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Background
RNA

In biological cells, RNA is a molecule that regulates a huge variety of functions. It 
consists of a long chain of smaller molecules, called nucleotides, bonded sequen-
tially (Adenine (A), Guanine (G), Cytosine (C), and Uracil (U)), known as the primary 
structure; the first nucleotide of the chain is usually referred as 5’ and the last one 
as 3’. A secondary structure appears when the RNA molecule folds onto itself creat-
ing additional weaker bonds, called Watson-Crick pairs (A-U, C-G) and Wobble pairs 

Abstract 

Background:  Due to its key role in various biological processes, RNA secondary struc-
tures have always been the focus of in-depth analyses, with great efforts from math-
ematicians and biologists, to find a suitable abstract representation for modelling its 
functional and structural properties. One contribution is due to Kauffman and Magar-
shak, who modelled RNA secondary structures as mathematical objects constructed 
in link theory: tangles of the Brauer Monoid. In this paper, we extend the tangle-based 
model with its minimal prime factorization, useful to analyze patterns that characterize 
the RNA secondary structure.

Results:  By leveraging the mapping between RNA and tangles, we prove that the 
prime factorizations of tangle-based models share some patterns with RNA folding’s 
features. We analyze the E. coli tRNA and provide some visual examples of interesting 
patterns.

Conclusions:  We formulate an open question on the nature of the class of equivalent 
factorizations and discuss some research directions in this regard. We also propose 
some practical applications of the tangle-based method to RNA classification and fold-
ing prediction as a useful tool for learning algorithms, even though the full factoriza-
tion is not known.
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(G-U). Figure 1 shows a primary and secondary structure along with its dot-bracket 
notation, a string in which a pair of matching brackets correspond to a weak bond in 
the secondary structure and dots unpaired nucleotides. The dot-bracket string can 
also be represented by a flattened diagram, that is a set of points displayed horizon-
tally (representing the nucleotides) joined by an arc in the upper half part of the dia-
gram (representing the pairs). Since every arc has to connect two dots, every flattened 
diagram has N arcs and 2N paired dots.

Depending on the bonds present in the secondary structure, different types of 
brackets may be needed to avoid ambiguity. The folding process gives rise to some 
interesting structural features (loops) that can be categorized as hairpins, bulges, 
stems, interior loops (see Fig. 2), and multiloops (see Fig. 3).

It is often the case that RNA secondary structures form a pseudoknot, where an 
unbonded nucleotide is bonded with another nucleotide in a different loop of the 
RNA molecule (Fig. 3). Predicting the optimal structure with pseudoknots during the 
folding process, also known as the RNA folding problem, often requires a prohibitive 
amount of time. Although great efforts were put to solve this problem, both from an 
algebraic [2, 19, 20, 22] and a machine learning perspective [25], there is still room for 
improvements.

Due to its pivotal role in biological processes, the study of RNA secondary structures 
is of great importance. The process of protein production is the result of the interaction 
of three types of RNA: transfer RNA, ribosomal RNA, and messenger RNA. Viruses have 
evolved to inject their genome (in the form of RNA) into the host cells in order to repli-
cate themselves. Moreover, it is still in the debate that the self-replicating capabilities of 

Fig. 1  RNA structures, dot-bracket notation and flattened diagram. Example of a RNA found in Mus musculus 
(house mouse) [18]. Its primary structure is on the left and the secondary structure is on the right, along with 
its dot-bracket representation and flattened diagram. Image generated using FORNA [9]

Fig. 2  Patterns emerging from a secondary structure. Example of various patterns that can emerge from a 
secondary structure. Blue nucleotides are part of a hairpin, green ones are part of stems, yellow nucleotides 
are part of a bulge, brown ones are part of an interior loop
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RNA may have given the basis for early life on Earth even before DNA appeared (RNA 
World Hypothesis [11, 14]).

This work proposes a different way to investigate RNA folding with an algebraic struc-
ture during the process of optimization, exploiting its decomposition in prime factors.

Brauer monoid

A monoid is an algebraic structure made by a set of elements and an associative binary 
operator equipped with an identity element.

Given a natural N and a set of 2N dots in [N ] ∪ [N ]′ , where [N ] = {1, 2, . . . ,N } and 
[N ]′ = {1′, 2′, ...,N ′} , a tangle is a set of N pairs (called edges) of distinct dots, such that 
no dot occurs in more than one edge. Tangles are represented graphically by drawing 
two rows of N dots labelled with [N] if they are on the top and labelled with [N ]′ if they 
are on the bottom. All edges are represented by lines connecting pairs of dots. The edge 
enumeration of a tangle is called invariant and we will represent it by separating edges 
by commas and pair of dots by colons (see Fig. 5). We can compose two tangles by iden-
tifying the bottom row of the first with the top row of the second one and then redraw 
the edges accordingly (see Fig. 4). The set of all tangles on 2N points under the composi-
tion operator ◦ is called the Brauer Monoid BN [3].

Edges in the form e = a : b′ are called transversals, and in the cases when a > b′ , 
a < b′ or a = b′ we call them positive, negative, and zero transversal respectively. Edges 
in the form e = a : b or e = a′ : b′ are called upper and lower hooks respectively [6]. The 
size of an edge e = a : b , with a and b arbitrary dots, is defined as |e| = |a− b|.

Fig. 3  A pseudoknotted tRNA. Secondary structure of the yeast phenylalanine tRNA along with its dot-bracket 
representation [1]. The folding forms a pseudoknot because of the G-C pair at positions 18–50 and pair G-C at 
position 14–42. There are three multiloops (coloured in red) at the base of the three stems with hairpins



Page 4 of 17Marchei and Merelli ﻿BMC Bioinformatics          (2022) 23:345 

BN  is closed under composition and its identity is IN = 1 : 1′, 2 : 2′, ...,N : N ′.
A tangle P is called prime if it can only be written in the form P = IN ◦ P = P ◦ IN  . 

There are two types of primes tangles (Fig. 6):

•	 Ti = 1 : 1′, 2 : 2′, ..., i : i′ + 1, i + 1 : i′, ...N : N ′

•	 Ui = 1 : 1′, 2 : 2′, ..., i : i + 1, ..., i′ : i′ + 1, ...N : N ′

called respectively T -prime and U-prime. BN  contains exactly N − 1 T -prime and 
N − 1 U-prime.

Note that crossings in a tangle are only introduced by T -primes. T -primes and U
-primes are the generators for all tangles in BN  under composition, this means that we 
can reduce any tangle to a prime factorization. It is useful to note here that factoriza-
tion in the Brauer Monoid is not unique.

A factor list F for a tangle X is a list of prime tangles in the form Px1 ◦ Px2 ◦ · · · ◦ Pxi 
such that their composition gives back X. The length of a factor list F is indicated by 
|F| . The factor list F of the identity tangle IN  is the empty list, whose size is |F| = 0.

For each tangle X ∈ BN  , we call the factorization problem the task of finding the 
factor list of minimal length.

Fig. 4  Examples of tangle composition. Composition of two tangles in B3 . The first tangle is put on top of 
the second one, then the resulting edges are redrawn to minimize intersections

Fig. 5  Examples of tangles. a A graphical representation of a tangle in B4 . Its invariant is 
1 : 2, 3 : 2′ , 4 : 3′ , 1′ : 4′ . b I4 = 1 : 1′ , 2 : 2′ , 3 : 3′ , 4 : 4′ , the identity tangle for B4

Fig. 6  Examples of prime tangles. Two prime tangles in B6 . a A T -prime T3 and b a U-prime U5
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Methods
The first attempt to draw a connection between RNA secondary structures and tangles 
in the Brauer Monoid was due to Kauffman and Magarshak [12]. Their intuition was that 
the number of parenthesis in RNA dot-bracket representation and the number of dots in a 
tangle is always even, and each open parenthesis must correspond to a closed parenthesis 
somewhere in the string, corresponding with the existence of an edge in a tangle. There-
fore, they provided the following procedure for converting an RNA secondary structure to 
a tangle: 

1.	 flatten the secondary structure in a single long chain (equivalent to the dot-bracket 
notation);

2.	 discard the unpaired nucleotides, there are now 2N nucleotides and N pairs;
3.	 abbreviate stacked arcs to a single arc. We will call this reduced diagram shape [10, 

21];
4.	 rotate the second half of the shape diagram above the first;
5.	 enumerate the nucleotides in the top row with numbers in [N] and nucleotides in the 

bottom row with numbers in [N ]′.

As Giegerich et  al. pointed out, the study of the shape of an RNA secondary structure 
lifts the user from the burden of paying attention to changes that do not affect the overall 
desired structure, which means that we do not lose information because we are doing a 
static analysis [10]. In this context, the procedure described above gives us the opportunity 
to study the shape of RNA secondary structures in terms of tangles and generators for these 
tangles. For this purpose, we wrote an algorithm capable of finding the minimal amount of 
prime compositions for any given tangle [16]. We classify tangles in the following way: 

T -tangle:	� a tangle X = Ta ◦ Tb ◦ · · · ◦ Ti (all edges of X are transversal);
U-tangle:	� a tangle X = X ′ ◦Ui (X has a lower hook h of size |h| = 1);
T L-tangle:	� a U-tangle with the extra condition of having only U-primes as factors (no 

edge in X intersect with another edge. T L stands for Temperley-Lieb, those 
who first described them [23]);

H-tangle:	� all the other tangles ( H stands for big hook because they will always have 
a lower hook h of size |h| > 1.)

For a visual example see Fig. 7. For each class of tangles, we provide an algorithm for cal-
culating its factorization.

Factoring T ‑tangles

The set of T -tangles on 2N dots is actually isomorphic to the symmetric group SN , there-
fore we can represent any T -tangle X as a permutation in the form

(1)
1 2 ... 2N
x′
1
x′
2
... x′

2N
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and we can find an optimal factorization by sorting the bottom row of X. Since every 
T -prime is equivalent to an adjacent swap, we are limited to O(N 2) algorithms, like 
BubbleSort.

Factoring T L‑tangles

Ernst et al. defined a factorization algorithm that constructs a minimal factor list given 
an input T L-tangle [7]. Their algorithm works by subdividing the tangle to factorize in 
vertical columns and then enumerating all regions of odd depth (called 1-regions) that 
this subdivision generates. Each region will correspond to a U-prime, and if two regions 
R1 and R2 are diagonally adjacent, with R1 having a lower depth than R2 , then they write 
R1 → R2 , therefore constructing a Directed Acyclic Graph (DAG) of regions. By reading 
this graph left to right and from top to bottom, they obtain a minimal factor list. Our 
implementation of their algorithm takes quadratic time. For a more detailed explanation, 
the reader can refer to the original paper.

Fig. 7  Types of tangles. A display of our tangle classification criteria. a A T -tangle, b a U-tangle, c a T L

-tangle, d a H-tangle 
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Factoring U‑tangles

Recall that a U-tangle is a tangle in the form X = X ′ ◦Ui , we would like to find X ′ by 
removing Ui from X. To do this, we will merge the lower hook h = i′ : i′ + 1 with another 
edge in the tangle.

We say that we merge a lower hook h = i′ : i′ + 1 and an edge e = e1 : e2 by removing 
them from X and adding edges a and b such that if e is a hook or a negative transversal, 
then a = e1 : i

′ and b = i′ + 1 : e2 and if e is a positive transversal, then a = e1 : i
′ + 1 

and b = e2 : i
′.

Since the number of crossings in a tangle corresponds to the number of T -primes in 
its factor list, we would like this merging process to maintain the crossing number con-
stant, in this way we are sure to not include any more T -primes in the non-optimal fac-
tor list we are calculating.

Heuristic 1  Let X = X ′ ◦Ui be a U-tangle with c number of crossings and with a lower 
hook h = i′ : i′ + 1 . Let I = {i : i′, i + 1 : i′ + 1} . For all edges e  = h calculate inter(e) to 
be the number of intersections e has with edges in I. Let S = {e : e ∈ X , inter(e) = 2} be 
the set of edges that intersect both edges in I, for each e ∈ S calculate the number of cross-
ings the tangle X ′ would have if we merged h with e and pick the tangle whose number of 
crossings is equal to c. If more than one edge satisfies this last condition, among them, pick 
the edge that has the least amount of intersections in X.

Note that, for the case of edges in I, it will happen that some edges in X will share a dot 
with edges in I. We count them too as intersecting.
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Merging two edges takes constant time, but the calculation of the crossing number 
takes O(N 2) [24], and since we have to merge h with N edges in the worst case, the time 
complexity for this heuristic is O(N 3).

Factoring H‑tangles

We will extract factors from a H-tangle X by transforming it into a U-tangle. The idea is 
to take one of the lower hooks h with size |h| > 1 and shrink it until it becomes of size 
one. To do this we compose X with T -primes until this condition is met. During the 
shrinkage process, other edges will inevitably change size. In order to decide where we 
should shrink h, we use a heuristic that chooses a location where the size of the other 
edges increases the least. We apply this heuristic to the smallest lower hook of X, in this 
way there will be no smaller lower hook inside of it.

Heuristic 2  Given a H-tangle X, let h = i′ : i′ + k be the smallest lower hook of 
X of size k > 1 . Let j be the index of the shrinkage location where the size of the other 
edges increases the least. Shrink the lower hook h into location j by composing X with 
L = Ti ◦ Ti+1 ◦ · · · ◦ Ti+j−1 and R = Ti+k−1 ◦ Ti+k−1 ◦ · · · ◦ Tj+1 . This procedure yields 
a U-tangle X ′ such that X = X ′ ◦ L−1 ◦ R−1.

The notation F−1 indicates the reverse of a factor list, given F = Px1 ◦ Px2 ◦ · · · ◦ Pxi 
then F−1 = Pxi ◦ · · · ◦ Px2 ◦ Px1.

This heuristic is not optimal, but it can be computed in linear time.

Minimal factorization

The heuristics mentioned above do not always yield a minimal factorization, therefore 
a minimization step is required. It turns out that prime tangles follow a particular set of 
rules (see Table 1) [13]. We call R1–10 delete rules and R11–13 move rules. We can use 
them to minimize a non optimal factor lists by implementing them in a rewriting logic 
tool (we chose the Maude System [5, 15]).

Table 1  Rules for prime tangles

Rule type Rule id Rule

Delete R1 Ti ◦ Ti = IN

R2 Ui ◦ Ui = Ui

R3 Ti ◦ Ui = Ui

R4 Ui ◦ Ti = Ui

R5 Ui ◦ Uj ◦ Ui = Ui ⇐⇒ |i − j| = 1

R6 Ui ◦ Tj ◦ Ui = Ui ⇐⇒ |i − j| = 1

R7 Ti ◦ Uj ◦ Ui = Tj ◦ Ui ⇐⇒ |i − j| = 1

R8 Ui ◦ Uj ◦ Ti = Ui ◦ Tj ⇐⇒ |i − j| = 1

R9 Ui ◦ Tj ◦ Ti = Ui ◦ Uj ⇐⇒ |i − j| = 1

R10 Ti ◦ Tj ◦ Ui = Uj ◦ Ui ⇐⇒ |i − j| = 1

Move R11 Ti ◦ Tj ◦ Ti = Tj ◦ Ti ◦ Tj ⇐⇒ |i − j| = 1

R12 Ti ◦ Uj ◦ Ti = Tj ◦ Ui ◦ Tj ⇐⇒ |i − j| = 1

R13 Pi ◦ Pj = Pj ◦ Pi ⇐⇒ |i − j| > 1
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From RNA to tangle factorization

We will now provide an example of the mapping procedure for deriving, from a RNA 
secondary structure, a tangle with its prime factors.

We will start from the modified E. coli tRNA in Fig. 8 [8], and apply Kauffman and 
Magarshak’s mapping to obtain the flattened diagram in Fig. 9a.

This diagram is reduced to obtain a shape diagram (Fig. 9b) that can be folded to 
get the corresponding tangle (Fig. 9c). We can now factorize it by using the methods 
discussed previously (Fig. 10).

Figure 10 shows the four steps of the factorization algorithm: 

(a)	 The algorithm recognizes that X is a U-tangle because there is a lower hook of 
size 1 ( 2′ : 3′ ). Therefore it can be rewritten as X = X ′ ◦U2 . The algorithm applies 
Heuristic 1 that determines that the upper hook 2 : 4 in the only one intersecting 

Fig. 8  Modified E. coli tRNA. Pseudoknotted secondary structure for a modified E. coli tRNA along with its 
dot-bracket representation

Fig. 9  Flattened diagram, shape diagram, and corresponding tangle. a The flattened diagram for the 
modified E. coli tRNA. b The shape diagram is computed by merging together all parallel edges in the 
flattened diagram. c The corresponding U-tangle in B5
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the two imaginary edges (the two vertical dotted lines) twice. Therefore these two 
edges are merged and we obtain the tangle X ′ . The prime U2 is yielded and the algo-
rithm moves to the next step.

(b)	 The rewritten tangle X ′ is a T -tangle. The algorithm applies BubbleSort that 
firstly extracts T4 , thus shrinking the edge 3 : 5′ to 3 : 4′ and obtaining X ′′.

(c)	 The BubbleSort applies one more swap, which corresponds to a T3 and delivers 
X ′′′

(d)	 The algorithm has now reached the identity tangle ( X ′′′ ) and the first part of the 
factorization process has terminated.

Thus the yielded factorization is T3 ◦ T4 ◦U2 . Now the algorithm moves to the rewrit-
ing logic step, whose aim is to ensure that this is the minimal factorization and, if it is 
not, to find a better one. Since there is no move rule that can lead to the application of a 
delete rule, the algorithm concludes that this factor list is minimal (Fig. 11c).

An online interactive demo that calculates these steps automatically is available [17].

Examples

RNA without pseudoknots Figure 12a is an example of a RNA molecule that does not 
have any pseudoknots, therefore its corresponding tangle will not have any crossings. 
This implies that it will be mapped to a T L-tangle, which we know can be factorized 

Fig. 10  Factorization steps. The steps (from a to d) that our algorithm takes in order to factorize the tangle 
(a)

Fig. 11  Example of a tRNA with its corresponding tangle and factorization. a A modified E. coli tRNA. b The 
correspondent abbreviated tangle, with minimal factorization T3 ◦ T4 ◦ U2 . c The three factors composed. This 
makes it easier to visualize the path that each edge takes
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using Ernst’s algorithm. To obtain the corresponding tangle we apply Kauffman and 
Magarshak’s mapping. We take its secondary structure (represented as a flattened 
diagram in Fig. 12b) and reduce it to a shape diagram (Fig. 12c). The shape diagram 
can now be folded in half to obtain the tangle in Fig. 13a. We then apply Ernst’s algo-
rithm by dividing it into five columns (Fig. 13b), i.e. by drawing imaginary edges that 
connect each upper dot to its corresponding bottom dot, and selecting for each of 
them the regions of odd depth (Fig. 13c). We then build the DAG by connecting two 
regions R1 and R2 if they are diagonally adjacent and R1 is above R2 (Fig. 13d). To each 
node will now correspond a region, and each edge will indicate when two regions 
are diagonally adjacent. We then read the graph nodes from top to bottom and from 

Fig. 12  Example 1: RNA. a A pseudoknot free RNA secondary structure along with its primary structure 
and dot-bracket representation. b The flattened diagram (unpaired nucleotides are not drawn due to space 
constraints). c The shape diagram obtained by collapsing parallel edges onto a single one

Fig. 13  Example 1: Factorization. a The tangle obtained from the shape diagram. b The tangle divided into 
five columns. c The regions of odd depth are colored in gray. d The DAG obtained by Ernst’s algorithm. e The 
minimal factorization for the initial tangle
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left to right. If a node is in column i, then we will write in output the prime tangle 
Ui (Fig. 13e).

RNA with pseudoknots
Suppose to have a complex RNA secondary structure that yields the tangle 

in Fig. 14a. Since it is a H− tangle , for this example our algorithm applies Heuristic 
2 on the smallest lower hook (in this case there is only one, namely 2′ : 7′ ). To choose 
where we should shrink this lower hook, the algorithm calculates which shrinkage 
location increases the size of the other edges the least (Table 2).

Since in this case the heuristic found two best locations, 1 and 2, it randomly 
chooses location number 1. Therefore 2′ : 7′ will be shrunk to a lower hook 2′ : 3′ 
and the factorization yielded so far is T3 ◦ T4 ◦ T5 ◦ T6 , the reverse of the factoriza-
tion for this location (we record the reverse because if during factorization we need 
to shrink the lower hook, during composition we need to expand it). The algorithm 
now tries to factorize the tangle returned from the last step (Fig. 14b). Since it is a U
-tangle, the algorithm will apply Heuristic 1. It will select the lower hook 2′ : 3′ and 
check which edges intersect with the imaginary edges in the set I = {2 : 2′, 3 : 3′} . The 
only edge intersecting both is 4 : 1′ , therefore 2′ : 3′ and 4 : 1′ are merged together. 
This step returns the tangle in Fig. 14c and yields the prime factor U2 . Since the tan-
gle in Fig. 14c is still a U-tangle, the same step is applied again, returning the T -tan-
gle in  Fig.  14d and yielding the prime factor U1 . This last tangle can be factorized 

Fig. 14  Example 2. a The H-tangle to be factorized. Circled numbers index all possible shrinkage locations 
for the lower hook 2′ : 7′ . b Apply the Heuristic for U-tangles. The dashed lines indicate the edges in the set 
I = {2 : 2′ , 3 : 3′} . c Apply the Heuristic for U − tangles again. d The resulting T -tangle, it can be factorized 
optimally by using Algorithm 1

Table 2  This table calculates, for each edge inside lower hook 2′ : 7′ , how much it would increase (or 
decrease) in size if the algorithm shrunk lower hook 2′ : 7′ into shrinkage locations from 1 to 5

The best shrinkage location is selected among those who have the minimal sum of these sizes (1 and 2 in this case). The 
rightmost column indicates which set of prime factors, when composed with the initial tangle, shrink the 2′ : 7′ in the 
selected location

Shrinkage 
location

3:3′ 7:4′ 6:5′ 5:6′ Sum Factors

1 +1 -1 -1 +1 0 T6 ◦ T5 ◦ T4 ◦ T3

2 +1 -1 -1 +1 0 T2 ◦ T6 ◦ T5 ◦ T4

3 +1 +1 -1 +1 2 T2 ◦ T3 ◦ T6 ◦ T5

4 +1 +1 +1 +1 4 T2 ◦ T3 ◦ T4 ◦ T6

5 +1 +1 +1 -1 2 T2 ◦ T3 ◦ T4 ◦ T5
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optimally by applying Algorithm 1, which yields the factorization T3 ◦ T5 ◦ T6 ◦ T5 by 
performing the following steps:

This last step returns the identity tangle, therefore the algorithm stops and yields the fac-
torization T3 ◦ T5 ◦ T6 ◦ T5 ◦U1 ◦U2 ◦ T3 ◦ T4 ◦ T5 ◦ T6 . This factorization is minimal 
therefore the reduction step is not necessary.

Reduction of a non-minimal factorization Suppose the following non-minimal fac-
torization term is given: T2 ◦U1 ◦U1 ◦U2 ◦U3 ◦U1 ◦U2 ◦ T4 . The rewriting logic step 
minimizes the term by performing the following rewrites using the rules presented in 
Table 1.

In the last step there are no delete rules applicable and no move rules that eventually 
lead do a delete. Therefore this factor list is minimal.

Results
The resulting tangle is invariant to synonymous mutations, which are mutations that 
do not change the secondary structure. This is due to the fact that we discard unpaired 
nucleotides and abbreviate stacked arcs, allowing multiple secondary structures to map 
to the same factorization. This also allows researchers to move their attention to patterns 
in the factorizations of their desired shapes. A less obvious result (already observed by 
Kauffman and Magarshak) is that every secondary structure without pseudoknots maps 
to a T L-tangle. The intuition behind this result is that the number of valid ways we can 
arrange 2N open and closed parenthesis of a single type is the Catalan number

which is exactly the number of tangles with non-crossing edges in BN [4, 23]. This also 
implies that every pseudoknotted secondary structure corresponds to a tangle with at 
least one crossing, and thus at least one T -prime as a factor.

Let us show some other properties using the example we provided in the previous sec-
tion (Fig. 11). In the corresponding tangle, only stems and pseudoknots are visible and 
they are encoded in the factorization. Starting from stem s1 , six pairs are identified with 
the unique vertical edge, which does not have corresponding factors. Its presence, how-
ever, causes the indexes of the prime tangles to be shifted by one (Proposition 1). The 
three pairs of the stem s2 correspond to the 2′ : 3′ arc generated by the factor U2 . The 
stem s3 , corresponding to the edge 5 : 4′ , is generated by T4 . This is because its two end-
points were situated in the first and second half of the flattened secondary structure, 

1′ 2′ 4′ 3′ 7′ 6′ 5′ T3

1′ 2′ 3′ 4′ 7′ 6′ 5′ T5

1′ 2′ 3′ 4′ 6′ 7′ 5′ T6

1′ 2′ 3′ 4′ 6′ 5′ 7′ T5

1′ 2′ 3′ 4′ 5′ 6′ 7′ STOP

T2 ◦U1 ◦U1 ◦U2 ◦U3 ◦U1 ◦U2 ◦ T4 R2 Ui ◦Ui = Ui

T2 ◦U1 ◦U2 ◦U3 ◦U1 ◦U2 ◦ T4 R13 Pi ◦ Pj = Pj ◦ Pi ⇐⇒ |i − j| = 1

T2 ◦U1 ◦U2 ◦U1 ◦U3 ◦U2 ◦ T4 R5 Ui ◦Uj ◦Ui = Ui ⇐⇒ |i − j| = 1

T2 ◦U1 ◦U3 ◦U2 ◦ T4 STOP −

(2)CN =
1

N + 1

(

2N

N

)
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causing it to be represented as a diagonal edge. The stem s4 , identified with the edge 2 : 4, 
is generated by T3 ◦U2 (note that T4 and U2 can commute, see “Discussion” section). 
Lastly, the pseudoknots are identified with edge 3 : 5′ generated by T3 and T4 , which are 
the factors in common with the edges that it crosses, 2 : 4 and 5 : 4′ (Proposition 3).

We will give a mathematical foundation for these empirical results. Given a section s 
of an RNA secondary structure, stem or pseudoknot, we write edge(s) = (i, j) to denote 
its corresponding edge in the RNA shape (or tangle) beginning in position i and ending 
in position j (with i < j ). Given a tangle X and an edge e ∈ X , we will write gen(e) to indi-
cate the factors that generate it.

Proposition 1  If an RNA secondary structure has a stem s with edge(s) = (1, 2N ) , then 
the index of every factor of the corresponding tangle X ∈ BN will always be greater or 
equal to two. The converse is also true.

Proof  Assume that an RNA shape has an edge e = (1, 2N ) . Let X be the corresponding 
tangle, then 1 : 1′ ∈ X and therefore there is no prime T1 or U1 in the factorization of X. 
The backward argument is also valid. 

Proposition 2  Let s be a stem of an RNA secondary structure and let p be a pseudoknot 
starting inside the hairpin of s and ending outside of it. Then edge(s) will cross edge(p).

Proof  We can abstract edge(s) to be a 2-dimensional closed curve S ⊂ R
2 by closing 

its two ends with a horizontal line. We then have that edge(p) starts inside of S and ends 
outside of it. By the Jordan Curve Theorem on R2 we know that edge(p) must cross S , 
and since we assume that in the shape diagram all edges are situated in the upper por-
tion of the diagram we know that edge(p) must cross edge(s). 

Proposition 3  Let X be a tangle with e1, e2 ∈ X and let G = gen(e1) ∩ gen(e2) . If e1 and 
e2 cross, then there exists Ti ∈ G for some i.

Proof  Since e1 and e2 cross, they must share a prime tangle P that generates their cross-
ing. But since every intersection is generated by a T -prime, P must be a T -prime. This 
implies that a T -prime generates both e1 and e2 . 

Discussion
The existence of equivalent factorizations leads us to reason about an open question:

Open Question  What is the biological interpretation of commutative factors and, in 
general, of equivalent factorizations?

We hypothesise two separate research directions, regarding:

•	 equivalent factorizations up to commutativity (R13)
•	 equivalent factorizations up to R11 and R12

�

�

�
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The reason for this distinction is that R13 does not really impose a challenge during fac-
torization, recall that R13 is defined as:

The number of prime factors Pi and Pj remains unchanged, whereas in R11 and R12:

The number of Ti s is two on the left side and one on the right for R11, and for R12, the 
left side and the right side do not even share a common factor. Since the factorization 
yielded by R11 and R12 is fundamentally different, we think that they have a different 
biological interpretation than R13.

We can also discuss another research direction by analyzing different mappings from 
RNA secondary structures to tangles. For example, in the mapping we discussed in this 
paper, if there is a pseudoknot p connecting stems s1 and s2 then in the corresponding 
tangle there will be three edges, one for each of them. In this framework, the interaction 
between two stems is represented by an edge intersecting their corresponding edges. We 
could, instead, think of another mapping in which stems connected by a pseudoknot will 
have their corresponding edges that cross each other (Fig. 15).

We did not explore this alternative mapping, so we leave it as a future research 
direction.

Regarding the factorization algorithm, there are also some improvements that can be 
done with respect to the time complexity. Our methodology uses heuristics to obtain 
a non-minimal factorization and then refines it by using rewriting logic. This last step 
becomes prohibitive for large tangles, therefore a faster approach is necessary. During 
our research, we did not find an algorithm capable of such performances, but we have 
the hypothesis that the factorization problem for the Brauer Monoid could be solved in 
polynomial time.

Let’s discuss now some practical applications our methodology could be used for.
The factor representation we have discussed in this paper can be useful as an addi-

tional classification criterion for RNA secondary structures databases, in which a user 
could query RNAs that are generated only by a particular set of prime tangles, without 
the need of specifying the exact shape of the RNA molecule they are interested in. This 
could also lead to interesting applications in the context of sequence alignment, in which 
two sequences are compared not by the alignment of their nucleotides, but by their fac-
tor list.

R13. Pi ◦ Pj = Pj ◦ Pi ⇐⇒ |i − j| > 1

R11. Ti ◦ Tj ◦ Ti = Tj ◦ Ti ◦ Tj ⇐⇒ |i − j| = 1

R12. Ti ◦Uj ◦ Ti = Tj ◦Ui ◦ Tj ⇐⇒ |i − j| = 1

Fig. 15  Two different mappings. Two mapping in which pseudoknots are treated differently. s1 and s2 are two 
stems and p is a pseudoknot connecting them. a The mapping that Kauffman and Magarshak proposed. b 
Another mapping in which the pseudoknot corresponds to the intersection between s1 and s2 (grey dot)
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As we discussed in “Background” section, the folding problem is the focus of a large 
amount of research. In recent years, Machine Learning techniques have been widely 
used in this context, in which a model is trained to predict the optimal secondary 
structure from a sequence of nucleotides [25]. We imagine that a machine learn-
ing model could be trained to predict the full factorization of the optimal secondary 
structure so that its shape would be easily computable or, alternatively, a model capa-
ble of predicting just a subset of this factorization, thus greatly reducing the search 
space for the optimal structure. We have not investigated this path, so we leave it as a 
future research direction.

Conclusions
We have crossed the bridge that Kauffman and Magarshak have built between RNA 
secondary structures and the Brauer Monoid to pave the way for a novel prime tangle 
factorization for RNA secondary structures. Our results show that the presence of 
pseudoknots influences the type of factors the corresponding tangle has. Moreover, 
we proved that two interconnected sections of the RNA secondary structure will nat-
urally share some factors. Since the exact interpretation of equivalent factorizaion is 
not clear, we expect further development in this direction. In any case, the proposed 
approach may reveal useful for reducing the search space for the optimal folding and 
for structure comparison and classification.
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