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Abstract 

Background:  Breast cancer is a highly heterogeneous disease that comprises multiple 
biological components. Owing its diversity, patients have different prognostic out-
comes; hence, early diagnosis and accurate subtype prediction are critical for treat-
ment. Standardized breast cancer subtyping systems, mainly based on single-omics 
datasets, have been developed to ensure proper treatment in a systematic manner. 
Recently, multi-omics data integration has attracted attention to provide a comprehen-
sive view of patients but poses a challenge due to the high dimensionality. In recent 
years, deep learning-based approaches have been proposed, but they still present 
several limitations.

Results:  In this study, we describe moBRCA-net, an interpretable deep learning-based 
breast cancer subtype classification framework that uses multi-omics datasets. Three 
omics datasets comprising gene expression, DNA methylation and microRNA expres-
sion data were integrated while considering the biological relationships among them, 
and a self-attention module was applied to each omics dataset to capture the relative 
importance of each feature. The features were then transformed to new representa-
tions considering the respective learned importance, allowing moBRCA-net to predict 
the subtype.

Conclusions:  Experimental results confirmed that moBRCA-net has a significantly 
enhanced performance compared with other methods, and the effectiveness of multi-
omics integration and omics-level attention were identified. moBRCA-net is publicly 
available at https://​github.​com/​cbi-​bioin​fo/​moBRCA-​net.

Keywords:  Attention, Breast cancer subtype classification, Deep learning-based 
framework, Multi-omics, Neural network

Background
Breast cancer is one of the most frequently diagnosed cancers and is the second leading 
cause of death among women worldwide [1]. Breast cancer has been characterized as a 
heterogeneous disease composed of diverse biological factors, including genetic compo-
nents and epigenetic modifications, that differentially impact on the prognostic and clin-
ical outcomes of patients [2]. This diversity represents a challenge for the development 
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of systems to classify breast cancer, which are clinically useful with respect to prognosis 
and prediction [3]. The development of microarrays has led to a new paradigm in deci-
phering cancer heterogeneity, allowing to divide breast cancers into subtypes based on 
their molecular profiles [4]. Pioneer studies by Sorlie et al. revealed the molecular prop-
erties of human breast cancer and proposed a patient stratification system according to 
the clinical outcomes of their cancer subtype, classifying breast cancer into five intrin-
sic subtypes: luminal A, luminal B, HER2 overexpression, basal-like, and normal-like 
cancers [5]; which have been further supported by several other studies based on gene 
expression profiling. Moreover, Parker et al. presented the PAM50 model that was based 
on the signature genes related to the hormone receptor, proliferation, and myoepithelial 
and basal features [6], which has become a standardized subtyping system that can be 
widely applied in the clinical setting. Accurate prediction of the breast cancer subtype 
based on those categories has become crucial to cancer prognosis, which helps for ther-
apeutic decision making and to ultimately improve patient outcomes [7].

In recent years, several classification frameworks to predict the molecular subtypes of 
breast cancer have been reported. For example, Rhee et al. presented a hybrid approach 
integrating graph convolutional network and relation network using gene expression 
profiles and protein–protein interaction networks [8]. Gao et al. [9] designed DeepCC, 
an algorithm of enrichment score calculation for each gene expression profile of cancer 
samples based on the selected gene sets, which classified the breast cancer subtypes by 
implementing the fully connected neural network model using those scores. Beykikho-
shk el al. [10] proposed a framework to classify the gene expression signatures of lumi-
nal A and luminal B breast cancer subtypes by calculating the personalized biomarker 
scores based on the attention mechanism. Lee et  al. [11] developed a cancer subtype 
prediction framework using pathways by modeling a multi-attention-based graph con-
volutional network, which presented a stable performance for classifying breast cancer 
subtypes. Zhezhou et al. [12] performed differential expression analysis on biologically 
important genes from gene regulatory networks and constructed a machine learning-
based binary classification model for each breast cancer subtype with the obtained dif-
ferentially expressed genes.

However, classification approaches based solely on single-omics datasets only pro-
vide information on a single molecular level. These approaches fail to provide a com-
prehensive view of the biological processes involved in breast cancer and cannot capture 
correlations between molecules from different layers [13]. To overcome this limitation, 
efforts for collecting multi-omics datasets from each subject have been made [14, 15], 
and integrative approaches combining multi-omics data have been proposed to discover 
the coherent biological signature, and improve the prognostic and predictive accuracy 
of disease phenotypes [16]. Various studies have shown that combining multiple omics 
datasets yield better understanding and more accurate prediction to clinical outcomes, 
thereby proving the importance of integrating multi-omics datasets over single-omics 
[17, 18]. Indeed, this approach was adopted to breast cancer studies. For example, List 
et  al. constructed random forest models to classify breast cancer subtypes using both 
gene expression and DNA methylation datasets, and evaluated the performance of the 
model when was trained based multi-omics in comparison with that of single-omics-
based classification [19]. Further, an approach to integrate mRNA, methylation, and 
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copy number variation (CNV) data using a multiple kernel learning model has been pro-
posed for breast cancer subtype prediction [20]. However, due to the high dimensional-
ity of the multi-omics data, the classification performance of those models did not show 
significant improvement compared with that of single-omics-based approaches.

Recently, deep learning-based multi-omics data integration has shown robust perfor-
mance in several applications, including patient clustering, survival analysis [21], and 
biomedical classification. MOGONET [22] jointly trained the omics-specific learning 
and cross-omics correlation learning for several classification applications including 
the tumor grade classification, and MOMA [23] presented a multi-task attention learn-
ing algorithm for disease prediction based on two omics data integration. Supported by 
those results, a similar approach was also developed for breast cancer subtype classifica-
tion. HI-DFNForest [24] employed neural network-based deep forest model to integrate 
DNA methylation, microRNA, and gene expression datasets. In turn, DeepMO [25] 
applied fully-connected layers to each omics (DNA methylation, mRNA, and CNV data) 
and concatenated those subnetworks for final subtype prediction. These neural network-
based frameworks showed good subtyping performance; however, these breast cancer 
subtype classification models are still limited by the difficulty to explain how they are 
trained, to define which features from each omics dataset play a key predictive role, and 
whether those models assign more weights to these features. To solve these issues caused 
by the black-box nature of neural networks, self-attention mechanisms [26] have been 
presented, which allow neural networks to focus on important regions of input data for 
better prediction by training the model to learn the relative importance of each feature 
of the input data. This novel approach has been widely employed in single-omics-based 
studies, including for breast cancer subtype classification [10, 11]. However, due to the 
high costs of computing a large number of features and the significant complexity of 
omics integration, multi-omics-based methods have not been easily adopted.

In the present study, we propose moBRCA-net, an omics-level attention-based breast 
cancer subtype classification framework that uses multi-omics datasets. Dataset inte-
gration was performed based on feature-selection modules that consider the biological 
relationship between the omics datasets (gene expression, DNA methylation, and micro-
RNA expression). Moreover, for omics-level feature importance learning, a self-atten-
tion module was applied for each omics feature, and each feature was then transformed 
to the new representation incorporating its relative importance for the classification 
task. The representation of each omics dataset was concatenated and delivered to the 
fully connected layers to predict the breast cancer subtype of each patient.

Methods
Our moBRCA-net framework consists of four modules: preprocessing, multi-omics data 
integration, omics-level feature importance learning, and classification. The workflow of 
our model is shown in Fig. 1.

Dataset

The breast cancer (BRCA) cohort datasets were collected from The Cancer Genome 
Atlas (TCGA) [14]. Three types of omics datasets—gene expression, DNA methyla-
tion, and microRNA expression—were obtained. Patients who did not have all three 
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omics data available were excluded. Breast cancer subtype information for each 
TCGA BRCA sample was retrieved from PAM50 [6]. Overall, a total of 1059 samples 
were divided into five subtypes, as shown in Table 1.

Preprocessing

For gene expression and microRNA expression data, we first removed genes and 
microRNAs for which read counts were not available for all samples. After calcu-
lating size factors, the read counts were normalized by library size and were log-
transformed using DESeq2 [27]. For DNA methylation data, both DNA methylome 
datasets measured by Illumina Human Infinium 450 K and 27 K platforms were used, 
with common features of both datasets being used for further analysis. To eliminate 
the bias caused by a high frequency of missing values during model training, median 
imputation was performed, in which CpG sites with missing values for all samples 
were removed, resulting in the retention of 20,400 genes, 19,977 CpGs, and 1597 
microRNAs.

Fig. 1  Illustration of the proposed BRCA subtype classification model based on a multi-omics data 
integration

Table 1  Number of samples for each breast cancer subtype

Breast cancer subtype Number of 
samples

Luminal A 556

Luminal B 200

HER2-enriched 182

Basal-like 81

Normal-like 40
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Multi‑omics data integration

To prevent a possibility of overfitting and expensive computational costs to train the 
neural network model, we constructed a feature selection module to integrate the multi-
omics datasets. First, the genes remaining after preprocessing were evaluated concern-
ing their informativity as a breast cancer signature by performing differential analysis 
that compared them to matched normal samples using DESeq2. Genes with an absolute 
value of log (fold change) greater than 2 and an adjusted p-value less than 0.01 was con-
sidered as differentially expressed genes (DEGs). We constructed the gene set composed 
of 1000 DEGs with the highest log(fold change) values and the lowest adjusted p-value.

To integrate the multiple omics datasets based on their biological relationship, we 
identified the other omics features related to the selected DEGs. Studies have shown 
that promoter-associated CpGs play important roles in gene silencing, genomic imprint-
ing, and cancerigenesis [28–30]. After preprocessing, CpGs within 2 kb of the promoter 
regions of each DEG were grouped to form a cluster (hereafter referred to as CpG clus-
ter), where the average of the beta values were calculated. DEGs without matched CpGs 
in the perprocessed dataset were filtered out to focus on features related to other omics. 
In addition, microRNAs control the function of their target mRNAs by downregulating 
the expression of their targets [31]; thus, they have been recognized as drivers of diverse 
disease conditions including cancer [32]. microRNAs showing target interaction with 
the identified DEGs were selected based on the TargetScan database [33].

Omics‑level feature importance learning

To learn the features playing a key role for classifying the breast cancer subtypes and 
better understand the relative importance of those features, we implemented the omics-
level self-attention module into our model. Given a set of original input data x ∈ R

n , 
where n represents the dimension of the input data, we defined the k-dimensional 
embedding vector ei for each feature i ∈ {1 : n} using random vectors and represented xi 
to x̂i via multiplication as follows [10]:

The original input x was transformed to a new representation x̂ with the embedding vec-
tors x̂ ∈ R

n×k . To learn the level of importance for each feature to predict breast cancer 
subtype, each feature x̂i was assigned an attention score αi as follows:

(1)x̂i = fe(ei, xi) = eixi

(2)x̄i = tanh(WFCx̂i + b)

(3)si = Wh2tanh(Wh1x̂i + b)

(4)αi =
exp(si)
n
j=1 exp(sj)

(5)ci =

n∑

i=1

αix̄i,
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where WFC , Wh1 , and Wh2 are the weights and b is a bias term. si is the attention score 
that represents the importance of each feature x̂i , which was converted to a normal-
ized weight αi by applying the softmax function. Based on the calculated values, x̂i was 
transformed to a dense feature representation ci by the weighted sum of the encoded 
feature vectors x̄i and their normalized attention scores αi . The self-attention module 
was applied to each omics dataset, and the transformed feature representation of each 
module was concatenated and delivered to the subtype classification module.

Subtype classification

The classification module was constructed with two fully connected layers followed 
by the softmax function layer to achieve the final breast cancer subtype classification. 
moBRCA-net was trained to minimize the cross-entropy loss, defined as follows:

where C represents the number of breast cancer subtypes, and y ( ̂y ) is the true (model 
predicted, respectively) subtype probability distribution. To prevent overfitting, dropout 
[34] was applied, and L2 regularization was also added to the loss function. We used the 
adaptive moment estimation (Adam) optimization algorithm [35] for training.

For optimization, we randomly selected 70% of the samples as a training dataset and 
the remaining 30% of the samples as test dataset. The experiment was repeated three 
times for each hyperparameter combination, and the architecture showing the best 
average accuracy result was set as our moBRCA-net model. The dimensions of the 
embedding vector k and encoding vector x̄ were set as 128 and 64, respectively, and the 
dimension of the attention vector s and α were the same as the number of features. For 
the classification module, two fully connected layers with 200 and 5 hidden nodes were 
used with the ELU activation function. The dropout rate was set to 0.7 for both training 
the omics-level attention and the classification module. The learning rate and training 
epoch were set as 0.01 and 5000, respectively. The optimization results from the experi-
ments with different parameters are shown in Additional file 1: S1. Performance results 
for optimizing the number of selected features during the multi-omics integration are 
also shown. Our proposed model was built using Tensorflow library (Version 1.8.0).

Results
Evaluation of moBRCA‑net performance

To evaluate the ability of moBRCA-net to classifying breast cancer subtypes, we 
compared its performance with that of widely-used machine learning(ML)-based 
classifiers: Support vector machine (SVM) [36], Random Forest (RF) [37], Logis-
tic Regression (LR) [38], and Naive Bayes (NB) [39], which were implemented using 
the Scikit-learn package [40]. Following the same optimization procedure used for 
moBRCA-net, the baseline methods were optimized based on the TCGA-BRCA data-
set, where the training and testing datasets were randomly split to the ratio of 7:3. 
Grid search was adopted for the model tuning. For each combination of hyperparam-
eters, the experiment was repeated five times, and the parameters showing the highest 

(6)L = −

C∑

i=1

yi · log(ŷi),
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average accuracy for the testing dataset were selected (Additional file 1: S2). The opti-
mized hyperparameter settings for each classifier are as follows: SVM (kernel = rbf, C 
= 23 , gamma = 2−7 ), RF (criterion = gini, estimators = 100, min_samples_leaf = 3), 
LR (max_iter = 100, C = 2). Tenfold cross validation was performed, where the train-
ing dataset of each fold was used for the multi-omics data integration and training the 
model, and testing dataset was only used for measuring the performance, not being 
included to any other steps. For comparison methods, the same multi-omics features 
selected from moBRCA-net were used, and the accuracy, the weighted F1-score, and 
MCC were adopted as evaluation metrics. To show the significance of performance 
differences between the comparison methods and our proposed method, the Wil-
coxon signed rank test was performed.

Overall, moBRCA-net (denoted as ’moBRCA-net (omics-attn)’) significantly out-
performed the other ML-based classifiers with an average accuracy of 0.891, F1-score 
of 0.887, and MCC of 0.831. SVM showed the second-best performance with 0.866, 
0.861, and 0.808 for the average accuracy, F1-score, and MCC respectively (Fig.  2, 
Additional file  1: S3). Regarding the highest performance obtained, our proposed 
model achieved an accuracy and F1-score of 0.934 and 0.934, respectively. Subtype-
wise performance results for our moBRCA-net (omics-attn) is shown in Additional 
file 1: S4. Next, we compared the performance of our model with that of the state-of-
the-art cancer subtype classifier models, HI-DFNForest and MOGONET. We could 
not reproduce the experiments using HI-DFNForest since the authors did not make 
available its implementation code. Nevertheless, we carefully performed the same 
evaluation based on fivefold cross validation following the same experimental setting 
described in the HI-DFNForest report. moBRCA-net showed a higher average accu-
racy of 0.897 as compared with HI-DFNForest, which achieved an average accuracy 
of 0.846. MOGONET was also compared following the same experimental setting in 
the paper. The dataset was randomly split to the ratio of 7:3 as a training and testing 
dataset, and the method was evaluated on five different randomly generated splits. 

Fig. 2  Performance comparison of machine learning classification methods with moBRCA-net and its 
variants by tenfold cross-validation. For significance testing, Wilcoxon signed rank test was performed using 
the performance results from moBRCA-net (omics-net) and results from each baseline method. Notations: ns 
Not significant; **p-value < 0.01
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From the results, moBRCA-net achieved the higher average accuracy of 0.867 and the 
weighted F1-score of 0.864, outperforming the MOGONET having the average accu-
racy of 0.815 and the weighted F1-score of 0.821.

Our moBRCA-net has shown the performance improvement compared to the baseline 
classifiers, but still the data imbalance issue could impact the prediction performance in 
a subtype-specific fashion, where there is a large difference between the number of sam-
ples for each subtype. We performed an additional experiment to investigate a strategy 
to alleviate this concern while training a classifier. For better generalization of moBRCA-
net, we adopted a data augmentation based on the deep generative model to enlarge 
the training dataset size. Several recent papers have shown that conditional variational 
autoencoder (CVAE)-based data generation for certain minority classes in the imbal-
anced dataset improved the classification performance in various domain tasks such as 
respiratory disease classification [41], temporal pattern prediction based on electronic 
health records [42], and prediction of chemical structure based on the chemical prop-
erties [43]. We constructed a conditional variational autoencoder (CVAE) composed 
of two-layered encoder and decoder, which estimates the conditional distribution with 
latent variables and data, and generates samples for specified breast cancer subtype. For 
each fold dataset in tenfold cross validation, CVAE was optimized based on the train-
ing dataset and generated the samples for each subtype to match the same number of 
samples for“Luminal A” subtype having the largest number of samples. Those generated 
samples were added while training moBRCA-net, and the performance was measured 
for the testing dataset. From the results (Additional file 1: S5), the overall performance 
of moBRCA-net as well as the subtype-wise performance slightly improved compared 
to the model trained without the generated dataset. These results support that data aug-
mentation strategy could help to alleviate the impact from the imbalanced dataset while 
training our model. The implementation code for our CVAE is provided in our GitHub 
repository.

Effectiveness of each module in moBRCA‑net

Next, we investigated the performance improvement of moBRCA-net by the introduc-
tion of the omics-level attention modules for feature importance learning. We imple-
mented two variants of moBRCA-net, in one a single-attention module was applied to 
all features at once, and in the other the attention module was removed to directly clas-
sify the breast cancer subtypes, which were denoted as ’moBRCA-net (single-attn)’ and 
’moBRCA-net (no-attn)’, respectively. tenfold cross-validation was performed to meas-
ure performance. Without the attention module, the classification performance was 
comparable to that of the SVM, showing an average F1-score of 0.864 (Fig. 2, Additional 
file 1: S3). However, when the single attention module was applied, moBRCA-net aver-
age F1-score was improved to 0.872. Interestingly, by applying omics-level attention, the 
performance significantly increased to 0.887. These results demonstrate the effectiveness 
of the attention modules to learn the importance of the features of each omics dataset 
and train the model to focus more on those that play a key role in breast cancer subtype 
prediction. These experiments also suggest that applying attention at the proper level 
has an impact on learning the features and modeling the classification module.
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Before constructing the neural network model, we integrated multi-omics based on 
the feature selection and grouping of related CpGs to create CpG clusters. Thus, we eval-
uated next the impact of each of these steps on breast cancer subtype prediction. First, 
we evaluated the classification performance by changing the feature-selection method in 
moBRCA-net and compared it with that of two widely used feature selection methods: 
support vector machine-recursive feature elimination (SVM-RFE) [44] and RF. The same 
number of genes was selected as the number of DEGs in moBRCA-net based on the clas-
sification task for predicting cancer and normal samples. Next, related CpG clusters and 
microRNAs were extracted based on the selected genes. From the tenfold cross valida-
tion results (Fig. 3, Additional file 1: S6), we could observe that DEG-based feature selec-
tion achieved the highest performance in terms of both accuracy and F1-score, showing 
that the DEG-based method detects more discriminative features for identifying cancer 
and normal samples, which may include the representative genes for each subtype.

Furthermore, we investigated the impact of the CpG clusters by comparing the clas-
sification performance of moBRCA-net based on single CpG-based multi-omics inte-
gration using different feature selection methods (Fig.  3). Interestingly, when utilizing 
CpG clusters, the average classification performance significantly improved for DEG-
based method (from F1-score of 0.864 to 0.908) and RF (from 0.845 to 0.866). SVM-RFE 
showed a slight performance increase (from 0.86 to 0.866). We also observed that CpG 
cluster-based approaches achieved the best accuracy and F1-score compared with sin-
gle-CpG approaches for all cases using different feature selection methods. We assumed 
that CpGs located in regions relatively close to the promoter may share a similar meth-
ylation status, which could represent the methylation patterns related to breast cancers, 
consequently leading to performance improvement for subtype prediction.

Breast cancer subtype prediction improvement by multi‑omics integration

To validate whether utilizing multi-omics datasets could effectively improve the clas-
sification of breast cancer subtypes, we compared the performance of moBRCA-net 

Fig. 3  Subtype classification performance integrating multiple omics datasets with different feature 
selection methods based on tenfold cross validation. For significance testing, Wilcoxon signed rank test was 
performed using the CpG-cluster-based performance results and results based on the single-CpG for each 
feature selection method. Notations: ns Not significant; *p-value < 0.05
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when using different combinations of multi-omics datasets and a single-omics dataset. 
We denoted gene expression as ’gene’, DNA methylation as ’methyl’, and microRNA as 
’microRNA’. In this experiment, moBRCA-net showed a relatively higher performance 
when trained based on multi-omics compared with single-omics data (Table 2). Multi-
omics dataset integrating gene expression, DNA methylation patterns, and microRNA 
expression achieved the highest average accuracy of 0.909 and F1-score of 0.908. Breast 
cancer subtype classification performance also slightly increased when two omics data-
sets were used, but incorporation of three omics datasets still achieved a much higher 
classification improvement. These results indicate that multi-omics data provides more 
comprehensive information to distinguish breast cancer subtypes.

Interpretation of omics‑level attention for breast cancer subtype classification

To understand how omics-level attention helped improve the performance of the 
model to accurately classify breast cancer subtypes, we interpreted the attention 
scores of moBRCA-net. First, to directly compare the abundance difference between 
the feature subtypes with the highest attention scores, we visualized the normalized 
gene expression values and beta values of those features obtained from samples of 
each breast cancer subtype. One-way analysis of variance [45] was performed to test 

Table 2  Average classification performance for breast cancer subtype classification using different 
omics datasets

Wilcoxon signed rank test was performed using the performance results using all three omics dataset and results from each 
combination of different omics dataset

Multi-omics Single omics

Gene + methyl 
+ microRNA

Gene + methyl Gene + 
microRNA

Methyl + 
microRNA

Gene Methyl MicroRNA

Accuracy 0.909 0.865 0.889 0.820 0.863 0.817 0.85

F1-score 0.908 0.857 0.886 0.807 0.852 0.806 0.842

p-value – < 0.05 < 0.05 < 0.01 < 0.05 < 0.01 < 0.01

Fig. 4  Normalized values of the features from each omics dataset showing the top average attention scores
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the statistical differences between the subtypes. From the results (Fig. 4, Additional 
file  1: S7), Overall, we could conclude that the features with the highest attention 
scores showed significant differences across the five subtypes with p-value < 0.01 , 
indicating that the attention module trained moBRCA-net to assign more weights 
for the features having discriminative power for classifying the subtypes.

Studies have shown that DNA methylation regulates gene expression in breast 
cancer, with hypermethylation leading to the silencing of regulatory genes, whereas 
hypomethylation activates genes required for metastasis, consequently resulting in 
uncontrolled growth and cancer progression [46]. DNA methylation shows distinct 
patterns for each breast cancer subtype;thus, it has the potential to be used as a sub-
type-specific marker [47]. We hypothesized that the attention module would assign 
more weight to the biologically relevant features and identify the features showing 
a negative correlation ( < −0.5 ) for each subtype. From each omics dataset, 200 fea-
tures showing the highest average attention scores across patients were selected and 
the Pearson correlation between those features was analyzed. We identified feature 
pairs showing a negative correlation in different breast cancer subtypes, excluding 
the pairs of the normal-like subtype. NDRG2 showed a negative correlation with 
the CpG cluster composed of cg14030359 and cg18081258 in the basal subtype, and 
STAT5 showed negative correlation with the CpG cluster composed of cg03001305 
and cg16777510 in the luminal A, B, and basal-like subtypes. These results were 
consistent with that of recent reports that showed that basal-like cancers more fre-
quently present abundant NDRG2 expression in association with CpG-hypometh-
ylation, with is associated with aggressiveness and unfavorable outcomes in the 
basal-like subtype [48]. STAT5 expression is a predictive factor for hormone ther-
apy response and strong prognostic molecular marker in ER-positive breast cancer 
[49]. Indeed, STAT5 was shown to be significantly downregulated in patients with 
basal-like cancers [50]. Furthermore, it has been reported that the DNA methyla-
tion pattern of cg03001305 is associated with STAT5 in low-density cholesterol [51]. 
Similar investigations were performed regarding the herein selected microRNAs to 
identify negative correlations between them and target genes; however, significant 
results were difficult to find, which could be due to the relatively small number of 
microRNAs included in our framework compared with other omics studies. Top 200 
features showing the highest average attention scores across patients for each omics 
were provided in Additional file 1: S8.

In addition, we used the Molecular Signature Database (MSigDB) [52, 53] collec-
tions and PAM50 [6] gene sets to explore whether the top 200 genes showing the 
highest average attention scores across patients have overlap with those known gene 
sets. From MSigDB, 10 types of gene sets [54] were obtained, where each set con-
sists of genes either up or down-regulated in each breast cancer subtype. For PAM50 
genes, during the multi-omics data integration step, most of the genes were filtered 
out, and only 18 genes were left as the input for the classifier. As a result, 53 genes of 
the top 200 genes were the functional genes known for the breast cancer subtype (51 
genes from MSigDB and 2 genes from PAM 50). We listed the overlapped genes with 
the corresponding gene set collection name in the Additional file 1: S9.
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Discussion and conclusion
In this study, we describe moBRCA-net, a self-attention-based breast cancer subtype 
classification framework based on multi-omics integration. Gene expression, DNA 
methylation, and microRNA expression were integrated considering their biologi-
cal relationships, and an omics-level attention module was implemented to identify 
and learn the important features critical for cancer classification. The model was then 
evaluated and compared with ML-based established methods. Overall, moBRCA-net 
outperformed the previously reported models in breast cancer subtype prediction. 
Moreover, we investigated the effectiveness of each module in moBRCA-net for clas-
sification improvement. Attention scores were interpreted to validate whether our 
model could concentrate on features highly relevant to cancer subtype classification.

The major contribution of our study resides within the multi-omics data integra-
tion strategy. To maintain the biological relationship between the multi omics features 
while integration, feature selection module was constructed to identify the informative 
breast cancer signature genes and the relation between the identified genes and other 
two omics features were built based on the promoter and the target relationship. Moreo-
ver, we employed the omics-level attention module to first train the classifier to capture 
the relative importance of each feature for each omics data. Features were transformed 
to new representations considering the respective learned importance. These lead the 
breast cancer subtype classifier not to ignore the distribution difference of each omics 
dataset and to integrate multi-omics more efficiently by reducing the dimensionality of 
each omics. This is also supported by the experiments performed in our study (Fig.  2 
in the “Evaluation of moBRCA-net performance” Section) as well as the experiments 
shown in the MOGONET and MOMA paper presented for disease classification tasks, 
where the variant of the proposed classifiers without the omics-specific learning showed 
less prediction performance compared to the original models.

moBRCA-net showed a high prediction performance, but there are still some bot-
tlenecks that could be further improved. For example, due to the limitation of the 
computational resources, feature selection was performed to reduce the number 
of features for training our model. Also, if the model could learn the dependency 
between the omics features directly via graph network, it could potentially be able to 
extract useful relations between the features of different omics datasets. In the future, 
we plan to extend our moBRCA-net platform to utilize graph neural networks.
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