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Abstract 

Background: Advances in imagery at atomic and near-atomic resolution, such as cry-
ogenic electron microscopy (cryo-EM), have led to an influx of high resolution images 
of proteins and other macromolecular structures to data banks worldwide. Producing 
a protein structure from the discrete voxel grid data of cryo-EM maps involves inter-
polation into the continuous spatial domain. We present a novel data format called 
the neural cryo-EM map, which is formed from a set of neural networks that accurately 
parameterize cryo-EM maps and provide native, spatially continuous data for density 
and gradient. As a case study of this data format, we create graph-based interpretations 
of high resolution experimental cryo-EM maps.

Results: Normalized cryo-EM map values interpolated using the non-linear neural 
cryo-EM format are more accurate, consistently scoring less than 0.01 mean absolute 
error, than a conventional tri-linear interpolation, which scores up to 0.12 mean abso-
lute error. Our graph-based interpretations of 115 experimental cryo-EM maps from 
1.15 to 4.0 Å resolution provide high coverage of the underlying amino acid residue 
locations, while accuracy of nodes is correlated with resolution. The nodes of graphs 
created from atomic resolution maps (higher than 1.6 Å) provide greater than 99% 
residue coverage as well as 85% full atomic coverage with a mean of 0.19 Å root mean 
squared deviation. Other graphs have a mean 84% residue coverage with less specific-
ity of the nodes due to experimental noise and differences of density context at lower 
resolutions.

Conclusions: The fully continuous and differentiable nature of the neural cryo-EM 
map enables the adaptation of the voxel data to alternative data formats, such as a 
graph that characterizes the atomic locations of the underlying protein or macromo-
lecular structure. Graphs created from atomic resolution maps are superior in finding 
atom locations and may serve as input to predictive residue classification and structure 
segmentation methods. This work may be generalized to transform any 3D grid-based 
data format into non-linear, continuous, and differentiable format for downstream 
geometric deep learning applications.
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Background
Proteins serve an enormous amount of functions within organisms. Their functionality 
is prescribed by the form of their tertiary structure, which is the three-dimensional spa-
tial arrangement of the composite amino acids. The sequence of amino acids that form 
the polypeptide chain, or the primary structure, ranges from tens to many hundreds of 
residues. Each primary structure is deterministic and, when folded into its native state, 
produces a unique tertiary structure. A viral capsid, for example, is composed of one or 
more repeating protein tertiary structures [1]. The SARS-CoV-2 pandemic demonstrates 
the importance of modeling protein functions, as they relate to understanding the virus’s 
interactions, propagation, drug treatment, and infection prevention via vaccines.

The field of 3D electron microscopy (3DEM) is fundamental to the determination and 
validation of protein structures. Traditional methods such as X-ray crystallography and 
nuclear magnetic resonance (NMR) spectroscopy have helped fill protein data banks 
with tens of thousands [2] of structures that are used in fields such as drug and vaccine 
development. Cryo-EM, a relatively newer single-particle technique for samples pre-
pared at cryogenic temperatures [3], has been shown as a source of high quality, high 
resolution structure maps [4]. The recent improvements in data processing and compu-
tation speed have given cryo-EM the ability to capture atomic resolution [5] and near-
atomic resolution images of protein quarternary structures and other macromolecular 
structures. High resolution 3DEM is crucial to further solving and refining of protein 
structures.

Protein structure determination via computational methods are based on the read-
ily available primary structure. They are faster than cryo-EM in producing a structure 
output, which may take many months per structure [6], however the complexity posed 
by large sequences and inter-woven structures is a limiting factor. Though methods are 
rapidly improving, even the state-of-the-art methods, such as AlphaFold2, AlphaFold 
[7], and Zhang-Server [8] as demonstrated in recent CASP competitions [9], do not 
extend to predicting multi-domain structures. In contrast, cryo-EM imaging techniques 
observe structures in their natively folded state, providing the role of both structure 
determination and experimental validation.

Many tools exist to supplement the production of cryo-EM maps in the various stages 
of map development [10–12]. Once a map is produced, there still remains a non-trivial 
step of aligning the primary structure to density regions within the map [13]. Despite 
the imaging improvements, experimental maps often contain noise and other artifacts 
that lead to a time-consuming and manual structure determination process supported 
by cryo-EM maps visualization tools [14, 15]. A number of solutions exist for the partial 
[16, 17] and full [18] automation of this process. Deep learning has also demonstrably 
improved both the automation and execution time of producing predicted protein struc-
tures in cryo-EM maps [19, 20].

Fundamental to the operation of these tools is the transition from the 3D grid-aligned 
voxel data format of the cryo-EM map to a continuous spatial coordinate system. Sim-
ply labeling the original voxels with atomic types will not produce an accurate tertiary 
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structure prediction as the native size of high resolution cryo-EM voxels generally range 
from 0.5 to 1.5 Å. With high resolution cryo-EM maps, we assume that areas of high 
density are indicative of atomic locations. Existing prediction methods use various 
amounts of sub-sampling the maps with tri-linear interpolation and averaging of density 
values to determine atomic locations. However these types of interpolation cannot glob-
ally produce both non-grid points as well as density maximums, for the calculated maxi-
mums lie on the voxel grid. Non-linear interpolation methods are necessary in order to 
calculate density maximums that lie off the voxel grid.

Graphs are an intriguing data format for proteins and other molecular structures due 
to their physical similarity to the underlying data, and compared to cryo-EM images, 
the graph data format is much more condensed and concise. Graph-based methods and 
graph convolutional networks (GCN) [21, 22] are gaining popularity for tasks related to 
proteins, such as protein-protein interaction (PPI) [23, 24], protein function classifica-
tion [25, 26], and primary structure alignment onto tertiary structures [27, 28]. Creating 
a graph from the cryo-EM format relies on the ability to find dense points in the map, 
however, the variation of density values for similar atoms and the presence of noise in 
experimental maps are challenging for voxel thresholding techniques (Fig. 1a).

In this paper, we present a novel data format for high-resolution cryo-EM maps that 
can produce a fully continuous, non-linear interpolation of the EM data using neural 
network representation. Namely, the SIREN architecture [29] provides the basis for the 
interpolation. Our implementation automatically converts native 3D array data to the 
so-called neural cryo-EM maps and retains the ability to accurately reproduce the origi-
nal input. This format may be extended in many ways, and as a case study, we create a 
novel graph-based interpretation of cryo-EM maps based on the neural network rep-
resentation on the basis that there is a correlation between atomic locations to points 
of high density within the cryo-EM map. We show that the graph coverage of the cryo-
EM data and node placement is well-suited for additional predictive methods, including 
deep geometric learning, to determine molecular structure.

Fig. 1 a A threshold high enough to distinguish separate clusters of voxels is too high for many side chain 
atoms and atoms on the periphery of the protein structure (orange), demonstrated using EMD-11103. 
The dark gray voxel data is not uniformly representative of all atoms given a high-pass filter value, which 
illustrates the need for a better representation of the map. b Localized view of graph nodes (blue) created by 
our method for the atomic resolution map EMD-11103 human apoferritin (transparent gray) and the atom 
locations of the corresponding deposited structure PDB-6z6u (orange)
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Results
A dataset of 115 experimental cryo-EM maps and corresponding PDB-deposited [2] 
structures across the range of high resolutions ( ≤ 4 Å) serves as the basis for the experi-
ments presented in this paper. While the methods presented in this paper may be applied 
to maps of resolutions lower than 4 Å, the application toward representing atomic loca-
tions is diminished due to the reduced correlation in those maps of dense points with 
atomic locations. By constructing simulated maps from the deposited structures at the 
reported experimental cryo-EM resolutions, the neural cryo-EM map’s capability for 
interpolation is evaluated, comparing it against a tri-linear interpolation. Experimen-
tal cryo-EM maps are used to present a novel use for this data format, a graph-based 
interpretation of cryo-EM maps. We evaluate the graphs’ coverage of the underlying 
structure along with the accuracy of node placement with respect to residue and atom 
locations. The results are also compared to the prediction output of the state-of-the-art 
cryo-EM modelling tool DeepTracer [20].

Non‑linear Interpolation

Simulated cryo-EM maps, created using Chimera’s molmap tool [14], are constructed 
from the sum of resolution-dependent Gaussian functions centered on atomic locations, 
providing determinism throughout the spatial region of the map. This determinism acts 
as the control in the evaluation of the interpolation capability of the neural cryo-EM 
map format. For each deposited structure in the 115-map dataset, the reported reso-
lution of the corresponding cryo-EM map is used as the target resolution for molmap. 
Two simulated maps are created per entry, one with the tool’s default voxel size of (reso-
lution/3), which is equivalent to the ratio seen in typical experimental maps, to serve as 
the input to experimental interpolators and the other with a voxel size of 0.2 Å to serve 
as the control for interpolated values. We chose the value of 0.2 Å to show the ability to 
interpolate across the entire range of resolutions in our dataset without exceeding the 
memory resources of our test system in the case of the voxel maps. All other arguments 
remain their default value.

We evaluate the interpolations against the control by the metric of mean absolute 
error (MAE) with the initial and control maps’ voxel values normalized to the range 
of [0, 1]. The voxels of simulated maps have the value of zero in empty regions of the 
map. The neural cryo-EM map format, by its nature, contains a very low level of global 
background error correlated to the amount of loss existing at the exit point of the train-
ing loop, which influences a global MAE calculation. This error is absent in a tri-linear 
interpolation, and to reduce the influence of the known neural error, only the voxels of 
the control that contain a non-zero value are used in the comparisons of the types of 
interpolations.

As shown in Fig. 2, the interpolation performance of the neural cryo-EM map format 
is an order of magnitude more accurate to the true values of simulated map, consist-
ently showing a MAE of < 0.01 , and it does not appear to worsen with a decrease in 
resolution. The tri-linear interpolation not only worsens with decreasing resolution, it is 
unable to capture non-linearity of the underlying data, effectively performing a smooth-
ing of density peaks in the map. The overall average MAE for the tri-linear interpolation 
is 0.066, but rises to 0.12 for the lowest resolutions in the range. In contrast, the learned 
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neural representations of the maps are able to not only capture the non-linearity but also 
preserve the ability to interpolate density values higher or lower than the initial maps’ 
inputs.

In very high resolution simulated maps, the interpolation performance is exceptionally 
high at about 0.0005 MAE, but the gap in performance between the two interpolators is 
not pronounced. This is likely due to the rapidly diminishing Gaussian function around 
atomic locations of the underlying control map, which means that the original simulated 
map has already captured much of the density data. The amount of interpolation per-
formed is also less in these cases due to the initially small voxel sizes on those maps. 
For example, an atomic-level resolution map simulated at 1.2 Å has a voxel size of 0.4 
Å, meaning only 2 voxels are interpolated for every voxel of the original source. The raw 
results for this experiment are included in Additional file 1.

As shown, the neural cryo-EM map format contains the ability to capture the non-
linearity of underlying data, preserve density peaks, and provide spatially continuous 
and differentiable data. This leads to many extensions of the data format beyond what 
the conventional voxel representation provides. One such format is a graph, which we 
present in the next section.

Graph‑based Interpretation

A density graph is created from a neural cryo-EM map by seeding the map with points, 
incrementally adjusting the points’ positions in the direction of their gradient vectors 
and stopping when a peak is detected, clustering the points using the DBSCAN [30] 
algorithm, and calculating the centroid of each cluster. Candidate nodes are placed at the 
centroid locations and connected with edges based on an adjacency threshold and sub-
graph constraints using the NetworkX [31] library.

From our dataset of 115 experimental cryo-EM maps, there are six maps at or below 
1.6 Å resolution, which we consider “atomic resolution” to be inclusive of the upper 
bound for typical peptide bond lengths [32]. The dense points in these maps are largely 

Fig. 2 Plot comparing the mean absolute error of linear and the neural interpolation against 115 simulated 
cryo-EM maps. The neural interpolation significantly outperforms the tri-linear interpolation and does not 
suffer worse performance as resolution increases



Page 6 of 19Ranno and Si  BMC Bioinformatics          (2022) 23:397 

correlated to individual atoms, as opposed to the general location of the amino acid resi-
dues. Table 1 shows the evaluation the cryo-EM density graphs from atomic resolution 
maps against all atoms documented in their respective deposited structures. The con-
straint in the sensitivity and specificity calculations is a 1 Å radius around atoms and 
nodes. Considering just the C α atoms, typically the most prominent atoms in amino acid 
residues, the density graphs provide a coverage of 99.4% . For all atoms documented in 
the PDB-deposited structure, the density graphs provide an average 85.2% coverage as 
well as an average 88.4% specificity rating of nodes to atoms. The RMSD of the matching 
nodes to their respective atomic locations is very low with a mean value of 0.19 Å across 
the atomic resolution density graph set. Figure 1b depicts an atomic resolution density 
graph compared with the deposited structure and the voxel grid data. The raw results for 
this experiment are included in Additional file 2.

Due to the nature of the method as essentially a “dense point detector,” the context 
of what a node might represent differs between cryo-EM resolutions. In the < 1.6 Å 
range, dense points largely represent individual atoms of the protein residues, including 
the atoms in the both the backbone and side chains. With other high resolution maps 
≤ 4 Å, the dense points are more indicative of amino acid residue locations, but are not 
precisely atomic locations. Despite this, the C α atom locations of the deposited struc-
ture serve as the basis for evaluating the graph’s of near-atomic resolution maps because 
every amino acid residue contains one, and they are relatively centrally located in a given 
residue. At the near-atomic resolution, nodes and residues are considered matched if a 
node is within 3 Å of the C α atom. The raw results for the C α portion of this experiment 
are included in Additional file 3.

Our results (Fig. 3) show a clear delineation along the boundary of atomic and near-
atomic resolutions. The near-atomic resolution graphs ( > 1.6 Å) have a mean RMSD of 
1.13 Å and 84.5% match. As resolution decreases, the graphs’ performance in these met-
rics decreases, which is expected. Interestingly, a jump in RMSD values appears between 
the atomic and near-atomic resolution maps, suggesting the possibility that in the lat-
ter maps the most dense point in a local area does not correspond exactly to the C α 
location.

The results of node sensitivity to residue locations are competitive when comparing 
against the C α predictions of the tool DeepTracer (Fig. 4). DeepTracer [20] is a method 
for de novo protein structure prediction from high resolution cryo-EM maps that uses 

Table 1 Evaluation of cryo-EM density graph node locations against all atomic locations contained 
in the PDB-deposited structure file

The sensitivity is the percentage of atoms that match exclusively with a node within 1 Å. The specificity is the percentage of 
nodes that match exclusively with an atom within 1 Å

EMDB ID PDB ID Resolution (Å) RMSD (Å) Sensitivity (1 Å) Specificity (1 Å)

Atomic resolution density graphs

11668 7a6a 1.15 0.138 87.98 96.21

11638 7a4m 1.22 0.192 87.00 88.81

11103 6z6u 1.25 0.147 88.73 95.34

11669 7a6b 1.33 0.151 84.25 94.32

22657 7k3v 1.34 0.226 78.82 89.44

11121 6z9e 1.55 0.291 84.44 66.28
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a U-Net [33] deep convolutional network as the basis for amino acid residue location 
and type annotations. While the methods are not exactly similar in output, the com-
parison provides context to the sensitivity metrics of the density graphs. By assuming 
every node is a potential C α atom, the overall matching percentage of output to C α 
locations is 85.3% and 85.0% for the graphs and DeepTracer predictions respectively. 
Though the RMSD values of the density graph nodes are worse than the C α predictions 

Fig. 3 For all experimental maps in the 115-map dataset: the root mean square deviation (RMSD) of the 
closest node to Cα atoms (left), the percentage of C-α atoms of the deposited structure that have a node 
within 3 Å (middle), and the percentage of total nodes that are within 3 Å of a Cα atom in the deposited 
structure (right). Superimposed on the scatter graphs is the average value across all points at the given 
resolution in 0.1 Å increments

Fig. 4 Performance of graph construction compared to predictive output of DeepTracer. The map-wise 
comparison of the root mean square deviation (RMSD) of nodes and Cα predictions (upper-left), map-wise 
comparison of the percent of the deposited structure’s Cα atoms that have a node or prediction within 
3 Å (upper-right), and the same values but plotted against the corresponding resolutions (lower-left and 
lower-right respectively)



Page 8 of 19Ranno and Si  BMC Bioinformatics          (2022) 23:397 

of DeepTracer overall, an average of 1.09 Å against 0.72 Å, the graphs in the atomic reso-
lution range outperform the output of DeepTracer.

Discussion
The increasing deposition of maps at high resolutions is a promising sign for the use of 
our data format and graph-based interpretation in a system of producing atomic struc-
tures and types. The density graphs best characterize atomic locations from cryo-EM 
maps at atomic resolution, and we are unaware of an automated method that performs 
as well for finding atoms in maps of this resolution. The main significance of this method 
over simpler methods, such as a simple high-pass filter and clustering method, is that 
it handles variations of density values present in experimental cryo-EM maps. Visually 
inspecting the maps shows that the threshold for a high-pass filter that is high enough to 
capture individual atoms is too high to capture atoms in side chains and on the periph-
ery of the protein (Fig. 1a). Our method is able to find density peaks due to the superior 
interpolation performance of the underlying neural cryo-EM format.

With the cryo-EM density graph creation method applied to 115 experimental cryo-
EM maps, it has the additional challenge of dealing with the noise and artifacts present 
in experimental maps. In order to support dense point detection for both atomic and 
near-atomic resolution cryo-EM maps, our method does not discriminate between 
dense points that are relatively close together; there is no further filtering of graph nodes 
beyond the initial clustering and adjacency thresholding. Additionally, with our generic 
initial threshold value calculation, the seed points of some maps may either correspond 
to noisy regions or may not cover the entire imaged structure. While the specificity of 
density graphs created from atomic resolution cryo-EM maps is high, over the full range 
of high resolution maps, the specificity of nodes correlated to amino acid residues is rel-
atively low. The rightmost plot in Fig. 3 shows this with an average of 61.9% of density 
graph nodes within 3 Å of any C α atom, and the variance of this specificity metric is high 
for density graphs based on near-atomic resolution cryo-EM maps.

As previously stated, experimental noise is a contributor to poorer specificity, and 
it may be mitigated by a more dynamic or user-influenced initial map threshold. We 
replaced the generic seed-point threshold with the author-recommended contour value, 
normalized to the scale of the neural cryo-EM data, as the seed point threshold for a 
density graph created from EMD-10815. This graph had a high sensitivity with 99% of 
C α atoms matching with a node, but was the worst scorer in specificity, showing only 
3% of nodes within 3 Å of a C α location. This suggested the presence of extensive experi-
mental noise at the initial contour, and, indeed, the re-creation of the graph with the 
author-recommended threshold resulted in an increase of specificity measurement to 
56% while maintaining a 99% sensitivity to C α locations. Density graphs with low sen-
sitivity were, however, not improved by manually adjusting the seed-point threshold to 
author-recommended values.

It is also important to highlight that the basis for the cryo-EM density graphs is 
density peaks, whose meaning changes depending on the resolution of the origi-
nal cryo-EM map, and this fluidity of context affects the calculation of sensitiv-
ity and specificity to concrete locations. Our methods are applicable to maps of any 
resolution, but the application of our methods toward atomic location prediction is 
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diminished as the resolution decreases beyond high resolution. Cryo-EM density 
graphs are inherently descriptive of molecular structure but lack the ability to discern 
atomic types. We argue that our graph-based interpretation of cryo-EM maps, based 
on the neural cryo-EM format, is adequate for inclusion in workflows that allow for 
tailored user interaction in order to provide a boost in node specificity toward molec-
ular structures and type annotation. Fully automated molecular description pipe-
lines may still benefit from our graph format. Given the demonstrated sensitivity, the 
cryo-EM density graph is suitable as a pre-processing or initial step in an ensemble of 
other predictive and refinement methods that operate on graph data structures that 
may further derive macromolecular context.

Figure 5 illustrates the potential downstream uses of the neural cryo-EM map and 
density graph by researchers. Given a goal of applying deep geometric learning tech-
niques to cryo-EM maps, we created a graph data structure from the neural represen-
tation. Deep geometric learning applications exist beyond atomic location prediction, 
which was a focus of this paper. For example, portraying the cryo-EM data as a density 
graph is necessary to apply geometric learning techniques for noise segmentation or 
resolution validation. The graph data structure closely resembles atomic bonds, which 
leads application of geometric learning in tracing the protein backbone polypeptide 
chain or aligning the primary structure onto a predicted tertiary structure. The availa-
bility of density and gradient values from the neural format lead to extensions toward 
several other types of data structures for additional applications. For example, rather 
than density peaks, a point cloud based on density may be constructed from the neu-
ral cryo-EM map for the purpose of detecting continuous density regions or domain-
level predictions. Utilization of the gradient features of the cryo-EM map, given by 

Fig. 5 Potential downstream applications of the neural cryo-EM format with items shown in this paper 
having solid edges. The format itself may be extended to create density graphs, as we have in this paper, or 
other structures such as a point cloud. Neural cryo-EM maps may also be used directly for tasks such as local 
density interpolation. Using graph-based machine and deep learning, the graphs created from the neural 
cryo-EM format may be used to predict individual amino acid type, using maps of atomic resolutions, or 
other predictive functions depending on the resolution of the original map
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the neural representation, may also be useful for detecting the surface of proteins and 
segmenting multiple protein chains in a multi-domain structure. With an accurate, 
natively continuous and fully differentiable cyro-EM representation, the neural cryo-
EM map enables the application of continuous mathematics, rather than discrete, 
toward creating alternative representations of the cryo-EM data.

Conclusion
The native voxel format of cryo-EM maps does not provide density information in a spa-
tially continuous manner, rather it discretizes the density data to a grid whose intervals 
are not of sufficient size to accurately label atomic locations. The format is additionally 
unsuitable as input to deep geometric learning methods for the purpose of atomic loca-
tion segmentation. Current methods for atomic location prediction serve well in creat-
ing a compatible format, but involve a redundant prediction task which supplants the 
involvement of deep geometric learning. This belies the need for an effective global 
interpolator to extract density features in high resolution maps to create nodes of a 
graph that are representative of atomic locations.

In this paper, we presented a novel data format of cryo-EM maps called the neural 
cryo-EM map as well as a graph extension of the format that, when applied to atomic 
and near-atomic resolution cryo-EM maps, form high-coverage, accurate representa-
tions of the underlying molecular structure. The neural cryo-EM format offers superior 
interpolation performance compared to conventional tri-linear interpolation, effectively 
capturing non-linearity of the optimal cryo-EM map imagery across the range of high 
resolutions. The ability to interpolate cryo-EM map data is preserved in experimentally 
produced maps as well, validated by using the interpolation to detect locations of density 
peaks, which correlate to atomic locations. Despite no additional predictive or refine-
ment methods, graphs created from the neural cryo-EM map and detected dense points 
show similar residue sensitivity to DeepTracer and greatly surpass it for maps of atomic 
resolution. Density graphs created for cryo-EM maps of atomic resolution cover over 
85% of all atoms in the structure, with the specificity of the nodes equally as high.

The graph data format is especially intriguing with regards to protein representation 
and structure determination. While our graph node and edge feature vectors are simply 
spatial data and density data, the high sensitivity of the node placement shows that they 
may serve as the basis for further predictive methods that use graphs, such as graph con-
volutional networks. The creation of graphs based on cryo-EM data may facilitate the 
combination with and integration of methods generally used in other areas of protein 
structure prediction, such as domain prediction and sequence alignment. As shown by 
the relatively low specificity and highly contextual nature of our cryo-EM density graph 
nodes, opportunities to improve our graph format exist, largely in the area of handling 
noise present in the experimental maps.

As the resolution of cryo-EM maps continues to be driven higher, the demonstrated 
ability of this format to capture and detect dense locations becomes important to driving 
future automated methods for determining structure. We chose to implement a graph 
interpretation of cryo-EM maps, however, due to the nature of the underlying neural 
cryo-EM format, graphs are not the only possible extension. The accurate interpola-
tion and ability to sample a continuous spatial region may also be used to create other 
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interpretations, such as point clouds. Additionally, as the cryo-EM data is not con-
strained by voxels and instead represented by neural networks, the format opens the 
possibility of being integrated into advanced machine and deep learning systems.

Methods
The basis for our continuous and non-linear interpolation of cryo-EM maps is the use 
of one or more neural networks that parameterize the underlying map, producing EM 
density values given spatial coordinates. Though there is an extremely diverse set of pos-
sible neural network architectures for this task, the SIREN network architecture has 
been shown superior to other network types in ability to accurately represent natural 
signals [29]. The sine layer presented by Sitzmann et al. uses, along with a specific weight 
initialization scheme, a sine function to wrap a linear transformation of the vector x , 
with a weight matrix W and biases b: y = sin(Wx + b) . The success of SIRENs in pre-
serving the derivatives of the original signals is also of particular note, underlying the 
architecture’s performance in interpolation tasks. We propose that extending the archi-
tecture to three-dimensional images would show success in signal representation and 
interpolation.

Pre‑processing

Cryo-EM maps are deposited and stored in the EM databases as three-dimensional 
arrays, where each index contains a density value. The array axes, commonly referred 
with the labels i, j, and k, are correlated to real spatial coordinates by their respective 
voxel size in that axis. Each map contains a header that describes voxel sizes, which may 
not be uniform in each axis, as well as the relationship of the i, j, and k axes to the spatial 
coordinate axes, which we label x, y, and z. Cryo-EM maps may not be consistent with 
other maps in terms of the arrangements of axes in relation to spatial coordinates. We 
account for this by maintaining that the SIREN network inputs are the x, y, and z coordi-
nates respectively and transposing the voxel data to be consistent with this arrangement.

The density values of cryo-EM maps are unit-less and are not consistent between 
maps. Therefore we apply a normalization to the values across the entire map to the 
range of [ −1, 1 ] which is suitable for training SIRENs. This is a two-step process. The 
first pass of normalization sets the negative density values of the original map to the 
lower bound of zero and scales the remaining values to the range of [0, 1].

The second pass expands the range to [ −1, 1].

Initially, the variation in cryo-EM map shape led to the approach of varying the neural 
network size accordingly. However, after experimenting with the parameters for scaling 
the networks, the range of cryo-EM map sizes proved to be too large to effectively scale 
the networks. Even medium-sized maps took an incredibly long time in the SIREN train-
ing stage, due to both the size of the network and number of voxels used in training. By 

(1)d1 =
0 d0 ≤ 0
d0−dmin

dmax−dmin
d0 > 0

(2)dtrain = 2d1 − 1
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using a static neural network architecture across one or more sub-regions of the cryo-
EM map, the training time of the entire map scales linearly with the voxel count. This 
approach also leads to a straightforward multi-GPU strategy when creating neural rep-
resentations for cryo-EM maps that require multiple SIREN networks.

The voxel data of cryo-EM maps are divided into three-dimensional sub-regions of 
voxels with the maximum length of any axis of the sub-region being limited to 64 voxels. 
Each sub-region overlaps with its neighboring sub-regions along each coordinate axis 
by no less than four voxels. If the total number of voxels in a given axis is nv , the starting 
index for each region in , is calculated using the region size vr , the number of regions nr , 
and the spacing interval s.

These calculations are performed per axis, and the results are used to slice the voxel 
data into sub-regions. The sub-region voxels are used to train distinct SIRENs, and the 
boundaries are used in querying density and gradient values, as shown in Eqs.  4 and 
5. For each sub-region in the both training and data retrieval, the x, y, and z coordi-
nates contained within the region are interpreted as a floating point value in the range of 
[ −1, 1 ], normalized from the minimum and maximum values of x, y, and z in the given 
sub-region.

Training

Cryo-EM maps are pre-processed and divided into overlapping sub-regions with a 
maximum size of 64 voxels in each axis, where each sub-region is allocated a distinct 
SIREN neural network. Each network is unique per the given voxel region, and it is 

vr =
{

nv nv < 64

64 nv ≥ 64

nr = ⌈
nv − vr

vr − 4
⌉ + 1

s =
nv − vr

max(nr − 1, 1)

(3)in = ⌊(n− 1)s⌋, n ∈ {Z | 1 ≤ n ≤ nr}

Fig. 6 Architecture of each SIREN used to represent a region of voxels. There are 256 hidden features per 4 
hidden layers with a final linear layer to output the cryo-EM density given an spatial coordinate
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not interchangeable between maps. The network architecture (Fig.  6) is a fully con-
nected multi-layer perceptron with a sinusoidal input layer, four hidden sinusoi-
dal layers with 256 features, and a final linear output layer. Weights are initialized 
in the network from uniform distributions U(−

√
6/n,

√
6/n) for the first layer and 

U(−(1/ω0)
√
6/n, (1/ω0)

√
6/n) for the subsequent layers, with n = 256 and ω0 = 30 . 

With three input dimensions and one output dimension, the network fully loaded with 
the maximum sub-region size results in roughly 4 GB of memory space, which may be 
accommodated by most GPUs commonly used for deep learning. The network architec-
ture and sub-region size were determined to balance spatial coverage, training time, and 
non-volatile storage space. We use the PyTorch [34] framework for neural network and 
many data manipulation operations.

The SIREN training process utilizes the observed periodic behavior of the network fit 
improving for many epochs and then briefly regressing, leading to an overall network 
fit improvement for each of these cycles. Using the mean squared error (MSE) as the 
loss function along with the Adam optimizer [35], the network is trained to its “natu-
ral fit point”, which we define as the point at which the lowest MSE loss value, lmin , has 
not been improved for 25 epochs while 0.00001 ≤ lmin < 0.0004 . If lmin < 0.00001 , the 
training loop exits immediately. In practice, this reduces the noise ceiling for cryo-EM 
regions with relatively smoother contents, such as empty space. Since the goal of SIRENs 
is to fit the network to all the voxels in the map, there are no separate data splits for vali-
dation and testing. The separate nature of each SIREN leads to the ability to parallelize 
the training of a neural cryo-EM map over multiple GPUs.

Data Retrieval

When allocating spatial coordinates to sub-regions, we observed discontinuities in the 
output values when using hard boundaries between sub-regions. Therefore, we employ 
a strategy of weighing the output of the distinct networks by the coordinate’s position 
along the axes of overlap and performing an average with the output of all networks 
that contain the coordinate. Once the SIRENs are trained, the sub-regions are patched 
together such that any spatial coordinate p in the cryo-EM map exists at a point where 
sub-regions overlap along n axes, and given that sub-regions were created to overlap 
strictly along the coordinate axes, the possible values of n are 0, 1, 2, and 3. The nominal 
case, n = 0 , means only one neural network r0 is used to produce the output dout:

In the off-nominal cases, 1 ≤ n ≤ 3 , for each axis overlap there are two regions rn1 and 
rn2 that produce output at the coordinate. The network outputs are weighted by the cor-
responding coordinate component’s distance along the overlap and averaged with any 
other overlapping axes:

(4)dout = r0(p)

(5)
wn1 =

rn1end − pn

rn1end − rn2start
,wn2 = 1− wn1

dout =
∑3

n=1 wn1rn1(p)+ wn2rn2(p)

n
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The density value is query-able at any point in the neural cryo-EM map. To allow for 
meaningful human inspection and rendering of SIREN output in common 3DEM tools 
such as Chimera [14] and Coot [15], we transform a query’s SIREN output, dout , from 
the internal nominal range of [ −1, 1 ] to the nominal range of [0, 1] to give the final out-
put d.

The actual values, d , are not strictly constrained to the range of [0, 1] in order to allow 
the network to interpolate beyond the range of the initial training data.

While the neural cryo-EM data format provides the ability to sample density data from 
anywhere in the map, it is important to distinguish that it does not increase the data 
resolution. The data format provides a non-linear interpolation of density that is fully 
continuous and differentiable. This format may be employed and extended in different 
ways, but for this paper we present a novel graph-based format constructed using the 
neural cryo-EM map.

Cryo‑EM Density Graphs

Our graph-based interpretation of cryo-EM maps is an extension of the neural cryo-
EM map format. The nodes of the graph describe the locally dense spatial coordinates 
throughout the map. The context of the nodes in relation to the molecular structure 
depends on the resolution of the underlying cryo-EM map. In general, for high resolu-
tion maps, the intention is for nodes to correspond to amino acid residue locations. The 
lack of cryo-EM map annotation means that the resulting feature vector of each node 
is composed of four values: the three-dimensional spatial coordinate and the density at 
that location. Each edge of the graph may contain an optional feature vector, depending 

(6)d =
dout + 1

2

Fig. 7 Overview of the creation process of the density map graph. (1) Transpose, if necessary, voxel data in 
the map to align with a consistent XYZ view. (2) Divide the map into regions of max. 64× 64× 64 voxels that 
overlap by no less than four voxels in each axis. (3) Train a SIREN for each region using one or more GPUs in 
parallel. (4) Patch the regions together such that any input coordinate produces an output by Eqs. 4 and 5. 
(5) Use the neural cryo-EM format to seed the spatial area with points and iteratively walk the points along 
their gradients to density peaks. (6) Cluster the points into nodes and connect them based on an adjacency 
threshold
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on the intended use of the graph in a future downstream implementation. The edge’s 
feature vector is a single dimension with the value of the edge’s length. See Fig. 7 for an 
visualization of the complete density graph creation process.

The method by which the graphs are created relies heavily on the fully continuous and 
differentiable nature of the neural cryo-EM representation. At any spatial coordinate 
contained in the cryo-EM map, the neural format may be queried for a density value 
and a gradient vector, which gives the magnitude and direction of density increase. The 
graph creation is the ensemble of summarily naive steps which are made possible by the 
neural cryo-EM format. We employ a global generic thresholding mechanism to filter 
out irrelevant regions of the cryo-EM map. When creating the neural cryo-EM map, the 
mean and standard deviation of the normalized SIREN training data are retained. The 
threshold value T is given as T = µ+ 3σ , and seed points are determined by sampling 
the entire map with a 0.5 Å step size in each axis, discarding points below the value of T.

Each seed point is iteratively moved along its gradient vector until a density peak is 
detected (Algorithm 1). The density peak is the point of highest detected density while 
traversing the gradient vector with a step size of 0.05 Å. For each step iteration, the point 
location and density are retained for reference against the next step in order to compare 
densities and provide the correct position in the results. It is possible that traversing in 
the direction of the gradient results in points exiting the spatial domain of the map. In 
this case, the seed point is simply removed from the pool of seed points.

Once all density peaks have been reached, the DBSCAN [30] clustering algorithm is 
performed on the points. For our case, two points are considered part of the same clus-
ter if they are within 0.2 Å of the other point, and points without a neighbor within that 
range are considered their own cluster. While this latter setting decreases the specificity 
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of the node placement and makes it more susceptible to noise, we found that the tradeoff 
with an increase of overall sensitivity was worth it. The centroid is calculated for each 
cluster as a potential graph node.

While our graph evaluation is focused on the node placement and representation 
of the underlying deposited structures, graphs are not simply a set of nodes. We con-
nect nodes with edges based on an arbitrary spatial adjacency threshold two times 
greater than the reported resolution of the underlying cryo-EM map, which we found 
to balance the resiliency against potential missed atomic locations with the presence 
of noise in the final graph. In order to create the edges, a pairwise adjacency matrix is 
computed over all nodes, and any indices whose value is below the threshold are used 
to create node pairs. Nodes without edges are removed from the graph. The remain-
ing nodes and edges compose the output graph-based interpretation of a cryo-EM 
map.

Data Sets

This paper derives two sets of cryo-EM data, one of simulated maps and the other of 
experimental maps, from the same source. The base for the datasets is all the high res-
olution ( ≤ 4 Å) cryo-EM maps from the EM Data Resource [36] that have an associ-
ated PDB deposition. Each deposition is often one of many from a given publication, 
and we filter the base dataset for only the map and corresponding structure of highest 
resolution from each publication. This significantly reduces the number of duplicate 
and very similar entries in the data pool.

From this data pool, entries are grouped by resolution rounded to the nearest 0.1 Å. 
Up to five entries are randomly selected from each group to represent that slice of the 
resolution range. If five maps entries are not available in a group, then all the entries of 
the group are selected. Additionally, if a cryo-EM map of a selected entry contains more 
than 5123 voxels, the candidate entry is ignored, and the random selection is retried 

Fig. 8 The distribution of the data set across resolution. There are unrepresented resolutions and a general 
lack of maps at the high end of the resolution range
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with that map removed from the pool. This results in a total of 115 high resolution cryo-
EM maps and corresponding deposited structures. Figure  8 shows the distribution of 
the data across the range of resolutions. While we do not explicitly filter maps based 
on the structural similarity to previously selected structures, an all-against-all compari-
son using the Clustal Omega [37, 38] tool shows that > 75% of the pairs have < 10% 
sequence identity and > 95% of the pairs have < 20% sequence identity.
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