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Abstract 

Background: The placental barrier protects the fetus from exposure to some toxicants 
and is vital for drug development and risk assessment of environmental chemicals. 
However, in vivo experiments for assessing the placental barrier permeability of chemi‑
cals is not ethically acceptable. Although ex vivo placental perfusion methods provide 
good alternatives for the assessment of placental barrier permeability, the application 
to a large number of test chemicals could be time‑ and resource‑consuming. Com‑
putational prediction models for ex vivo placental barrier permeability are therefore 
desirable.

Methods: A total of 87 chemicals and corresponding 1444 physicochemical proper‑
ties were divided into training and test datasets. Three types of algorithms including 
linear regression, random forest, and ensemble models were applied to develop pre‑
diction models for ex vivo placental barrier permeability.

Results: Among the tested models, the ensemble model integrating the previous 
two methods performed best for predicting ex vivo human placental barrier perme‑
ability with correlation coefficients of 0.887 and 0.825 when considering the applicabil‑
ity domain. An additional test on seven newly curated chemicals from the literature 
showed a good correlation coefficient of 0.879 which was further improved to 0.921 by 
considering the variation of experiments.

Conclusion: In this study, the first valid predicting model for ex vivo human placen‑
tal barrier permeability was developed following the OECD guideline. The model is 
expected to be useful for assessing the human placental barrier permeability and can 
be integrated with developmental toxicity prediction models for investigating the toxic 
effects of chemicals on the fetus.
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Background
The exposure of certain chemical compounds may cause toxic effects in the human 
body. Exposure sources of the toxic chemicals could be found in the environment, food, 
or drugs in our daily life. While a low dose of toxic chemicals may not cause adverse 
effects in adults, chemicals capable of penetrating the placental barrier could be harmful 
to the fetus which is a significant problem. Due to the complexity and ethical issues, the 
measurement of placental transfer permeability of chemicals based on in vivo conditions 
may not be applicable for risk assessment of novel chemicals. Therefore, a few compu-
tational methods have been developed to predict in  vivo human fetal-maternal blood 
concentration ratio (logFM) of chemicals [1, 2]. Takaku et al. conducted the first work 
on the prediction model for predicting in vivo logFM values based on manually curated 
55 chemicals with logFM values [2]. Subsequently, Wang et al. proposed the first valid 
model according to the OECD guideline with fewer features but higher performance [1].

While the above-mentioned prediction models could be useful for studying in  vivo 
human placental barrier permeability, the in vivo human dataset used for training the 
models was quite small and it is not likely to grow due to ethical issues. Further improve-
ment and validation of the models will be infeasible without the input of new in  vivo 
data. Since the placenta is the most species-specific mammalian organ, the adaptation of 
animal data for extrapolation to human beings has not been applicable [3].

The integration of multiple relevant models could largely improve the prediction per-
formance and enhance regulatory acceptance. For example, assays regarding the adverse 
outcome pathway of skin sensitization have been integrated for developing novel pre-
diction models [4–6]. The prediction of developmental and reproductive toxicity can be 
improved by a weight-of-evidence integration of several types of models [7]. For ICH 
(International Council for Harmonisation of Technical Requirements for Pharmaceuti-
cals for Human Use) M7 guidelines, an agreement of mutagenicity prediction outcomes 
from two complementary models, e.g. rule-based and statistical models, is acceptable 
for regulation [8]. Altogether, it is desirable to develop complementary or mechanism-
relevant models for human placental barrier permeability.

Ex vivo human placental perfusion models are potential complementary methods. 
There were two studies aiming to develop prediction models for ex vivo human placental 
barrier permeability using the clearance index (CI) values, a relative permeability com-
pared to antipyrine. Giaginis et al. applied a multivariate data analysis method incorpo-
rating principal component analysis (PCA) and partial least square (PLS) methods to get 
the most influential variables for model development [9]. Based on 16 descriptors, their 
model for ex  vivo CI values performed reasonably good for CI prediction with fitting 
and cross-validation  r2 values of 0.730 and 0.710, respectively. Nevertheless, there is no 
independent test dataset for evaluating the prediction performance for unseen chemi-
cals, and no applicability domain was defined that is essential according to the OECD 
guideline for validating quantitative structure–activity relationship models [10]. Zhang 
et al. identified a different set of 48 descriptors for building a PLS model based on the 
same dataset [11]. In their work, a test set has been divided from the whole dataset to 
independently test the developed model. Within their reported applicability domain, 
 r2 values are 0.732 and 0.766 for cross-validation on the training dataset and external 
prediction on the test dataset, respectively. While an applicability domain was defined 
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based on a leverage method [12, 13], the selection of outliers depends on the residues of 
predicted and experimental values presenting an information leak issue and therefore 
the testing performance could be overestimated. More importantly, the identification of 
tested chemicals within the applicability domain based on residues is impractical due to 
the lack of experimental values of the tested chemicals. Applicability domain should be 
defined according to the training dataset and tested using the independent test dataset 
to ensure a proper estimation of prediction performance [1, 4].

To support the identification of potential chemicals permeable to the human placen-
tal barrier, this work presents the first valid model according to the OECD guidelines. 
A sequential forward selection algorithm was applied to select informative features for 
linear, non-linear, and ensemble models using the training set. Results showed that the 
proposed ensemble model integrating linear regression and random forest algorithms 
performed best with correlation coefficients of 0.940, 0.850, and 0.825 for model fitting, 
leave-one-out cross-validation (LOOCV), and independent test, respectively. After the 
adjustment of the applicability domain based on only the training set, its performance 
was improved with correlation coefficients of 0.952 and 0.887 for model fitting and 
leave-one-out cross-validation (LOOCV). Since all chemicals in the independent test set 
fall in the applicability domain, there is no change in the independent test performance. 
In addition, we further collected seven external chemicals with ex vivo permeability data 
from the literature. A final ensemble model trained using all chemicals in the training 
and test sets was applied to predict the seven external chemicals. A very good corre-
lation coefficient value of 0.879 was obtained showing the usefulness of the proposed 
method. By considering the variation of experiments, an excellent correlation coefficient 
value of 0.921 was obtained. Future works could be the integration of the two models for 
the consensus prediction of human placental barrier permeability.

Methods
Dataset

A total of 88 chemicals with ex  vivo human placental barrier permeability data were 
taken from a previous curation work [11]. Two stereoisomers of dexamethasone and 
betamethasone were found among the 88 compounds and dexamethasone was removed 
to avoid overstimulation of the prediction performance. The remaining 87 chemicals 
were randomly divided into a training dataset and a test dataset with 66 and 21 chemi-
cals, respectively. The permeability data was represented as a clearance index (CI) that 
is a relative permeability compared to antipyrine designed to overcome inter-placental 
variability [9] as shown in the following equation Eq. 1.

The training dataset was utilized for the development of a final model including feature 
selection and cross-validation, while the test dataset was used to independently test 
the final model. Chemicals were firstly converted into 1,444 1D and 2D features (phys-
icochemical properties) using the PaDEL-Descriptor v2.21 software [14] as it showed 
excellent performance in various tasks [1, 2, 15, 16]. The data tables of training and test 
datasets are shown in Additional file 1: Tables S1 and S3, respectively.

(1)CI = clearance of drug under study/clearance of antipyrine
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Model development and feature selection

Irrelevant features and less informative features with scarcity and small variation can 
hamper the model performance that should be removed before model development. 
Three basic steps were firstly applied to exclude useless features with (1) extreme val-
ues that are 100-fold larger than the average, (2) more than or equal to 30% zero val-
ues (scarcity), and (3) small variation (less than 12 unique values). Before the application 
of regression algorithms for model development, the remaining features in the training 
dataset were normalized based on the Z-score method [17] as shown in Eq. 2.

where z, x, μ, and σ are the normalized, original, mean, and variance values, respectively.
Based on the normalized feature vectors, a sequential forward selection algorithm 

[18] was applied to select informative features based on the performance of leave-one-
out cross-validation (LOOCV). Sequential forward/backward selection algorithms are 
efficient solutions for the combinatorial optimization problems that are highly appreci-
ated in the field of bioinformatics due to the high-dimensional feature space observed in 
numerous applications [19, 20]. Briefly, the best features were sequentially selected and 
appended into the final feature set. The selection of features is based on the LOOCV 
performance of the corresponding regression algorithm.

In this study, we consider three types of algorithms including the linear regression, 
random forest, and voting regression combining the previous two algorithms. Linear 
regression presents can capture linear relationships between features and the perme-
ability, however, the oversimplified linear relationships may not be able to fully explain 
complex biological outpoints. In order to capture non-linear relationships, the popular 
random forest algorithm [21] was adopted in this study. Since the dataset is small, it is 
important to avoid overfitting problems. In this study, we argue that predictive features 
should be useful for both linear and non-linear models. Therefore, a voting regression 
algorithm combining the linear regression and random forest models was also tested. 
After the model development, the test dataset was then normalized based on the param-
eters derived from training the dataset and predicted by the developed models. Scikit-
learn package version 0.21 [22] and associated default parameters were utilized to 
implement the linear regression, random forest, and voting regressor.

Applicability domain

Applicability domain defines the chemical space that can be reliably predicted by the 
corresponding model. In this study, a decision tree method [1] was applied to identify 
the rules for identifying chemicals that may not be reliably predicted by the model. 
The rules were derived from only the training dataset to avoid information leak issues 
that might overestimate the prediction performance [1, 4]. We first calculate the 
absolute error for each chemical based on the LOOCV results as a new dependent 
variable. Subsequently, the classification and regression tree (CART) algorithm [23] 
was applied to learn a decision tree from identified informative features for predicting 
the absolute errors of test chemicals. Once the decision tree has been constructed, 
n rules can be extracted, representing the decision process of n corresponding leaf 

(2)z = (x− µ)/σ ,



Page 5 of 14Chou et al. BMC Bioinformatics          (2021) 22:629  

nodes. The rule with a high absolute error indicated the chemical properties involved 
in the rule could lead to unreliable prediction. Therefore, the identified rules were 
then ranked based on the absolute error in descending order and iteratively appended 
to a final rule set until there was no significant performance improvement. The final 
rule set represents the chemical space that the model may not reliably predict and was 
utilized for excluding chemicals out of the applicability domain in the test dataset.

Results
Comparison of linear and non‑linear models

The removal of useless features consisting of 103, 563, and 20 features with extreme 
values, scarcity, and small variation, respectively, lead to a dataset of 758 features for 
subsequent analysis. Since the dataset is quite small, we first compared the perfor-
mance of two types of models including linear and non-linear models. The sequential 
forward feature selection algorithm was then applied to select informative features. 
The stopping criterion for feature selection is that the inclusion of an additional fea-
ture gives less than 1% correlation coefficient improvement. A total of seven features 
were selected for the highly interpretable linear regression models. The performance 
is shown in Fig. 1. For the prediction of ex vivo CI values, the developed linear regres-
sion model was underfitted with lower fitting performance. The corresponding cor-
relation coefficient values are 0.871, 0.844, and 0.772 for fitting, LOOCV, and test, 
respectively. For the non-linear model, six features were selected for random forest 
regression. It is not surprising that the fitting performance is excellent with a cor-
relation coefficient of 0.982. However, the correlation coefficient values of 0.829 and 
0.647 for LOOCV and test, respectively, indicated that the model is overfitted. Since 
the linear model gave a stable performance and the non-linear model was good at fit-
ting. Also, we argued that the informative feature set should be useful for both linear 
and non-linear models. The combination of both methods by voting regression could 
be a potential solution for the prediction of human placental barrier permeability.

Fig. 1 The comparison of linear, non‑linear and ensemble models
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Ensemble model

The sequential forward feature selection algorithm identified 7 informative features 
of MLFER_BH, AATSC3v, AATSC2i, GATS1s, AATSC1c, MATS2i, and GATS5m for 
the ensemble model of voting regression. MLFER_BH represents the overall or sum-
mation solute hydrogen bond basicity [24]. The other six features belong to autocor-
relation descriptors with different parameters [25]. The description of the 7 features 
is shown in Table  1 and the feature selection process is shown in Fig.  2. The fitting 
performance is between the linear and non-linear ones with a correlation coefficient 
of 0.94 (Fig. 1). The detailed fitting and LOOCV results are shown in Additional file 1: 
Table S1. Please note that the feature values shown in Additional file 1: Table S1 are 
z-score normalized values. Their corresponding mean and variance are shown in 
Additional file 1: Table S2.

The LOOCV performance was slightly improved compared to the linear and non-
linear models with a correlation coefficient of 0.85 (Fig. 1). The results showed that 
different combinations of feature sets and algorithms performed similarly in LOOCV. 
The comparison of experimental and predicted CI values obtained from the LOOCV 
is shown in Fig.  3. While the LOOCV performance was only slightly improved, a 

Table 1 Description of the identified 7 informative features

Feature Description References

MLFER_BH Overall or summation solute hydrogen bond basicity Platts et al. [24]

AATSC3v Average centered Broto‑Moreau autocorrelation—lag 3/weighted by van der Waals 
volumes

Todeschini 
and Consonni 
[25]AATSC2i Average centered Broto‑Moreau autocorrelation—lag 2/weighted by first ioniza‑

tion potential

GATS1s Geary autocorrelation—lag 1/weighted by I‑state

AATSC1c Average centered Broto‑Moreau autocorrelation—lag 1/weighted by charges

MATS2i Moran autocorrelation—lag 2/weighted by first ionization potential

GATS5m Geary autocorrelation—lag 5/weighted by mass

Fig. 2 The feature selection process for the ensemble model. The red dot is the selected point for 
subsequent model development where the inclusion of one more feature does not make at least 1% 
improvement on the LOOCV correlation coefficient
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much better test correlation coefficient value of 0.825 was obtained from the test 
dataset (Fig.  1). The small difference of LOOCV and test performance showed that 
there were no overfitting problems for the developed ensemble model. Figure 4 pre-
sents the plot of experimental and predicted CI values. Detailed prediction values 
on the test dataset are shown in Additional file 1: Table S3. Please note that the fea-
ture values shown in Additional file  1: Table  S3 are z-score normalized values. The 
robust ensemble model could be useful for predicting ex vivo human placental barrier 
permeability.

Fig. 3 The comparison of experimental and predicted CI values for leave‑one‑out cross‑validation. AD, 
applicability domain; Y, chemicals within the AD (blue dot); N, chemicals out of the AD

Fig. 4 The comparison of experimental and predicted CI values for the test dataset. AD, applicability domain; 
Y, chemicals within the AD (blue dot)
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Adjustment of applicability domain

The determination of the applicability domain of models should be derived only from the 
training dataset and validated using the test dataset to avoid information leak issues [4, 
5]. In this study, a useful decision tree-based method [1] was utilized to identify an exclu-
sion rule set for chemicals out of the applicability domain based on the training dataset. 
Briefly, rules for predicting LOOCV errors were firstly derived using the CART algo-
rithm. Subsequently, the rule with the highest predicted error was iteratively appended 
to the exclusion rule set until no significant improvement (< 1%) on the correlation coef-
ficient was obtained. A total of two exclusion rules were determined to exclude chemi-
cals out of the applicability domain, as shown in Additional file 1: Table S4. Please note 
that the exclusion rules are based on normalized feature values.

After the applicability domain adjustment, two chemicals of riboflavin and lopinavir in 
the training dataset were excluded based on rules of #1 and #2 (described in Additional 
file 1: Table S4), respectively. The exclusion of the two chemicals led to an improvement 
of correlation coefficient values of 0.952 and 0.887 for model fitting and LOOCV on the 
training dataset, respectively. The coverage of chemicals within the applicability domain 
is 96.97% (64/66). The application of the applicability domain identified no chemicals in 
the test dataset indicating that those test chemicals (coverage = 100%) could be reliably 
predicted.

The comparison between the feature sets of three models

Since three feature sets were identified for the linear, non-linear, and ensemble meth-
ods, it is interesting to know the difference among the feature sets. Table 2 shows the 
selected features for the three models and their corresponding categories. The catego-
rization is based on the document provided by the PaDEL-Descriptor software. The 
diverse descriptor types were selected for the linear regression model, while autocor-
relation descriptors were preferred for random forest and ensemble models. All three 
types of models found that the autocorrelation descriptors were important for the pre-
diction of ex vivo placental barrier permeability. Three features of AATSC3v, AATSC1c 
and MLFER_BH were identified to be useful for two types of models that might be 
more reliable predictors for ex  vivo placental barrier permeability. It is worth noting 
that AATSC1c was also found useful for predicting in vivo logFM values for placental 

Table 2 Comparison of the selected feature sets for the three types of models

Category Linear regression Random forest Ensemble method

Autocorrelation AATSC3v, ATSC2e, 
GATS8c,

AATSC1c, ATSC3v, GATS1s AATSC3v, AATSC2i, GATS1s, 
AATSC1c, MATS2i, GATS5m

Barysz matrix VE1_Dze, VE3_Dzm

Detour matrix VE1_Dt

Extended topochemical 
atom

ETA_BetaP

Molecular linear free 
energy relation

MLFER_BH MLFER_BH

Path counts R_TpiPCTPC

Topological polar surface 
area

TopoPSA
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barrier permeability reported by our previous work [1]. Autocorrelation features could 
play important roles on the placental barrier permeability as they are recognized to be 
important for all three types of models.

Feature analysis showing the gap between ex vivo and in vivo conditions

Since informative features for ex vivo and in vivo datasets were identified by this study 
and previous studies [1, 2], respectively, it is interesting to know the difference between 
those two datasets for better interpretation of the predicted results. First, the correla-
tion coefficients between the seven features from the ex vivo dataset and three features 
from in vivo dataset [2] were calculated to show the difference between the two condi-
tions. As shown in Table 3, MLFER_BH is the only feature with good correlation coef-
ficients of 0.762, 0.511 and 0.865 to all the three features of MW, hmax and TopoPSA for 
in  vivo condition, respectively. In addition, MLFER_BH is the first feature selected by 
our ensemble model through stepwise feature selection showing that the in vivo infor-
mation carried by MLFER_BH is very important and the proposed method was able to 
identify key features responsible for transplacental permeability. The absolute values of 
correlation coefficients for the other features are all less than 0.35 showing that the fea-
tures may not be relevant to the in vivo transplacental permeability.

Second, MLFER_BH and the three features of MW, hmax and TopoPSA were utilized 
to train two separate models using the proposed ensemble method to know whether the 
features highly relevant to in vivo conditions are predictive of ex vivo condition. Similar 
moderate correlation coefficients of around 0.55 were obtained from the cross-valida-
tion of the two models showing that the features relevant to in vivo conditions are insuf-
ficient for predicting ex vivo transplacental permeability.

Third, the importance of the seven features identified in this study were analyzed 
to better understand the contribution of the features to ex vivo transplacental perme-
ability. The feature rankings based on the coefficients of linear regression and feature 
importance of random forest and an overall feature ranking are shown in Table 4. While 
MLFER_BH was the first feature selected by our algorithm, its overall ranking is only in 
fifth place. In contrast, the feature of AATSC1c ranked first but with low correlations to 
the three features for in vivo conditions.

Altogether, the results indicated that in vivo and ex vivo transplacental permeability 
of chemicals shared similar basic features that were represented by MLFER_BH in 
our model. However, the extrapolation from ex vivo to in vivo conditions should be 

Table 3 Correlation coefficients between the informative features for in vivo and ex vivo datasets

*Features for in vivo dataset were obtained from a previous study [2]

Features MW* hmax* TopoPSA*

MLFER_BH 0.762 0.511 0.865

AATSC3v 0.197 0.039 − 0.029

AATSC2i 0.043 0.187 0.019

GATS1s − 0.321 − 0.144 − 0.082

AATSC1c 0.341 − 0.280 − 0.265

MATS2i 0.080 0.096 0.093

GATS5m 0.108 − 0.054 0.081
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carefully evaluated since the features highly relevant to in vivo conditions are not very 
predictive. It revealed the importance of this work by identifying the additional six 
autocorrelation features required for explaining the ex  vivo conditions. Among the 
seven informative features, AATSC1c and AATSC3v are considered most important 
for modeling the ex vivo transplacental permeability that is consistent with the com-
parison analysis between the feature sets of three models.

External test

The advantage of ex vivo placental barrier permeability prediction models over in vivo 
ones is that new data is expected to grow with time. In order to further test our model, 
we curated an additional external test dataset from six papers [26–31]. The seven fea-
tures required for the prediction were firstly calculated based on PaDEL-Descriptor. 
A re-trained voting regression model based on 87 data consisting of the original train-
ing and test datasets was applied to predict the external test dataset. The observed, 
fitting, and LOOCV results of the new training model are shown in Additional file 1: 
Table  S5 and Additional file  1: Figure S1. The corresponding rules for defining the 
applicability domain of the model are shown in Additional file 1: Table S6. Applicabil-
ity domain assessment showed that all the 7 chemicals can be reliably predicted by 
the model, i.e. they are all within the applicability domain.

Detailed prediction results for the external test dataset are shown in Fig.  5 and 
Additional file 1: Table S7. The correlation coefficient and mean absolute error (MAE) 
values of the external test dataset were 0.879 and 0.232, respectively. While the per-
formance is reasonably good, the results are based on the reported average CI values 
of several duplicates of ex vivo experiments curated from the literature. Considering 
the biological variation nature of the experiments, we further calculated the perfor-
mance against the minimum CI (mCI) values within the variation. Results showed 
that the prediction made by our model well correlated with the mCI values with a 
correlation coefficient of 0.921 and MAE of 0.135, respectively. Among the seven 
chemicals, the absolute prediction errors for mCIs of bromocriptine and darunavir 
were less than 0.01 indicating a very accurate prediction. In contrast, the largest abso-
lute error of 0.376 based on its mCI value has been made for bisphenol A. Neverthe-
less, the relative absolute error for bisphenol A is only 0.372 showing the usefulness of 

Table 4 The rank of linear regression and random forest of seven features

Feature Coefficient of 
linear regression

Ranking by 
coefficient

Feature importance 
of random forest

Ranking 
by feature 
importance

Overall 
ranking

MLFER_BH − 0.035 4 0.133 5 5

AATSC3v − 0.039 3 0.159 3 2

AATSC2i − 0.023 6 0.100 7 7

GATS1s 0.019 7 0.180 1 4

AATSC1c 0.045 2 0.170 2 1

MATS2i 0.072 1 0.101 6 3

GATS5m − 0.029 5 0.157 4 5
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the prediction model. Altogether, the external test showed that the model is capable 
of producing reliable predictions for ex vivo human placental barrier permeability.

Discussion
This work demonstrated that ensemble learning provides a more reliable prediction on 
ex  vivo human placental barrier permeability. For small datasets, traditional methods 
relying on only a single linear/non-linear algorithm could overfit the dataset. Our evalu-
ation results showed that single models derived from a small dataset could be unreliable. 
Moreover, the selected features are different for each algorithm due to the small number 
of samples. In this study, we argued that informative features should be useful for differ-
ent types of algorithms. Our results showed that the selected features for the ensemble 
model are more predictive compared to the features for single algorithms. The selected 
features for the ensemble model are therefore considered more informative. The excel-
lent test results on an additional test dataset confirmed the reliability of selected features 
and constructed model. Since a small dataset is a common issue for cheminformatics 
works, this study provides a potential solution for developing reliable models based on a 
limited number of data. The analysis of predictive features for in vivo and ex vivo trans-
placental permeability of chemicals revealed that additional features of autocorrelation 
descriptors should be taken into consideration for the extrapolation from ex  vivo to 
in vivo conditions. Since in vivo data is not likely to grow, future works can be the devel-
opment of models for mapping ex vivo results to in vivo permeability.

Conclusion
Computational models are promising alternatives for reducing experimental testing 
costs. Valid models according to the OECD guideline can be utilized to filter out poten-
tial toxicants or identify safer drug candidates for further experimental validation. In 

Fig. 5 The comparison between CI and minimum CI values with predicted CI for the external test dataset
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this work, the performance of the three types of models were analyzed and led to the 
development of a final ensemble model for predicting ex vivo human placental barrier 
permeability. Among the seven important features for model development, MLFER_BH 
represents basic properties of in  vivo transplacental permeability and autocorrelation 
descriptors are potential features for extrapolation from in vivo to ex vivo conditions. 
The identification of AATSC1c is also consistent with our previous study for predicting 
in vivo human placental barrier permeability [1]. In addition to the good performance 
derived from fitting, LOOCV, and independent test, an additional dataset consisting of 
seven chemicals curated from literature was applied to further test the predictive abil-
ity for unseen chemicals. An excellent correlation coefficient of 0.921 was obtained 
when considering the variation of biological experiments showing the usefulness of the 
developed model in the real world setting. Future works could be the development of 
strategies for integrating outputs from valid in vivo and ex vivo models for improving its 
performance. Also, our previous weight-of-evidence model for predicting reproductive 
and developmental toxicity [7] could be extended to incorporate placental barrier per-
meability for assessing embryo-fetal developmental toxicity.
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CI  Clearance index
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