] 561 55,186 9 SMARTer FPKM GSE81861

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/jurkat
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/jurkat
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/293t
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/293t
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where T represents the actual cell cluster and P represents the anticipated cell clus-
ters. In equation (1), H denotes entropy and I(T, P) represents the mutual information 
between T and P. In equation (2), ri represents the predicted label, si represents the true 
label, n represents the total number of samples, Map(·) represents the mapping function 
that maps the predicted labels to the equivalent true label and can be obtained by apply-
ing the Hungarian Algorithm [21]; equation (3) is the indicator function. In equation 
(5), TPR represents the probability that recall correctly predicts the positive class, while 
TNR represents the probability that the prediction for the negative class is correct.

Influence of network structure on ScLSTM

Comparative analysis of clustering

To evaluate ScLSTM, we applied it to scRNA-seq data sets generated by different 
sequencing platforms (see Table  1), all  of which contained real labels. We choose six 
state-of-the-art models (Corr [3], POCR [4], SIMLR [6], SinNNLR [5], SNN-cliq [22], 
and ZIFA [23]) for comparison. Corr evaluates the relationship between cells based on 
an analysis of variance. POCR and SIMLR use kernel embedding to assess the similarity 
between cells. Based on similarity learning, SinNLRR imposes a non-negative low-rank 
structure on the similarity matrix. SNN-Cliq is a clustering algorithm based on a new 
shared nearest neighbor graph and quasi-clique finding techniques. Each experimental 
result was obtained through a grid search strategy. Figure 3 displays heatmaps of 7 mod-
els across 8 data sets using 4 evaluation metrics. Darker colors indicate closer perfor-
mance to 1. The results of ScLSTM were obtained using the true number of clusters. It 
is evident that ScLSTM outperforms all other models in these four metrics: ACC, ARI, 
BAS, and NMI, followed by SinNNLR, across the 8 scRNA-seq data sets. It is worth not-
ing that there is still a significant gap between SinNNLR and ScLSTM. The results indi-
cate that our proposed ScLSTM performs exceptionally well on clustering tasks.
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Furthermore, we compared ScLSTM with three different clustering algorithms: 
K-means (KM), spectral clustering (SC), and agglomerative clustering (AG). It should be 
noted that the overall structure of each variant algorithm still adopts the architecture of 
ScLSTM. Table 2 shows the results of three indicators (NMI, ACC, ARI, and BAS) on 8 
data sets using three clustering methods. We can observe that agglomerative clustering 
almost achieves the best results, followed by K-means.

Calculate the number of clusters

The number of cell types in biological research is often unknown. Therefore, deter-
mining  the number of cell types within a data set is crucial for  single-cell clustering 
method. Agglomerative clustering is implemented usingscikit learn’s function (sklearn.
cluster.AgglomerativeClustering). Since POCR and SIMLR require the specification of 
the number of cell types, we supplemented the evaluation of the number of clusters with 
CORR, SNN-Cliq, and SinNLRR on eight data sets. Table 3 presents the results of four 
models for predicting the number of cell types across these eight data sets: ScLSTM, 
SNN-Cliq, SinNLR, and CORR. In addition, we used ScLSTM to predict the number 
of clusters to evaluate the influence of KM, SC, and AG on the ScLSTM model across 
eight data sets using the predicted cluster number. The experimental results are shown 
in Table 4.

Fig. 3  ACC, ARI, BAS, and NMI heatmaps of Corr, POCR, SIMLR, SinNLRR, SNN-cliq, ZIFA, and ScLSTM on 8 
single-cell data sets
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Compared different siamese networks

To verify the effect of siamese LSTM on the effectiveness of the ScLSTM model, we pro-
pose a variant model, sigLSTM, for comparison. The sigLSTM removes one of the two 
identical LSTMs from the Siamese network portion of ScLSTM. The sigLSTM use the 
extracted feature matrix to obtain the final results through agglomerative clustering. 
We compare sigLSTM and ScLSTM on the 8 real scRNA-seq data sets listed in Table 1. 
These data sets are derived from different species and sequencing platforms, and they 
vary in data scale. The experimental results are presented in Table 5, which displays the 

Table 3  ScLTM, SNN-Cliq, SinNLRR, and CORR estimate the number of clusters on eight datasets

Data set True clusters ScLTM SNN-Cliq SinNLRR CORR

Yan [13] 7 5 11 6 2

Goolam [14] 5 2 17 5 3

Camp [15] 7 6 32 7 4

Pollen [16] 11 10 21 11 5

Biase [17] 4 4 7 4 3

Usoskin [18] 4 5 27 4 2

Kolodziejczyk [19] 3 3 7 3 3

Li [20] 9 8 18 9 4

Table 4  The influence of KM, SC, and AG on the ScLSTM model is evaluated on eight data sets using 
the predicted cluster number

The best results are shown in bold

Data set ARI NMI ACC​ BAS

Biase 1 1 1 1

Yan 0.8965 0.8997 0.9 0.9733

Goolam 0.773 0.7527 0.8548 0.9082

Camp 0.8285 0.8926 0.888 0.9472

Kolodziejczyk 1 1 1 1

Li 0.9171 0.9358 0.934 0.9688

Usoskin 0.9865 0.9741 0.9887 0.9916

Pollen 0.9567 0.9765 0.9601 0.9932

Table 5  The ARI, NMI, ACC, and BAS of sigLSTM and ScLSTM models are evaluated on eight data 
sets

The best results are shown in bold

ARI NMI ACC​ BAS

sigLSTM ScLSTM sigLSTM ScLSTM sigLSTM ScLSTM sigLSTM ScLSTM

Biase 1 1 1 1 1 1 1 1
Yan 0.9081 0.9122 0.8940 0.9133 0.8667 0.8778 0.9458 0.9650
Goolam 0.1393 0.9925 0.201 0.9651 0.3871 0.9758 0.5665 0.9965
Camp 0.5399 0.8356 0.743 0.8984 0.6345 0.8842 0.8032 0.9462
Kolodziejczyk 0.0448 1 0.0404 1 0.4688 1 0.5229 1
Li 0.887 0.9527 0.8885 0.9573 0.8966 0.975 0.9435 0.9736
Usoskin 0.9801 0.9885 0.963 0.98 0.9887 0.9952 0.9914 0.994
Pollen 0.5975 0.9584 0.7581 0.9793 0.6645 0.9601 0.8044 0.9934
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optimal outcomes of ScLSTM and sigLSTM after 50 computation repeats for fourevalu-
ation metrics (ARI, NMI, ACC, and BAS) on 8 distinct data sets. Across the Biase, Yan, 
Goolam, Pollen, Li, Kolodziejczyk, and Usoskin data sets, the ScLSTM model consist-
ently outperforms the sigLSTM model. In conclusion, the ScLSTM model demonstrates 
superior performance  across all 8 real scRNA-seq data sets generated by various single-
cell sequencing platforms.

The performance of ScLSTM on scRNA‑seq data

Visual comparison of ScLSTM on eight datasets

Biologists utilize scRNA-seq data visualization  techniques to identify cell 
subpopulations,with t-distribution Stochastic Neighbor Embedding (t-SNE) being one 

Fig. 4  A The visualization results of ScLSTM on eight data sets with TSNE and annotated each cell type; B The 
visualization results of eight data sets directly after agglomerative clustering
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of the most commonly employed methods. To demonstrate ScLSTM’s ability to distin-
guish cell types more intuitively, we visualized the results of ScLSTM on 8 data sets with 
t-SNE and annotated each cell type (Fig. 4A). As a comparison group, we visualized the 
results of 8 data sets directly after agglomerative clustering (Fig. 4B). It is evident from 
the visualizations that ScLSTM can effectively distinguish different cell types in each 
dataset, and the boundaries are clearly defined, allowing for intuitive categorization. In 
contrast, Fig. 4B shows that agglomerative clustering alone struggles to distinguish dif-
ferent categories. In the 8 data sets, various cell types are mixed to varying degrees, and 
not all cell categories can be distinguished in the Biase, Usoskin, and Goolam data sets.

Performance of ScLSTM on 10x Genomics dataset

On small-scale data sets (ranging  from 50 to 800 cells), ScLSTM  consistently demon-
strates superior performance. To highlight  ScLSTM’s capability  to identify cell types 
in large-scale single-cell RNA-seq data containing thousands of cells, we conducted 
experiments on two publicly available data sets obtained from the 10x Genomics web-
site. The Jurkat data set includes both Jurkat and HEK293T cell lines. The Jurkat cell 
line comprises 3258 293T cells, and the HEK293T cell line includes 2885 Jurkat cells, 
both sequenced using UMIs and Drople-based protocols. The sc_10x_5cl dataset was 
sequenced using the 10x Chromium Genomics protocol. Figure 5 displays the 3D vis-
ual classification results of the two data sets after ScLSTM processing,showcasing clear 
boundaries between different cell categories with no confounding elements. Figure  6 
presents the ARI, NMI, ACC, and BAS results of three different clustering methods on 
sc_10x_5cl and Jurkat data sets. It is evident that AG yields the best results. These find-
ings demonstrate that ScLSTM performs exceptionally well on large-scale data.

Human breast cancer cell type detection with ScLSTM

To demonstrate the robustness and generalizability of ScLSTM, we apply it to the breast 
cancer single-cell data set supplied by Chung et al. [12]. This dataset consists of 515 cells 
from 11 breast cancer patients, representing 4 types of breast cancer subtypes: luminal 

Fig. 5  Visualization of ScLSTM results on sc_10x_5cl and Jurkat datasets
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A, luminal B, HER2, and triple negative breast cancer (TNBC). Pathological testing con-
firmed the following four breast cancer markers: ER-positive (BC01 and BC02; lumi-
nal A), ER/HER2-positive (BC03; luminal B), HER2-positive (BC04, BC05, and BC06; 
HER2), and triple-negative (BC07-BC11; TNBC) invasive ductal carcinoma. In addition, 
regional lymph nodes were collected from the luminal B (BC03LN) sample and a triple-
negative breast cancer (BC07LN) sample.

The results obtained by ScLSTM by Agglomerative Clustering are visualized using t-SNE. 
As depicted in Fig. 7, ScLSTM generates 6 clusters, each corresponding to a different cell 

Fig. 6  ARI, NMI, ACC and BAS results of sc_10x_5cl and Jurkat datasets based on ScLSTM model on three 
clustering algorithms (KM, SC, and AG)

Fig. 7  Visualization of the cells in breast cancer dataset (GSE75688) based on the t-SNE learned similarity 
matrix from ScLSTM
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type. ScLSTM separates different cell types into distinct clusters. Importantly, ScLSTM sep-
arates BC07LN and BC03LN from other cell types and maintains a clear boundary between 
them. It can be observed from Fig. 7 that although there are distinct  boundaries between 
BC03LN and BC03, the two block structures are very close, which is related to the siamese 
network structure of ScLSTM. Overall, all visualizations demonstrate   that the siamese 
LSTM structures excel at learning cell-type features and improving clustering performance.

Discussion
In single-cell transcriptome analysis, grouping individual cells based on gene expression 
data is valuable for characterizing cellular composition in tissues, distinguishing devel-
opmental stages, and understanding the pathological process of tissues. Differences in 
the distribution of scRNA-seq data and an unequal number of cell types are significant 
obstacles to detecting single cell types. To address this, we propose a meta-learning 
model called ScLSTM, composed of an LSTM network with an improved sigmoid kernel 
framework. ScLSTM describes the features of each cell using various hidden units, and 
the cell semantic representation obtained by mining gene expression sequences is better 
appropriate for describing cell types.

We conducted validation experiments and in-depth analyses on 8 scRNA-seq data sets 
and two 10x Genomics from various single-cell sequencing platforms. Using default hyper-
parameters, ScLSTM consistently yields the highest ARIs, NMIs, ACCs, and BASs com-
pared to other clustering methods. The experiment results illustrate the viability and efficacy 
of our proposed ScLSTM for detecting single cell types in datasets with varying scales and 
distributions. Unlike the Corr, POCR, and SIMLR methods, ScLSTM can directly compare 
the slight differences between two cells and magnify the difference between cell types.

ScLSTM’s success is contingent on its novel feature extraction and integration style. 
Unlike other approaches, ScLSTM locates the perspective of feature extraction at the dif-
ference between two cells, ensuring that the properties of all individual cells help distin-
guish between cell types. Compared to conventional single-cell type detection methods, 
the feature extraction from ScLSTM is more accurate and closer to the target classifi-
cation. As scRNA-seq demonstrates its distinct benefits in biomedicine, we expect that 
ScLSTM will provide researchers with accurate single-cell clustering services.
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