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Abstract 

Background:  Making clear what kinds of metabolic pathways a drug compound 
involves in can help researchers understand how the drug is absorbed, distributed, 
metabolized, and excreted. The characteristics of a compound such as structure, com-
position and so on directly determine the metabolic pathways it participates in.

Methods:  We developed a novel hybrid framework based on the graph attention 
network (GAT) to predict the metabolic pathway classes that a compound involves 
in, named HFGAT, by making use of its global and local characteristics. The framework 
mainly consists of a two-branch feature extracting layer and a fully connected (FC) 
layer. In the two-branch feature extracting layer, one branch is responsible to extract 
global features of the compound; and the other branch introduces a GAT consisting of 
two graph attention layers to extract local structural features of the compound. Both 
the global and the local features of the compound are then integrated into the FC layer 
which outputs the predicted result of metabolic pathway categories that the com-
pound belongs to.

Results:  We compared the multi-class classification performance of HFGAT with six 
other representative methods, including five classic machine learning methods and 
one graph convolutional network (GCN) based deep learning method, on the bench-
mark dataset containing 6999 compounds belonging to 11 pathway categories. The 
results showed that the deep learning-based methods (HFGAT, GCN-based method) 
outperformed the traditional machine learning methods in the prediction of metabolic 
pathways and our proposed HFGAT method performed better than the GCN-based 
method. Moreover, HFGAT achieved higher F1 scores on 8 of 11 classes than the GCN-
based method.

Conclusions:  Our proposed HFGAT makes use of both the global and local infor-
mation of the compounds to predict their metabolic pathway categories and has 
achieved a significant performance. Compared with the GCN model, the introduction 
of the GAT can help our model pay more attention to substructures of the compound 
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that are useful for the prediction task. The study provided a potential method for drug 
discovery with all types of metabolic reactions that may be involved in the decomposi-
tion and synthesis of pharmaceutical compounds in the organism.

Keywords:  Multi-class classification, Metabolic pathway prediction, Graph attention 
network, Deep learning, Graph embedding

Background
According to “The Drug Development Process” released by the US Food &Drug Adminis-
tration, a great number of experiments are designed for ensuring the beneficial effects of 
a drug molecular compound in the first step of drug discovery and development [1]. The 
essence of life is metabolism, via which the organism maintains life through a series of bio-
chemical reactions in the body. These reactions participate in different metabolic pathways 
according to their functions. Therefore, knowing which metabolic pathways that the molec-
ular compounds in a drug are involved can help researchers understand how the drug is 
absorbed, distributed, metabolized, and excreted  [2, 3]. Specifically, a metabolic pathway 
is a series of biochemical reactions catalyzed by enzymes in cells, which form metabolites 
to use, store and trigger another metabolic pathway [4]. Different compounds belonging to 
the same metabolic pathway have similar functions. For example, the main function of the 
Tricarboxylic Acid Cycle pathway (TCA cycle, KEGG ID:map00020), as shown in Fig. 1, is 
to provide energy for life activities through the aerobic glucose metabolism [5], meaning 
that all compounds involves in this pathway play roles in providing energy. Due to the com-
plexity of biological systems, the same compound may also belong to different metabolic 
pathways and participate in different functions. According to the functional mechanisms, 

Fig. 1  Tricarboxylic Acid Cycle consumes sugars to provide energy for organisms, so all the compounds 
involves in the TCA cycle are parts of Carbohydrate metabolism category [10]
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metabolic pathways have been classified into eleven categories [6], such as Carbohydrate 
Metabolism, Energy Metabolism, Lipid Metabolism, Nucleotide Metabolism and so on. 
Specific classes of metabolic pathways provide specific roles to the organism. And the main 
metabolic patterns of different compounds involves in the same type of pathways are simi-
lar [7], therefore it is possible to find the potential metabolic process of a drug by identifying 
the metabolic pathway categories of its compounds. In drug discovery, predicting the meta-
bolic pathway categories of a compound can help to find new drug metabolism and toxic 
metabolites, thereby reducing the elimination rate of candidate drugs [8, 9].

With the accumulation of experimental data and the development of machine learning 
techniques, many researchers have paid more attention to building machine learning based 
on computational models for identifying the metabolic pathway categories that the query 
compounds belong to. For example, Cai et al. built a prediction model based on the KNN 
(K Nearest Neighbor) method to map small chemical molecules on the metabolic pathways 
that they may belong to and achieved the accuracy of 77.12% [11, 12]. Hu et al. made use of 
additional information about chemical-chemical interactions to build a multi-target predic-
tor and obtained an accuracy of 77.97% on the dataset of 3137 compounds [13]. Gao et al. 
proposed a hybrid network method which can integrate the information of chemical-pro-
tein interactions and protein-protein interactions, as well as the chemical-chemical interac-
tions, and achieved an accuracy of 79.56% on a dataset with 3348 small molecules and 654 
enzymes [14].

With the great success of deep learning technologies, many deep neural networks, such as 
convolutional neural networks (CNNs), graph convolutional networks (GCNs) and recur-
rent neural networks (RNNs) have been successfully applied in the bioinformatics commu-
nity   [15]. However, there is little work to focus on building models to predict metabolic 
pathways that a compound involves in. Recently, Baranwal et al. proposed a GCN-based 
deep learning architecture for metabolic pathway prediction  [16]. Their experiment results 
showed that the models with the GCN-embedding vector as the features achieved classi-
fication accuracies better than competing methods, illustrating the great potential of deep 
learning-based methods for metabolic pathway prediction. Furthermore, their results also 
demonstrated the GCN-model with global molecular features outperformed the one with-
out additional features, suggesting that introducing the global molecular descriptors into 
the deep learning model may help to improve its accuracy.

Inspired by [16], we propose a hybrid framework based on graph attention network 
(GAT)   [17], aiming to combine both the global and local descriptors of the compounds 
for the metabolic pathway prediction in this work. Compared with the GCN model, the 
introduction of the GAT can help our model pay more attention to substructures of the 
compound that are useful for the prediction task so that the model can achieve higher pre-
diction performance.

Method
Our proposed hybrid framework based on GAT, named HFGAT, for metabolic pathway 
prediction is shown in Fig. 2. HFGAT mainly consists of a two-branch feature extracting 
layer and a fully connected (FC) layer.

In the two-branch feature extracting layer, one branch is responsible to extract global 
features of the compound; and the other branch introduces a graph attention network 
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(GAT) consisting of two graph attention layers to extract local structural features of the 
compound. Both the global and the local features of the compound are then integrated 
into the FC layer which outputs the prediction result of metabolic pathway categories 
that the compound belongs to. The details of the HFGAT are described in the following.

Representations of the input compounds

Just like most other researches, we represent the input compound molecules as the 
SMILES (Simplified Molecular Input Line Entry System) sequences.

The SMILES is a line notation for representing molecules and reactions, which was 
developed by Arthur Weininger and David in the late 1980s and modified and expanded 
by other researchers  [18]. It is designed for the storage of chemical information and a 
kind of language with few words (atoms and bonds) and grammar rules. Moreover, this 
molecular representation is unique and quite compact compared to most other methods 
(i.e. fingerprint descriptors, molecular map coding and 2D image coding of molecular 
maps) of representing structure, which makes it the popular representation language 
of artificial intelligence and chemical experts. For example, the SMILES sequence of 
L-Arginine is NC(CCCNC(N)=N)C(O)=O.

Every SMILES sequence of a compound molecule can then be processed by using 
RDKit [19] to generate different kinds of molecular descriptors which can then be used 
for the subsequent extraction of global and local features of the compound.

Global features extraction

The top half of the dotted line in Fig. 2 aims for extracting the global features of the com-
pounds. In HFGAT, we extracted two global feature vectors for each compound mol-
ecule, denoted as V1 and V2 respectively. V1 mainly characterizes the general molecular 
information of the compound; V2 mainly describes the connection between the constitu-
ent atoms of the compound molecule.

The generation of V1 is as same as   [16]. For completeness, we briefly described the 
process of generating V1 . Firstly, seven molecular descriptors related to the size, rigidity, 
lipophilicity and polarizability of the compound are extracted to form the 7-dimension 
vector V0 . Each of the descriptor value is obtained by using RDKit [19] . Then the widely 

Fig. 2  The structure of our hybrid framework
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used MACCS fingerprint1 of the compound is obtained by using RDKit [19] to form the 
vector V ′

0 . Now that a MACCS fingerprint is a 166-bit binary string where the “1” or 
“0” respectively indicates the presence or absence of a specific type of substructure in 
the molecule, V ′

0 is thus a 166-dimensional binary vector describing the whole strucutral 
information of a compound. Finally, V0 and V ′

0 are concatenated together to generate the 
173-dimensional feature vector V1.

In addition to V1 , we also extracted the connection information between atoms of the 
compound in this work. Concretely, we first generated the adjacency matrix of the com-
pound, in which a row (column) corresponds to an atom of the compound. If there is the 
connection between atoms i and j, then the element of (i, j) is set to “1”, otherwise, “0”. 
Then we flatten the adjacency matrix as the feature vector V2.

Both V1 and V2 characterize the global information of the compound molecule, thus 
they act as the global features of the compound.

Local features extraction

The bottom half of the dotted line in Fig. 2 aims for extracting the local features of the 
compounds. First of all, a set of subgraphs are extracted from the molecule; then the 
subgraphs are initially encoded with a set of d-dimensional (d=70 in this work) random 
vectors { I1 , I2,· · ·,In } (n is the number of the atoms of the compound) which are pro-
cessed by the GAT layers to generate the final feature vectors. Obviously, the GAT helps 
to embed the local structural information of the subgraphs into the vectors. In this way, 
a set of feature vectors { O1 , O2,· · ·,On } characterizing the local structural information of 
the molecule can be obtained.

GAT‑based graph embedding

In our work, every local feature corresponds to a subgraph of an atom in the molecule. 
The subgraph of an atom consists of the atom and all its neighbors, as well as all bonds 
between the atom and its neighbors.

Just like   [16], we adopted the graph embedding method to obtain the embedding 
vector for each subgraph, rather than explicitly using the atom and bond features, for 
the embedding method can easily covert the molecular graph into a low-dimensional 
vector which requires less computing power to process than the vector in the original 
form [20]. Different with  [16], we first assigned a d-dimensional random vector to every 
atom and then embedded the structural information of the subgraph of the atom into 
the vector by using GAT [17]. The key idea of GAT is to introduce the attention mecha-
nism to calculate the influence weight of each node’s neighbors on it, to obtain the over-
all information of the whole graph from the local information. Therefore, the set of local 
features obtained from GAT should be beneficial for metabolic pathway prediction.

The process of GAT-based graph embedding is shown in Fig. 3. Every input vector is 
first linearly transformed by a shared weight matrix W (parameters to be learnt). Then 
for each atom, the importance score of each of neighbor atoms of it is calculated by 

1  MACCS was developed by MDL Information Systems, Inc., 14600 Catalina Street, San Leandro, CA 94577. Each 
MACCS key is a 166-bit binary string, acting as a fingerprint of a compound molecule to describe its structural compo-
sition.
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self-attention mechanism and normalized. Finally, all of the normalized scores are used 
to calculate the nonlinear combination of corresponding feature vectors as the final out-
put feature vector.

In order to make the final output features have powerful representation ability, it 
is necessary to conduct at least one learnable linear transformation on the input fea-
tures. Thus a shared weight matrix W is used to do the linear transformation for every 
d-dimensional input vector Ii:

where the parameter W represents the d × d dimensional weight matrix that will be 
learnt during the model training process; and it is randomly initialized in the beginning.

Calculation of attention coefficient

The self-attention mechanism based on parameterized LeakyReLU nolinear function 
is adopted to compute the attention coefficient score between atom i and its neighbor 
atom j in GAT [17] :

where the symbol ′||′ denotes the operation of concatenation; the parameter A repre-
sents a 2d-dimensional weight vector and is randomly initialized; j ∈ Ni ; and Ni is the 
set of neighbor atom nodes of i.

The eij reflects the importance of neighbor atom j to atom i so that the contribution 
of j to the feature vector of i can be accordingly weighted by eij . In order to make the 

(1)I
′

i = WIi

(2)eij = LeakyReLU AT I
′

i�I
′

j

Fig. 3  Process of GAT based graph embedding
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coefficients comparable among different atom nodes, the softmax function is introduced 
to normalize eij for all j:

Generation of the feature vector

After obtaining the normalized attention coefficients of all i’s neighbor atoms, the 
embedded feature vector of atom i can be obtained by the following nonlinear weighted 
combination:

where σ is the ELU activation function in GAT  [17]. ELU is also know as Exponential 
Linear Unit. It can reduce the effect of bias shift and make the normal gradient closer to 
the unit natural gradient, thus accelerating the learning of the mean towards zero.

Since it has been found that the multi-head attention by independently executing the 
above procedure more than once and concatenating the outputs as the final feature rep-
resentation is beneficial to stabilize the learning process of self-attention in GAT [17], 
we also adopted such strategy in this work. In particular, different heads pay attention 
to different positions of the graph structure, thus the extracted features are different and 
complement with each other. Suppose the transformation process is independently exe-
cuted for m times (m=2 in this work) and the output of Eq. (4) is Rk

i  for atom i in the kth 
execution, then we can get the final embedded feature vector Oi characterizing the sub-
graph centered on atom i is the following:

Fully connected layer

Both the global features ( V1 , V2 ) and the local features ( O1 , O2,· · · ) of the compound mol-
ecules are input into the FC layer with the SoftMax function for predicting the metabolic 
pathways. Therefore, the number of the input nodes in the FC layer is the number of the 
feature vectors, and the number of the output nodes in the FC layer is the number of 
categories of the metabolic pathways. Since the function outputs a set of probabilities 
that the compound belongs to specific metabolic pathway categories, we simply use 0.5 
as the threshold to make the final prediction. That is, if the probability of a compound 
belonging to a certain type of metabolic pathway is greater than 0.5, then it is considered 
to belong to the metabolic pathway category.

Experiment
Dataset

For the convenience of comparison, we used the same dataset as [16] to do the eval-
uation experiments. This dataset was collected from the most publicly used biology 

(3)αij = softmaxj
(

eij
)

=
exp

(

eij
)

∑

k∈Ni
exp (eik)

(4)Ri = σ





�

j∈Ni

αijI
′

j





(5)Oi = �mk=1R
k
i
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pathway database KEGG  [6]. Concretely, the dataset contains a total of 6669 com-
pounds which belongs to one or several of 11 manually curated pathway maps that 
represent molecular interaction and reaction networks. Specifically, 4545 com-
pounds belong to only one metabolic pathway class and the rest belong to more than 
one metabolic pathway classes. The outline of the dataset is shown in Table  1, in 
which, “Compound Number” means the number of compounds that belong to the 
specific pathway class.

Experiments

If a compound belongs to more than one pathway class, only predicting all possi-
ble classes at the same time can provide the complete biological functions of the 
compound. Therefore, we only consider the problem of multi-class prediction in the 
experiments. In order to evaluate the performance of our methods, we compared 
HFGAT with other six methods, including five most-used traditional machine learn-
ing methods (SVM (Support Vector Machine)  [21], kNN (k nearest neighbor)  [11], 
NB (Naive Bayes) [22], DT (Decision Tree) [23], RF model [24]) and the most recent 
GCN-based deep learning method GCN+global features [16].

All five traditional machine learning methods were implemented in the Sklearn 
toolkit [25]; GCN+gloal features methods were implemented in  [16]; Our HFGAT 
was implemented in Python 3.7.3 on the operation system 64-bit Ubuntu 16.04.6. 
The parameter settings for all methods are listed in Table 2. For learning algorithms 
that can only do binary classification, such as SVM, the one-vs-one strategy was 
used for the multi-class classification. The global molecular features were used in all 
five traditional methods.

We adopted the independent test method to evaluate the methods. Of all 6999 
compounds, we random shuffled and spilt them into three sets: the training set (80%, 
5335), the validation set (10%, 667 instances), and the test set (10%, 667 instances). 
All methods run on a GPU server with 4 NVIDIA GeForce TITAN XP and 48GB 
memory.

Table 1  Outline of the dataset*

∗The dataset was collected by [16]

No. Metabolic pathway class Compound 
number

1 Carbohydrate 1140

2 Energy 768

3 Lipid 1080

4 Mucleotide 356

5 Amino Acid 1454

6 Other Amino Acids 612

7 Glycan 339

8 Cofactors and Vitamins 964

9 Terpenoids and Polyketides 1497

10 Other Secondary Metabolites 1920

11 Xenobiotics 1466
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Evaluation metrics

We used four metrics to evaluate the performance of the methods: accuracy, precision, 
recall, and F1 . For a binary classifier, these metrics can be calculated by using TP (true 
positive, the number of positive samples being correctly classified), TN (true negative, 
the number of negative samples being correctly classified), FP (false positive, the number 
of negative samples being incorrectly classified as positive) and FN (false negative, the 
number of positive samples being incorrectly classified as negative). Since we focused on 
the multi-class classification task in this paper, we followed the idea of  [16] to redefine 
TP, TN, FP, and FN in terms of the number of correctly (incorrectly) identified classes of 
a single compound. For example, a compound in the test set is associated with 6 out of 
11 pathway categories and its target (true) class labels are represented as the bit-string 
“10010110101”, where “1” in the ith position stands for the compound belongs to the 
ith pathway class, while “0” in the jth position indicates that the compound does not 
belong to the ith pathway class. Assume the predicted bit-string of a classifier for this 
compound is “10101101101”, the TP, TN, FP and FN of this compound are 4, 2, 3 and 2 
respectively.

Suppose TPi , TNi , FPi and FNi correspond to the ith compound, and the number of all 
compounds is N, then we calculate the metrics according to the following equations:

  Obviously, the precision score measures the average proportion of correctly predicted 
classes among the predicted classes of a compound. The recall score measures the 

(6)Precision =
1

N

N
∑

i=1

TPi

TPi + FPi

(7)Recall =
1

N

N
∑

i=1

TPi

TPi + FNi

(8)F1 =
2× Precision× Recall

Precision+ Recall

(9)Accuracy =
1

N

N
∑

i=1

(TPi + TNi)

11

Table 2  Parameter settings of the methods

∗GCN represents GCN+global features in [16]

Methods Parameter settings

SVM Gaussian kernel

kNN k=5

NB Multinomial NB; Laplace smoothing ( α=1)

DT Gini impurity; Minimal samples=2

RF Trees=300; Gini impurity; Depth=60

GCN* Same as  [16]

HFGAT​ d=70; m=2; batch=10; iteration=100
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average proportion of correctly predicted classes in all classes of a compound. The F1 
considers the influence of both precision and recall. If one of them is too small, the value 
of F1 will be smaller. The accuracy score evaluates the average fraction of all correctly 
predicted associations between compounds and pathway classes.

Results
The comparing results of seven methods are listed in Table 3. We noticed that two deep 
learning-based methods (GCN and HFGAT) reached higher scores on three of four 
metrics than the five classic methods (SVM, kNN, NB, DT, RF). This may be attributed 
to the representation learning ability of deep learning methods, so they can obtain fea-
tures more suitable for classification. Combining the learnt features with the handicraft 
features, GCN and HFGAT can therefore achieve better performance than the tradi-
tional machine learning methods. Among the classic methods, RF performed the best. 
This may be due to the fact that RF is a kind of ensemble classifier so that it can inte-
grate the classification results of multiple classifiers to get better results than a single 
classifier. We also noticed that RF achieved a slightly higher accuracy score while lower 
precision, recall and F1 scores than two deep learning-based methods. This would hap-
pen when there are many true negatives yet few true positives. Therefore, the accuracy 
metric alone can not properly evaluate the classification methods.

In Table  3 we also noticed that our HFGAT performed better than the GCN-based 
method in terms of precision, recall and F1 scores, demonstrating that the use of GAT in 
HFGAT is helpful for embedding the substructures of the molecular into the local fea-
tures and benefit for the metabolic pathway prediction.

Table 3 has shown that the overall performance of HFGAT is superior to the GCN-
based deep learning method. Since there are 11 pathway classes in the benchmark data-
set, in order to know on what classes HFGAT outperforms GCN-based method, we 
further compared the performance of the two methods to predict different classes of 
pathways. It should be noted that when calculating the metric scores for a specific class 
according to the above equations, we only took the compounds belonging to that class 
into consideration. Without confusion, we still use the same notations. The comparing 
results of two deep learning-based methods are shown in Fig. 4. We can see that there is 
little difference between accuracies of the two methods on 11 classes, however, on 8 of 
11 classes, the F1 scores of HFGAT are higher than the GCN-based method. The results 

Table 3  Comparison results of different methods*

∗The best results are highlighted in bold. GCN represents GCN+global features in [16]. The values before and after the 
symbol ′±′ respectively represent the mean and standard deviation values

Method Accuracy (%) Precision (%) Recall (%) F1(%)

SVM 90.21±0.13 61.04±0.21 51.87±1.40 56.08±1.26

kNN 90.96±0.81 59.61±3.20 62.15±2.80 60.85±1.28

NB 81.97±0.61 45.06±1.60 59.76±1.50 51.37±0.88

DT 81.97±0.61 45.06±1.60 84.56±1.50 81.48±0.88

RF 97.89±0.12 84.76±0.78 84.45±0.68 84.60±0.28

GCN 97.61±0.12 89.19±0.52 93.38±0.44 91.17±0.19

HFGAT(ours) 97.19±0.06 90.04±0.28 94.12±0.16 91.97±0.10
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of HFGAT consistently performing better than the GAT-based method on most classes 
demonstrate once again that HFGAT can learn more essential substructure features 
beneficial for pathway classification than the GCN-based method.

Conclusions and discussion
In this paper, we have presented a hybrid framework based on GAT for the multi-class 
classification of metabolic pathways, named HFGAT. HFGAT contains a two-branch 
feature extraction layer, where one branch is used to extract two global molecular fea-
ture vectors V1 and V2, and the other branch is to embed the local structures of the 
molecular into a set of local feature vectors O1, O2, ...based on the GAT. The FC layer 
in HFGAT makes use of both the global and the local feature vectors to predict the 

Fig. 4  The comparison results between HFGAT and GCN-based method
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metabolic pathways. By comparing five classic methods and one state-of-the-art method 
on the benchmark dataset, HFGAT has achieved the best performance. The experiment 
results have shown that (1) deep learning-based methods (GCN-based method and 
HFGAT) are superior to the classic methods, suggesting the representation learning abil-
ity of deep learning can help to obtain suitable features benefit for the classification; (2) 
the graph attention network used in HFGAT is useful to embed the substructure of the 
molecular into the local features thus can help to improve the classification performance.

Of course, the local feature extraction method proposed in this paper needs to be 
improved to fully characterize the local structure of molecules. In fact, by further inves-
tigating the precision and recall scores of HFGAT on different classes, shown in Fig. 5, 
we found that the precision score was generally lower than the recall score on 10 of 11 
classes, which demonstrates that the ability of HFGAT to precisely predict the pathway 
classes of the compounds still needs to be improved, which means that more powerful 
features may need to be extracted from the molecular.

Firstly, in this work, we only considered the subgraph of each atom and its immedi-
ate neighbor. Using atoms and the neighbor nodes with a path length of 2 or more as 
subgraphs, or using structural units of molecules as subgraphs, whether we can obtain 
more useful features for classification is a problem worthy of further study. Secondly, 
when embedding the subgraph into a feature vector, the differences of different bond 
types between the central atom and its neighbors were not considered in this work. In 
the graph embedding operation, it is also worth studying to give different weights to dif-
ferent bonds in future work. Finally, we noticed that HFGAT is more complicated than 
the GCN-based method resulting that it needs much more time to train. Sophisticated 
optimization skills should also be considered to speed up the training process of HFGAT 
in the near future.
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