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Background
As the most abundant organism, symbiotic microbiome biomasses in human body 
sites are as rich as the human somatic cells [1]. Traditional culture-based or non-cul-
ture-based methods only detect limited groups of microbes, restricting our scopes on 
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a comprehensive understanding of the entire microbial community. Advances in high 
throughput sequencing technology substantially enhance our powers to characterize the 
microbial community. Up to date, thousands of microbe genomes have been sequenced 
[2]. These large scale sequencing data collected have driven forward a myriad of intrigu-
ing researches, including finding microbiome biomarkers [3, 4], investigating their asso-
ciation with diseases [5, 6], and uncovering the dynamicity of microbial community [7, 
8].

Small-molecule drugs offer new opportunities and has emerged as a new frontier for 
microbiome drug discovery and precision medicine [9]. It has been shown that small 
molecule drugs, like antibiotics, relieve bacterial infection symptoms by controlling the 
overgrowth of pathogens [10]. However, many microbe species have developed drug 
resistance mechanism, especially to several widely used antibiotics [11, 12]. This raises 
the requirement for the investigation and discovery of new drugs. The second concern 
that comes with drug intervention treatment is their adverse effect on other microbes, 
non-pathogenic species or even probiotics [13, 14]. Drug intervention causes microbiota 
compositional change. The current view believes that microbiota homeostasis is a crucial 
healthy feature of our "forgotten organ" [15]. Elimination or diminution of healthy com-
mensal microbes draws dysbiosis in our body site ecologically, and pathogenic microbes 
take this advantage to causes symptoms like diarrhea and nausea [13]. Besides, the dys-
biosis is found to associated with many diseases, including obesity [16], allergy [17], type 
1 diabetes (T1D) [18] and type 2 diabetes(T2D) [19], inflammatory bowel disease (IBD) 
[20], rheumatoid arthritis (RA) [21], autism [22] and cancer [23]. For instance, T1D 
studies have shown that the abundance of Bacteroides in patient group is higher than 
that in the control group [18]. Thus drugs minimizing side effects on other symbiotic 
microbes are desired.

Emerging endeavors in small-molecule microbiome drug discovery continue to follow 
a conventional “one-drug-one-target-one-disease” process. It is often insufficient and 
less successful in tackling complex systematic diseases. Systems pharmacology, which 
aims to modulate multiple microbe targets in the microbiome-microbiome interaction 
network, could be a potentially powerful approach for microbiome drug discovery that 
can solve the aforementioned concerns. There are many data-driven methods and text-
mining-based approaches to construct a microbe–microbe network based on existing 
evidence. For data-driven methods, the networks were inferred based on microbiome 
co-occurrence in the host [24, 25] or dynamic changes in a time course [26, 27]. How-
ever, these methods still suffer many issues, such as the challenge to get comparable 
absolute microbe abundance [28, 29], the difficulty in biological interpretation and the 
requirement of optimization of sampling strategies [30, 31]. Another popular approach 
for constructing the microbe–microbe association network is through automatic text-
mining [32, 33]. These methods are error-prone, biased, and lack biological represen-
tation of complexed microbiome-microbiome associations such as competition and 
corporation.

Microbiome network can also be reconstructed by knowledge-driven approaches. 
Within these methods, network reconstruction is based on knowledge of curated 
metabolites and biochemical reactions. In one study, a global interspecies metabolite 
interaction network, NJS16, is constructed using microbe metabolites consumption 
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and production information and it elucidates the interplay between different species in 
human gut [34]. This network is used as the foundation for building a context-specific 
network, MIN, which models growth rate effect by other species or microbiome com-
munity under certain conditions [34, 35]. NJS16 has also been applied in the construc-
tion of a multi-level trophic model of gut microbiome, which is used to simulate the 
metabolites flows across microbes [36].

Here we constructed a disease-centric gut microbial community network to model 
microbes and microbial community effects on host health. By inferring the microbe–
microbe relationship from their metabolites input and output profiles collected from 
aforementioned genome-scale metabolic modeling [34], we simulate the propagating 
process of microbe effect on host health using a new Signed Random Walk with Restart 
algorithm (SRWR) [37]. We annotated 104 microbe nodes in the network based on their 
effects on host health by manually literature review. To our knowledge, it is the first time 
to integrate the effect of the microbiome on host health into a microbiome-microbiome 
interaction network model. Additionally, our network represents mechanistic relation-
ships between microbiomes and encodes them by positive or negative signed edges. By 
contrast, all existing networks have only a single positive-signed edge and cannot model 
complex interactions between microbiomes. This unique node-labeled signed network 
model enabled us to predict the physiological roles of 409 unannotated microbes in the 
network as potential pathogenic or commensal using SRWR [37]. It is noted that con-
ventional Random Walk with Restart (RWR) and other state-of-the-art methods such as 
Graph Neural Network [38–40] only work on networks with positive-weighted edges. 
Because our network has also negative-weighted edges, a method that can model the 
signed network such as SRWR is needed. Moreover, we need to predict complex label 
propagations such as friend-of-enemy or enemy-of-enemy to determine if an unanno-
tated microbiome is pathogenic or commensal. SRWR is designed to support this type of 
analysis, and more powerful than Signed spectral Ranking (SR) [41] and Modified Pag-
eRank (MPR) [42].

In order to realize systems pharmacology of microbiome, many unanswered ques-
tions remain: what the chemical space is in which the chemical compounds will inhibit 
pathogenic microbiome interactions but not disturb commensal microbiome? if we can 
target multiple pathogenic microbiomes, at the same time not inhibit commensal micro-
biomes? To address these questions, we performed a survey on current knowledge of 
drugs-targets interactions and found a significant number of genes that could potentially 
be drug targets in each microbe based on sequence homology. Our analyses suggested 
that a large number of genes have homologs to existing drug targets. We also identified 
a list of potential protein targets specific to the pathogenic microbe and not to the com-
mensal microbe. Our analyses considered how microbiome interplays with each other 
at the metabolites level and how drugs affect microbe growth through genome analysis. 
This application is not limited to the exemplar analysis performed here. The systematic 
studies of polypharmacological landscape of microbiome network may open a new ave-
nue for the small molecule drug discovery of microbiome.
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Results
A novel disease‑centric microbe–microbe interaction network

We here proposed a new microbe–microbe interaction network, which is inferred 
from each microbe’s metabolite consumption and production profile. Microbes affect 
each other through different mechanisms. (1) They have negative effects on each other 
through competing for the same metabolite resources (Fig.  1A). (2) One microbe can 
have positive effects on others through cross-feeding (Fig. 1A). (3) They can affect other 
microbes positively or negatively by alternating their living environment, like the change 
of pH. (4) They could also form predator–prey relationships. We characterize the first 
two relationships between microbes through inferring an interaction network using 
microbes’ metabolite consumption and production profiles (Fig. 1B). To be specific, the 
extent of negative relationship is calculated as the Jaccard similarity of two microbe’s 
metabolite consumption profiles (Fig.  2A). Intuitively, the more metabolites two 
microbes consume in common, the higher the negative effect they have on each other. 
On the other side, the positive effect is due to the cross-feeding relationship. The extent 
of positive effect is calculated as the Jaccard similarity of one microbe’s production pro-
file and the other’s consumption profile (Fig. 2B). It is worth mentioning that the positive 
relationship between the two microbes is not symmetrical. Finally, the extents of positive 
effect and negative effect are summarized to generate the final edge weights.

The microbe’s metabolite consumption and production profiles were curated else-
where [34]. We include 513 microbe nodes in our network analysis (Fig.  3A and B). 
These 513 nodes form strongly connected component in the network. This network has 
the following merits: (1) The graph can thoroughly represent various types of microbe–
microbe relationships because the graph is directed. The relationships are not limited to 
competition (++) and mutualism (−−), where microbes can positively affect each other 
and negatively affect each other in both directions (Fig. 3C). “ + ” or “−” indicates that 
the microbe has a positive or negative effect on the other in one direction, respectively. It 
can also represent more diverse relationships, including the commensalism (+ 0), para-
sitism (+ −) and amenalism (− 0). 0 here indicates that no relationship is found in a 
specific direction. (2) It is biologically meaningful and straightforward to interpret. (3) 
This microbe–microbe interaction network can avoid the problem in the construction 
of microbiome network based on the abundance correlation of microbiomes, such that 
the correlation is sensitive to the data compositionality and is affected by low-abundance 
[43, 44]. (4) It can be integrated with additional networks that are derived from other 
information (e.g., environmental factors) into a more sophisticated heterogeneous net-
work analysis framework.

As the "forgotten organ" of the human body, the microbiome can help to digest die-
tary macromolecules in gut [45], protect against many common infections [46, 47] 
and maintain human health. On the other hand, infection of pathogenic species can 
cause severe disorders or diseases. The diverse effects of microbes on human health 
make it challenging to analyze and predict the impact of the whole microbiome eco-
system on human health. Many studies have shown that network analysis can effec-
tively model the relationship and interplay between different species in microbiome 
[48]. These interactions are usually represented by the edges connecting two microbe 
nodes. A weight is assigned to denote the association extent and type. However, 
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to our knowledge, these networks haven’t included information about the effect of 
microbes on health. The network that combines the information of both microbe–
microbe interaction and microbe effect on health should be used for analyzing the 
influence of microbiome ecosystem on host health. We manually curated the microbe 

Fig. 1 Illustration of relationships between microbiomes. (A) Microbe A and B compete for metabolite a and 
has a negative effect on each other. This negative relationship is shown with a red arrow. Microbe A and 
microbe C have a cross-feeding relationship. Microbe A can degrade macromolecule a into metabolite c, 
which can be taken by microbe C. Cross-feedings also exist between microbe B and C, and between 
microbe B and D through metabolite c and d, respectively. (B) An example for the calculation of the 
relationship between two microbes. Negative effects are calculated as the Jaccard similarity between 
microbe’s consumption profiles. The positive effect is calculated as the Jaccard similarity of one microbe’s 
consumption profile and another’s production profile. The final effect is the aggregation of the negative 
effect and the positive effect
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function on host health through the literature review. Out of 513 microbes in our net-
work, we curated 72 microbes having pathogenic effects, either as a cause of disease 
or a contributor of human illness, and 32 microbes having commensal effects, helping 
macro-molecules digestion or preventing from infections (Additional files 2 and 3). 
Majority of microbes are still understudied, so their influences on human health are 
not determined due to either lack of evidence or ambiguous descriptions. Some spe-
cies have different strains which have different influence on human health [49]. The 
manually curated information about microbe effects on human health is then added 
in the network as the microbe node attributes. The commensal microbe nodes have 
node weighted as " + 1", while the pathogenic microbe nodes have node weighted as 
"-1". Other nodes that are left unlabeled are then annotated with a predicted value 
using the known microbe nodes attribute and microbe–microbe interaction edge 
information with a Signed Random Walk with Restart algorithm.

Microbe effect annotation with Signed Random Walk with Restart

Because many microbe effects on human health are unknown, we developed a graph 
mining strategy to infer their effects based on annotated network. Using a Signed Ran-
dom Walk with Restart (SRWR) model, each unannotated microbial species was treated 
as a node with an unknown health effect attribute, and tested for how it was influenced 
by the neighboring nodes in the network through corporation (positive signed edge) 
and competition (negative signed edge). The advantage of incorporating SRWR model 
into our analysis was on the fact that the network recognizes both cooperative relation-
ships as well as the competitive relationships, which resembles the true nature of the 

Fig. 2 The Jaccard similarity among microbes’ metabolite consumption and production profiles. A microbe–
microbe negative effect score matrix computed as the Jaccard similarity of their metabolite consumption 
profiles. B microbe–microbe positive effect score matrix computed as the Jaccard similarity of one 
microbiome’s metabolite consumption profile and another’s metabolite production profile
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microbial ecology. The premise of our analysis is that “friend” of “friend” or “enemy” of 
“enemy” will be “friend”, and “friend” of “enemy” or “enemy” of “friend” will be “enemy”.

To assess the accuracy of our predictions, we use the curated data set of the 32 
commensal and 72 potential pathogenic bacterial species that affects human health 
as a benchmark. Using leave-one-out cross-validation, we obtained confusion matrix 
with an average F1 score of 0.905. Specifically, the prediction of positive nodes yielded 
the precision of 0.780 and the recall of 1.000, while the prediction of negative nodes 
yielded the precision of 1.000 and the recall of 0.875. This accurate SRWR algorithm 
yielded the prediction of 135 positive nodes (potentially commensal) and 274 negative 
nodes (potentially pathogenic) for 409 total species without annotations associated 
with human health (Additional file 4).

Fig. 3 Illustration of Microbe–microbe network. A Negative relationships (red edges) between microbes. 
Only the edges with weight lower than − 0.7 are shown for simplicity. B Positive relationships (green 
edges) between microbes. Only the edges with a weight higher than 0.5 are shown for simplicity. C 5 
relationships between microbes, competition (–), mutualism (+ +), commensalism(+ 0), parasitism (+ −) and 
amenalism(− 0) are shown. −, + and 0 denotes a negative effect, a positive effect, and no effect, respectively. 
pathogenic and commensal microbes curated through literature review are labeled in red and green, 
respectively. Other microbes are labeled in gray
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Survey on microbe protein druggability and structural predictability

A microbe protein is denoted druggable if drugs or drug-like chemicals can target this 
protein or its homologs (i.e. proteins in the same gene family) [50]. To have a compre-
hensive view of drug targets space of the microbiome, we included all protein sequences 
of microbe species collected by the Human Microbiome Project (HMP) in our study [2, 
51]. Drugbank and ChEMBL databases are two of the most popular and updated drug-
target interaction databases [52, 53]. Up to date, DrugBank and ChEMBL possessed 
more than 5000 and 15,500 protein target sequences and drug information interact-
ing with these targets. We screened for the homologs of all protein sequences of each 
microbe species in the target sequences set of each drug-target interaction database 
using PSI-Blast[54–56]. The e-value resulting from a specific sequence search indicates 
the number of hits we can get by chance when we search a protein sequence against 
a database. From the plot of the percentage of protein with homologs in each microbe 
versus −log (e-value), we determined that the elbow point of curve is at which e-value 
is around 10e−60 (Fig. 4A). With this e-value as the threshold, we determined that 10% 
and 8% of microbe protein sequences were found to have close homologs in DrugBank 
and ChEMBL targets database. Besides, the structure information of protein is critical 
for the structure-based drug design and polypharmacology [57]. The protein structures 

Fig. 4 Percentage of protein targets in microbiomes that have sequence homologs in different databases, A 
ChEMBL and Drugbank, and B PDB. E-value is the criterion used in the sequence similarity search by BLAST. 
The lower e-value is, the closer homolog is
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saved in Protein Data Bank archive (PDB) are widely used for protein structure pre-
diction, so we searches for the homologs, which show high sequence similarities with 
microbe proteins, in PDB [58]. With e-value at 10e-60, we show that 25% of microbe 
proteins have close homologs in PDB (Fig. 4B).

Drug repurposing analysis shows that drugs for Diabetes have potential to regulate 

microbiomes

A successful treatment for human diseases caused by microbe infection is antibiotic 
intervention, which is used to control the overgrowth of one or a group of pathogenic 
microbes. Due to the overuse of them, many microbes have shown antibiotic resist-
ance [11]. Another problem with some existing drugs is side effects on other symbi-
otic microbe species, which causes microbiome dysbiosis. Thus, disrupting pathogen 
interaction network by targeting multiple pathogenic microbiomes but not disturbing 
commensal microbiomes will be a potential powerful strategy for microbiome drug dis-
covery. Because drug repurposing exhibits more advantages than developing a novel 
drug [59], we perform a computational screen on FDA approved or investigational drugs 
for innovative potential drugs for targeting microbes. To avoid undesirable side effects, 
the drugs should not affect commensal microbes proteins. With this intuition, we search 
for drugs that can potentially affect simultaneously multiple pathogenic microbes and 
avoid undesirable effect on commensal microbes.

We performed the screening on two databases: Drugbank and STITCH. Most chemi-
cals in the Drugbank database are drugs that are FDA approved or under investigation, 
and most of the drug-target interactions have experimental evidence. We collected the 
drugs that could target proteins that are homologs of proteins in 72 pathogenic microbes 
and then excluded those targeting on homologs of proteins in 32 commensal microbes. 
Ultimately, we found 589 drugs that satisfy this constraint (Additional file  5). On the 
other side, parts of compounds in STITCH are predicted drugs that lack experimental 
support. STITCH database also possesses predicted drug-targets interaction for each 
microbe species. Thus the screen includes both drugs and some non-drug compounds. 
Drug-target interactions in the STITCH database have various types, like inhibition, 
activation, and catalysis. We conducted more specific screening by considering each 
interaction type, as described in Methods. On average, one third of compounds in the 
STITCH database are found to have pharmaceutical usage. Finally, we found 170 drugs 
that appear in both STITCH screen and DrugBank screen results (Additional file 6).

We then performed drugs overrepresentation analysis of these 170 drugs. The back-
ground drug list used in this analysis includes all drugs targeting microbe proteins 
homologs. Two analyses are conducted with two different drug classification systems, 
including the anatomical therapeutic chemical classification system (ATC) and the Drug-
bank classification system. Surprisingly, both analyses demonstrate that the drugs used in 
Diabetes are the statistically significantly overrepresented drugs categories (Tables 1 and 2). 
Our predictions are supported by findings of which several anti-diabetic drugs can affect 
microbiome compositions and may harbors anti-bacterial properties, such as Thiazolidin-
ediones (TZDs) and metformin [60]. Even though no direct study and evidence shows that 
the sulfonylureas inhibit pathogens, but one study shows indirect evidences of sulfonylureas 
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affecting the microbes involved in gut metabolism [61]. Besides, it is also worth noting that 
the nitric oxide synthases antagonists & inhibitors are also enriched [62, 63].

Characterization of potential targets specific in pathogenic microbe proteins

We then identify targets that are homologs of pathogenic microbes’ proteins but not those 
of commensal microbes’ proteins. The results can assist in discerning the potential direc-
tions in drug discovery. The scope of target identification is limited to the protein targets 
collected in the Drugbank database. We selected 462 potential proteins. (Additional file 7). 
Functional enrichment analysis was then performed on these selected targets with DAVID 
[64, 65]. The background targets include all found homolog targets of microbes’ proteins 
that are collected by sequence search against the Drugbank database. The results show that 
proteins in periplasmic and cellular outer membrane are overrepresented (Table  3). The 
statistically significant enriched functional annotations are signal proteins and transport 
proteins.

Table 1 Hypergeometric test on drugs based on drug category information in Drugbank

Only the categories with Bonferroni corrected p value, B&H FDR adjusted p value, or B&Y FDR adjusted p-value lower than 
0.05 are shown

Categories p Value Bonferroni 
corrected p 
value

B&H FDR 
adjusted p 
value

B&Y FDR 
adjusted p 
value

Nitric oxide synthase antagonists & inhibitors 0.00000 0.00012 0.00012 0.00082

Urea 0.00000 0.00029 0.00014 0.00094

Sulfonylureas 0.00004 0.01525 0.00508 0.03327

Oral hypoglycemics 0.00007 0.02843 0.00711 0.04652

Drugs used in diabetes 0.00018 0.06979 0.01204 0.07882

Sulfonylurea compounds 0.00019 0.07226 0.01204 0.07882

Stereoisomerism 0.00023 0.08839 0.01263 0.08264

Aldehyde reductase, antagonists & inhibitors 0.00041 0.16059 0.02007 0.13138

Enzyme inhibitors 0.00047 0.18206 0.02023 0.13239

Blood glucose lowering agents 0.00061 0.23983 0.02398 0.15696

Pyrazoles 0.00135 0.52458 0.04769 0.31211

Table 2 Hypergeometric test on ATC code information

Only the categories with Bonferroni corrected p-value, B&H FDR adjusted p value, or B&Y FDR adjusted p value lower than 
0.05 are shown

Levels p value Bonferroni B&H FDR 
adjusted p 
value

B&Y FDR 
adjusted p 
value

Description

A10BB 0.00002 0.00088 0.00088 0.00407 Sulfonylureas

A10B 0.00005 0.00298 0.00149 0.00689 Blood glucose lowering drugs, excl. insulins

A10 0.00013 0.00768 0.00256 0.01185 Drugs used in diabetes

A10BX 0.00087 0.04934 0.01234 0.05710 other blood glucose lowering drugs, excl. 
insulins

A 0.00158 0.09024 0.01805 0.08355 Alimentary tract and metabolism
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Discussion
Existing small-molecule microbiome drug discovery follows conventional one-drug-
one-gene-one-species paradigm [9], and focuses on preventing infection or fighting 
against one microbe, barely considering the microbiome as an ecosystem. We believe 
systems pharmacology approaches are necessary to identify small molecule drugs for 
modulating the microbiome ecosystem. With the awareness of the complexity and diver-
sity of microbiota, the reconstruction of microbiota networks is a critical step to study 
the microbial community and to realize systems pharmacology, and it draws increas-
ing interests [66]. Besides occurrence abundance correlation-based methods, exploring 
microbes growth sources and chemical products is crucial to elucidate the mechanism 
of interplay between microbes.

Our disease-centric microbe–microbe network, constructed based on literature 
review and computational prediction, is still expected to improve and grow over time. 
Currently, the label of each node is based on species level. This method introduces ambi-
guity when defining each species effect on health. For instance, E. coli, possess harmless 
and commensal strains in the human gut, in the meantime, some strains are pathogenic 
and even carcinogenic [49]. However, we believe that our network reflects the general 
effects of microbiota on health, and are useful. Most of the abundant microbes, which we 
include in our network, have been well studied regarding their metabolites and effects 
on human health. Other microbes’ effect on health inferred with the SRWR method cov-
ered the information about how they affect human health by interplaying with abundant 
microbes.

To incorporate host information and environmental factors into the construction of a 
heterogeneous microbe–microbe interaction network can further enhance our under-
standing of the microbial community. Previous studies showed that environmental 
factors are another crucial factors that determine the diversity and composition of the 
microbial community [67]. Gut microbiota, as the most abundant microbial commu-
nity, can be affected by personal daily diet and lifestyle [68]. For example, loss of sleep 
could increase the ratio of Firmicutes to Bacteroidetes [69]. Microbial community is 
believed to harbor discrete homeostasis states and transit between different states when 

Table 3 Results from protein targets functional annotation analysis with DAVID

Only the categories with Bonferroni corrected p value, B&H FDR adjusted p value, or B&H FDR adjusted p value lower than 
0.05 are shown

Categories Bonferroni B&H FDR adjusted p 
value

B&Y FDR 
adjusted p 
value

Periplasm 0.00001 0.00001 0.00007

Signal peptide 0.00010 0.00010 0.00022

Topological domain: periplasmic 0.00045 0.00022 0.00100

GO:0009279 ~ Cell outer membrane 0.00011 0.00011 0.00104

Cell outer membrane 0.00028 0.00014 0.00133

GO:0030288 ~ Outer membrane-bounded 
periplasmic space

0.00097 0.00048 0.00888

Transmembrane beta strand 0.00281 0.00094 0.01348

Signal 0.00555 0.00139 0.02669

Transport 0.01127 0.00226 0.05434
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experiencing environmental changes, at least for skin or vaginal microbiota [70, 71]. 
Thus, constructing a heterogeneous human–environment–microbiome network will be 
an important direction for the future work.

The contemporary medical system undergoes an era of transition from traditional 
population based diagnosis and treatment to a more precise personalized medicine. 
Microbiota demonstrates high variability via developing different biogeographic sig-
natures of human body sites [72, 73]. Small molecular drug discovery based on patient 
particular microbiome signatures improves and assists in generating more efficient per-
sonalized diagnosis and treatment to cure disease. Our work provides the prime land-
scape of small molecule drug discovery by exploring the connection between microbe’s 
genome and potential drugs.

Conclusion
In this paper, we systematically investigated the polypharmacological landscape of the 
microbiome network. We found that a large number of proteins in pathogen microbes 
are potential drug targets and inhibiting them may not significantly affect the human 
host. We further showed that the potential drug targets that specifically exist in path-
ogenic microbes are periplasmic and cellular outer membrane proteins. We proposed 
drugs for diabetes can be the lead compounds for development of microbiota-targeted 
therapeutics. This study may open a new avenue for the small-molecule drug discovery 
of microbiome for novel drug therapies.

Methods
Microbiome interaction network

Microbe species metabolite consumption and production information were manually 
curated elsewhere [34]. 513 microbe species are included in this dataset. Distribution of 
the number of metabolites each microbe consumes or produces, and distribution of the 
number of microbes each metabolite associates with are investigated (Additional file 1). 
We hypothesize that the final relationship between the two microbes is composed of a 
negative relationship (competition) and a positive relationship (corporation). The nega-
tive extent,  negativeab, is calculated as the Jaccard similarity of metabolite consumption 
profile between microbe a and microbe b.

Ca and Cb are the consumption profile of microbe a and microbe b. 233 metabolites are 
investigated and are consumed by at least one microbe species. The positive extent, 
 positiveab, is calculated as the Jaccard similarity of microbiome a’s metabolites consump-
tion profile to microbiome b’s production profile.

Ca and Pb are the consumption profile of microbe a and production profile of microbe b. 
The final microbiome interaction network is a directed graph.

Negativeab =
|Ca ∩ Cb|

|Ca| + |Cb| − |Ca ∩ Cb|

Positiveab =
|Ca ∩ Pb|

|Ca| + |Pb| − |Ca ∩ Pb|
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Signed Random Walk with Restart (SRWR)

The dynamicity of microbiome interaction network with selected 513 microbial spe-
cies is simulated using Signed Random Walk with Restart algorithm [37]. To predict 
the label (pathogenic or commensal) of a unannotated microbe species, it is initial-
ized as a start node. For each run, initial score of 1.0 is assigned to the start node with 
an unknown sign, and then this score is distributed out to the neighboring nodes via 
edges in the network as the walk goes with random probability. Positive edge would 
increase the positive ranking score of the neighboring node with the balance attenu-
ation probability of β = 0.5, and the negative edge would increase the negative rank-
ing score of the neighboring node with the probability of γ = 0.5. When the walk is 
complete, positive scores from known commensal species, and negative scores from 
known pathogenic species are summed up to predict the label for the unknown start 
node (Additional files 2, 3, and 4).

Microbe proteins druggability survey

Protein sequences of microbes are downloaded from Human Microbiome Projects 
(HMP) [2, 51]. Druggable target sequences are downloaded from Drugbank (www. 
drugb ank. ca) and ChEMBL websites (www. ebi. ac. uk/ chembl) [52, 53]. They are saved 
as fasta format and reformatted to be a Blast database using PSI-Blast tools [54–56]. 
Microbe protein sequences are searched against each target sequence database to find 
their homologs. Biopython package is used to perform sequence comparison using 
PSI-Blast [54–56]. All sequence search results with e-value lower than 10e-4 are saved 
for further analysis. Scripts used for analysis are available in https:// github. com/ qiaol 
iuhub/ drug_ target_ analy sis_ on_ micro biome.

Potential drugs screening

Drugbank

The drug-target interaction database is downloaded from Drugbank (www. drugb ank. 
ca) [52]. By using the homolog targets from the sequence search, we collect the drugs 
that potentially target microbe proteins for each microbe. All drugs that potentially 
target pathogenic microbes are gathered into a candidate list, then parts of the drugs 
in the list are excluded if they can potentially target commensal microbes. 589 drugs 
in the candidate list are left after screening.

STITCH

STITCH database is downloaded from  http:// stitch. embl. de [74]. STITCH database 
has grouped drug-target interactions based on microbe species. These drug-target 
interactions are also classified into different types, such as inhibition, activation, or 
catalysis. We focus on two interaction types: inhibition and activation. Our primary 
purpose is to screen for FDA approved or investigational drugs, so we excluded non-
drugs compounds. We utilize the STITCH drug ID information, which is also the 
same with PubChem compound ID, to retrieve the pharmaceutical function informa-
tion from the PubChem database by using PUG REST API and E-utilities tools [75]. 
We perform the following screen: (1) Compounds that activate targets in pathogenic 

http://www.drugbank.ca
http://www.drugbank.ca
http://www.ebi.ac.uk/chembl
https://github.com/qiaoliuhub/drug_target_analysis_on_microbiome
https://github.com/qiaoliuhub/drug_target_analysis_on_microbiome
http://www.drugbank.ca
http://www.drugbank.ca
http://stitch.embl.de
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microbes but not activate targets in commensal microbes (134 drugs). (2) Compounds 
that activate targets in pathogenic microbes but not inhibit targets in commensal 
microbes (431 drugs). (3) Compounds that inhibit targets in pathogenic microbes but 
not inhibit targets in commensal microbes (185 drugs). (4) Compounds that inhibit 
targets in pathogenic microbes but not activate targets in commensal microbes (1325 
drugs) (Additional file 8).

The intersection of Drugbank screening and STITCH screening result

The InChIKey information of all drugs found in Drugbank screening is retrieved from 
Drugbank full database XML file. The InChIKey information of all drugs found in 
STITCH screening is collected from the Pubchem website using PUG REST API and 
E-utilities tools. The intersection of these two drugs InChIKey set is found for later 
analysis.

Overrepresentation analysis

Drug overrepresentation analysis

All selected drugs’ ATC code and Drugbank classification information are accumulated 
from Drugbank full database XML file. These two classification systems have hierar-
chical structures, and all categories in all levels are included. A hypergeometric test is 
performed on the Drugbank screened 589 drugs list. The Bonferroni correction, Ben-
jamini & Hochberg’sHochberg’s FDR adjustment, and Benjamini & Yekutieli’sYekutieli’s 
FDR adjustment methods are used to adjust the p-values of these multiple compari-
sons. ~ 3700 drugs, which are found to target at least one microbe protein homolog, are 
used as background drugs list (Additional file 9).

Protein targets functional enrichment analysis

462 potential protein targets are filtered out using the Drugbank target sequences 
database and saved with their UniProt accession numbers. Potential targets functional 
enrichment analysis is conducted with the database for annotation, visualization, 
and integrated discovery (DAVID) [64, 65]. The list of 462 potential targets’ UniProt 
accession numbers was uploaded to DAVID as a test gene set. Background gene set 
includes ~ 1700 microbe protein homologs found in Drugbank (Additional file 10).

Term definition

Microbiome: Collection of all microbes (bacteria, fungi, and viruses) that are natu-
rally live in the human body.
Pathogen microbe: A microbe that causes diseases.
Commensal microbe: A microbe that has a neural relationship (neither benefit nor 
harm) with the host.
Competition: Microbes compete with each other for survival.
Mutualism: Microbes are mutually dependent.
Commensalism: Microbes neither benefit nor harm each other.
Parasitism: Microbes live on other microbes.
Amenalism: A microbe inhibits another microbe, but itself is not affected.
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Systems pharmacology: A drug discovery paradigm that aims to modulate multiple 
microbe targets in the microbiome-microbiome interaction network.
Polypharmacology: A compound can inhibit or activate multiple targets simultane-
ously.
Drug repurposing: Use of existing drugs for different clinical indications from the 
original one.

Abbreviations
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T2D  Type 2 diabetes
IBD  Inflammatory bowel disease
RA  Rheumatoid arthritis
SRWR   Signed Random Walk with Restart
SR  Spectral ranking
MPR  Modified PageRank
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