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Background
Genome-wide gene expression profiling has been used to identify genetic signatures that 
could be associated with the outcome of cancer patients [1]. Several different gene sig-
natures have been developed, and many of these approaches have been shown to better 
define the prognosis of cancer patients as compared with conventional clinical and path-
ological characteristics of the tumors [1]. Some studies began with genome-wide gene 
expression profiling from microarray datasets or next-generation sequencing (NGS). 
For example, the PAM50 gene signature can use to classify breast tumors into one of 
these four subtypes and to predict clinical outcomes [2, 3]. Moreover, the gene signature 
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identified from specific tissues is a promising avenue to maximize efficacy in target tis-
sues while minimizing the safety risks of affecting unrelated tissues [4].

Many methods have been proposed to identify the gene signatures between normal 
and disease states [5]. The simple and common way is to use the T-test, which is a statis-
tics-based method. According to the distributions between two states, the T-test evalu-
ates the probability (p-value) in each gene. The significant difference of gene expression 
is often defined if the probability is less than 0.05 or 0.01. Another method is calculating 
the fold change (FC) of gene expression, which is not a statistical test and has no associ-
ated values for indicating the level of confidence in the genes as differentially expressed 
or not [6]. Therefore, some methods were developed, such as Significance Analysis of 
Microarrays (SAM) and Cancer Outlier Profile Analysis (COPA), to choose the biomark-
ers in high confidence [7–9]. The SAM approach proposed false discovery rate (FDR) 
to reduce genes showing significantly different expression by chance (i.e., false positive) 
[7, 10]. The COPA, based on the hypothesis of tumor heterogeneity, identified candi-
date genes overexpressing in subsets of samples by using median and median absolute 
deviation of gene expression profiles [8]. In another study, Parker et al. determined 50 
genes (i.e., PAM50) for classified four breast subtypes with clinical means by using Pre-
dictive Analysis of Microarray (PAM) algorithm [2, 11], but this approach relied on sam-
ple labels that was difficult to propose new subtype of diseases. Recently, Gentles et al. 
applied CIBERSORT computational methods and PRECOG tools to identify cancer 
prognostic biomarkers and therapeutic targets [12], however, they only focused on the 
genes that related to clinical outcomes, but the ones might not be suitable for diagnosis 
due to the non-significant gene expression changes between the sample subgroups [13].

In this study, we hypothesize that the biological processes of tissues/organs are dys-
regulated during tumorigenesis, and the perturbed genes (i.e., tissue-specific genes) are 
often involved in corresponding functions of tissues [14–16]. To address these issues, 
we propose consensus mutual information (CoMI) to analyze omics data and to identify 
gene signatures. We utilized mutual information (MI) and gene expression distance as 
the basis to find the significantly and consistently expressed genes and gene signatures 
between normal and disease states. For multiple cancer omics data, our identified gene 
signatures could reflect cancer-related signatures and have tissue-specific properties 
(mean odds ratio = 2.89). Based on our previously developed global omics data analysis 
method [17], our CoMI identified gene signatures not only involved in common cancer-
related progress, such as Cell growth and death, but also reflect tissue unique functions 
of Xenobiotics biodegradation and metabolism in LIHC and Nervous system in GBM. For 
clinical prognosis, a 50-gene signature identified by CoMI could distinguish the GBM 
patients into high- and low-risk groups based on gene expression patterns, and could 
predict clinical outcomes at 12-month survival (log-rank p = 0.006). We believe that our 
method and results are useful for analyzing omics data, discovering gene signatures with 
tissue-specific properties, and predicting clinical outcomes of diseases.

Results
CoMI for identifying gene signatures in multiple cancers

To identify consistent patterns of gene expression for gene signatures development in 
multiple cancers, we utilized CoMI to analyze genome-wide gene expression profiles in 
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LIHC, GBM, BLCA, BRCA, and COAD. To evaluate the cancer associations of selected 
genes from CoMI in multiple cancer datasets, we collected 1675 cancer-related genes 
derived from HPA database [18]. The results show that the gene signatures selected from 
the different ranking cut-off of CoMI have a high probability to be cancer-related genes 
compared with T-test, FC, and Significance Analysis of Microarrays (SAM) (Fig. 1). For 
example, the top-ranked 200 significant genes were 190, 182, 181, and 126 genes for 
CoMI, T-test, FC, and SAM, respectively.

To investigate the statistical meanings of CoMI, we calculated Spearman’s correlation 
coefficient (ρ) between CoMI scores and FC values, SAM scores and p-values of T-test 
on all of 20,531 genes in NGS profiles of TCGA, respectively (Additional file 1: Fig. S1). 
For these methods, the average ρ values of these five cancer types were 0.81 (FC), 0.95 
(T-test), and 0.94 (SAM). These results suggest that CoMI has statistical meanings and 
is able to identify significantly and consistently expressed genes and disease-related gene 
signatures from omics data.

Tissue‑specific properties of gene signatures

To investigate the biological meanings of gene signatures identified by CoMI in dif-
ferent cancers, we collected tissue-specific genes from HPA with protein annota-
tion of tissue specificity in liver, brain, urinary bladder, breast, or colon. Here, we 
used the odds ratio to assess whether gene signatures have tissue-specific proper-
ties or not in five cancers (Fig. 2 and Additional file 1: Fig. S2). In the comparison 
of CoMI and T-test, the average odds ratios of gene signatures selected from eight 
kinds of top-ranked thresholds were 2.89, 5.40, 1.90, 1.74, and 2.99 in LIHC, GBM, 
BLCA, BRCA, and COAD, respectively. For example, the top-ranked 200 genes 
selected by CoMI and T-test in GBM were 89 and 23 with annotated brain specific-
ity, respectively. The odds were 0.8 (89/111) and 0.13 (23/177), then, the odds ratio 
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Fig. 1  The prediction accuracies between CoMI, T-test, FC, and SAM in cancer-related genes. The mean 
precision of cancer-related genes recorded in HPA was selected by CoMI (red line), T-test (blue line), FC 
(black line), and SAM (yellow line). The predicting precision was the average of genes selected from different 
cut-offs in LIHC, GBM, BLCA, BRCA, and COAD
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was calculated as 6.15 (0.8/0.13). The results were similar when compared to SAM 
(Additional file 1: Fig. S2). Besides, we observed that CoMI has a lower ranking on 
average of descending order than the ones of T-test and SAM in all of the tissue-
specific genes in each cancer (Additional file 1: Figs. S3 and S4). These results dem-
onstrate that gene signatures identified by CoMI are more like to have tissue-specific 
properties.

Furthermore, we used our previously developed global omics data analysis method, 
Hierarchical System Biology Model (HiSBiM), to investigate the involved pathways 
as well as biological subsystems and systems of gene signatures [17]. We observed 
that biological subsystems of the 200-gene signatures identified by CoMI and T-test 
were involved in common cancer-related pathways, such as Cell growth and death 
and Replication and repair in five cancer types (Fig. 3). In particular, the gene sig-
nature of LIHC identified by CoMI was enriched in Xenobiotics biodegradation and 
metabolism (meta-z score = 3.72) and Lipid metabolism (meta-z score = 2.74), which 
could reflect unique functions to liver tissue. In GBM, we observed that neurotrans-
mission-related functions were highly enriched, such as Nervous system (meta-z 
score = 7.49) and Signaling molecules and interaction (meta-z score = 2.46). In addi-
tion, the Digestive system (meta-z score = 7.03) was highly regulated in COAD.

We also evaluated the tissue-specific properties of CoMI and COPA [9] based on 
HPA database and HiSBiM analysis. The results show that the genes identified by 
CoMI are related to both common cancer-related pathways and tissue-specific prop-
erties, such as Endocrine system (meta-z score = 5.40) in BRCA (Additional file  1: 
Fig. S5). Additionally, CoMI outperformed COPA and our results indicated that 
CoMI not only can identify tissue-specific gene signatures in different cancers, but 
also can reflect corresponding biological pathways and functions unique to those 
tissues.
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Fig. 2  The odds ratios of tissue-specific genes selected by CoMI and T-test in different cancer types. The 
results of tissue-specific genes identified by CoMI and T-test in five cancer types, including LIHC (blue), GBM 
(orange), BLCA (yellow), BRCA (purple), and COAD (green)
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Clinical prognosis of gene signatures

The grade IV astrocytomas (i.e., GBM) are an aggressive class of brain cancer, it is dif-
ficult to treat and has a poor median 12-month overall survival, and the urgent need to 
develop a prognostic gene signature [19]. We selected a 50-gene signature with signifi-
cant and consistent expressions by using our CoMI from the gene expression profile in 
GBM, as well as, five of those genes were brain tissue specificity (Table 1). According to 
the gene expression patterns, we found that these 50 genes could cluster 156 tumor sam-
ples into four groups (Fig. 4A). According to the 12-month overall survival analysis, the 
patients in GBM-C1 group (n = 15) have a significantly lower survival probability (30%) 
than GBM-C3 group (62%; log-rank p = 0.006; Fig.  4B). Moreover, we found that 70% 
of CoMI top-ranked 10 genes can distinguish patients into high- and low-risk groups 
(log-rank p < 0.01), such as PBK (log-rank p = 0.0058) and CCNB2 (log-rank p = 0.009), 
however, only five of 10 genes with log-rank p < 0.01 in T-test (Additional file 1: Fig. S6). 
These results indicated that our identified 50-gene signature could predict clinical out-
comes and provide the available clues for developing the new therapeutic strategies in 
GBM.

Discussion
Genome-wide gene expression profiling has been used to identify genetic signatures 
that could be associated with the outcome of cancer patients [1]. Some studies using 
genome-wide gene expression profiling for developing gene signatures, and many of 
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Fig. 3  The genes identified from different cancers reflected tissue-specific pathways. The subsystem-level 
meta-z scores of the top-ranked 200 genes identified by CoMI and T-test in A LIHC, B GBM, C BLCA, D BRCA, 
and E COAD. The red triangle was denoted if meta-z scores > 2 and CoMI > T-test, the green square was 
represented if meta-z scores > 2 and T-test > CoMI
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Table 1  The 50-gene signature identified by CoMI in GBM

Genes CoMI p-valuea Log2 (FC)b Tissue 
specificityc

GO BP GO CC

RRM2 2.80 9.23E−33 7.48 – Deoxyribonucleotide 
biosynthetic process 
[GO:0009263]; DNA 
replication [GO:0006260]; 
negative regulation 
of G0 to G1 transition 
[GO:0070317]

Cytosol [GO:0005829]; 
ribonucleoside-diphos‑
phate reductase complex 
[GO:0005971]

UBE2C 2.71 4.17E−29 7.69 – Anaphase-promoting 
complex-dependent 
catabolic process 
[GO:0031145]; cell 
division [GO:0051301]; 
exit from mitosis 
[GO:0010458]

Anaphase-promoting com‑
plex [GO:0005680]; cytosol 
[GO:0005829]; nucleoplasm 
[GO:0005654]

PBK 2.50 2.07E−27 7.30 – Cellular response to UV 
[GO:0034644]; mitotic 
cell cycle [GO:0000278]; 
negative regulation of 
inflammatory response 
[GO:0050728]

Nucleus [GO:0005634]

CCNB2 2.38 5.82E−27 6.89 – Cell division 
[GO:0051301]; G2/M tran‑
sition of mitotic cell cycle 
[GO:0000086]; in utero 
embryonic development 
[GO:0001701]

Centrosome [GO:0005813]; 
cyclin-dependent protein 
kinase holoenzyme 
complex [GO:0000307]; 
cytoplasm [GO:0005737]

KIF20A 2.38 5.82E−27 6.72 – Microtubule-based 
movement [GO:0007018]; 
microtubule bundle 
formation [GO:0001578]; 
midbody abscission 
[GO:0061952]

Cleavage furrow 
[GO:0032154]; Golgi 
apparatus [GO:0005794]; 
intercellular bridge 
[GO:0045171]

MYBL2 2.30 5.50E−25 7.77 – Cellular response to 
leukemia inhibitory factor 
[GO:1990830]; mitotic 
cell cycle [GO:0000278]; 
mitotic spindle assembly 
[GO:0090307]

Myb complex 
[GO:0031523]; nucleoplasm 
[GO:0005654]; nucleus 
[GO:0005634]

NDC80 2.29 1.11E−27 6.70 – Attachment of mitotic 
spindle microtu‑
bules to kinetochore 
[GO:0051315]; attach‑
ment of spindle micro‑
tubules to kinetochore 
[GO:0008608]; cell divi‑
sion [GO:0051301]

Centrosome [GO:0005813]; 
chromosome, centromeric 
region [GO:0000775]; 
condensed chromosome 
kinetochore [GO:0000777]

TOP2A 2.28 7.18E−26 7.60 – Apoptotic chromo‑
some condensation 
[GO:0030263]; cellular 
response to DNA damage 
stimulus [GO:0006974]; 
chromosome segrega‑
tion [GO:0007059]

Chromosome, centromeric 
region [GO:0000775]; 
condensed chromosome 
[GO:0000793]; cytoplasm 
[GO:0005737]
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Table 1  (continued)

Genes CoMI p-valuea Log2 (FC)b Tissue 
specificityc

GO BP GO CC

DLGAP5 2.20 9.00E−25 6.93 – Mitotic chromosome 
movement towards spin‑
dle pole [GO:0007079]; 
positive regulation of 
mitotic metaphase/
anaphase transition 
[GO:0045842]; positive 
regulation of transcrip‑
tion of Notch receptor 
target [GO:0007221]

Centriolar satellite 
[GO:0034451]; cytosol 
[GO:0005829]; mitochon‑
drion [GO:0005739]

BIRC5 2.12 6.81E−24 6.88 – Cell division 
[GO:0051301]; chro‑
mosome segregation 
[GO:0007059]; cytokine-
mediated signaling 
pathway [GO:0019221]

Centriole [GO:0005814]; 
chromosome, centromeric 
region [GO:0000775]; 
chromosome passenger 
complex [GO:0032133]

NCAPG 2.11 4.91E−28 6.53 – Cell division 
[GO:0051301]; mitotic 
chromosome condensa‑
tion [GO:0007076]

Condensed chromosome 
[GO:0000793]; condensed 
chromosome, centromeric 
region [GO:0000779]; 
condensin complex 
[GO:0000796]

CDC45 1.99 9.54E−21 6.64 – DNA replication 
[GO:0006260]; DNA 
replication checkpoint 
[GO:0000076]; DNA 
replication initiation 
[GO:0006270]

Centrosome [GO:0005813]; 
ciliary basal body 
[GO:0036064]; cytoplasm 
[GO:0005737]

AURKB 1.97 1.44E−23 6.66 – Abscission [GO:0009838]; 
aging [GO:0007568]; 
anaphase-promoting 
complex-dependent 
catabolic process 
[GO:0031145]

Chromocenter 
[GO:0010369]; chromo‑
some passenger complex 
[GO:0032133]; condensed 
chromosome, centromeric 
region [GO:0000779]

MELK 1.85 2.59E−23 6.80 – Apoptotic process 
[GO:0006915]; cell 
population proliferation 
[GO:0008283]; G2/M 
transition of mitotic cell 
cycle [GO:0000086]

Cell cortex [GO:0005938]; 
cytoplasm [GO:0005737]; 
membrane [GO:0016020]

TROAP 1.83 1.20E−21 6.27 – Cell adhesion 
[GO:0007155]

Cytoplasm [GO:0005737]

BUB1 1.72 1.92E−26 6.07 – Apoptotic process 
[GO:0006915]; cell divi‑
sion [GO:0051301]; cell 
population proliferation 
[GO:0008283]

Condensed chromosome 
kinetochore [GO:0000777]; 
condensed nuclear 
chromosome kinetochore 
[GO:0000778]; condensed 
nuclear chromosome outer 
kinetochore [GO:0000942]

EPR1 1.72 3.69E−22 6.77 – Cell surface recep‑
tor signaling pathway 
[GO:0007166]

Integral component of 
membrane [GO:0016021]

HJURP 1.71 3.55E−24 6.09 – Cell cycle [GO:0007049]; 
CENP-A containing 
nucleosome assembly 
[GO:0034080]; chro‑
mosome segregation 
[GO:0007059]

Chromosome, centromeric 
region [GO:0000775]; 
condensed chromosome 
kinetochore [GO:0000777]; 
mitochondrion 
[GO:0005739]

FAM64A 1.67 9.65E−21 6.72 – Cell cycle [GO:0007049]; 
cell division [GO:0051301]

Nucleolus [GO:0005730]; 
nucleoplasm [GO:0005654]
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Table 1  (continued)

Genes CoMI p-valuea Log2 (FC)b Tissue 
specificityc

GO BP GO CC

KIF4A 1.64 9.11E−24 5.63 – Anterograde axonal 
transport [GO:0008089]; 
antigen processing 
and presentation of 
exogenous peptide 
antigen via MHC class II 
[GO:0019886]; microtu‑
bule-based movement 
[GO:0007018]

Axon cytoplasm 
[GO:1904115]; chromo‑
some [GO:0005694]; 
cytoplasm [GO:0005737]

ASF1B 1.63 1.00E−24 5.80 – Blastocyst hatching 
[GO:0001835]; cell differ‑
entiation [GO:0030154]; 
DNA replication-
dependent nucleosome 
assembly [GO:0006335]

Nuclear chromatin 
[GO:0000790]; nucleoplasm 
[GO:0005654]; protein-
containing complex 
[GO:0032991]

NUSAP1 1.54 8.64E−24 5.63 – Establishment of mitotic 
spindle localization 
[GO:0040001]; mitotic 
chromosome conden‑
sation [GO:0007076]; 
mitotic cytokinesis 
[GO:0000281]

Chromosome 
[GO:0005694]; cytoplasm 
[GO:0005737]; microtubule 
[GO:0005874]

CEP55 1.53 1.10E−26 5.42 – Cranial skeletal 
system development 
[GO:1904888]; estab‑
lishment of protein 
localization [GO:0045184]; 
midbody abscission 
[GO:0061952]

Centriolar satellite 
[GO:0034451]; centriole 
[GO:0005814]; centrosome 
[GO:0005813]

CENPA 1.52 5.29E−22 5.55 – CENP-A containing 
nucleosome assembly 
[GO:0034080]; establish‑
ment of mitotic spindle 
orientation [GO:0000132]; 
kinetochore assembly 
[GO:0051382]

Chromosome, centromeric 
region [GO:0000775]; con‑
densed chromosome inner 
kinetochore [GO:0000939]; 
condensed nuclear 
chromosome, centromeric 
region [GO:0000780]

SHOX2 1.48 6.10E−16 6.91 – Cardiac atrium morpho‑
genesis [GO:0003209]; 
cartilage development 
involved in endochondral 
bone morphogenesis 
[GO:0060351]; chon‑
drocyte development 
[GO:0002063]

Nuclear chromatin 
[GO:0000790]

KIFC1 1.44 3.38E−19 5.72 – Cell division 
[GO:0051301]; microtu‑
bule-based movement 
[GO:0007018]; mitotic 
metaphase plate con‑
gression [GO:0007080]

Early endosome 
[GO:0005769]; kinesin 
complex [GO:0005871]; 
membrane [GO:0016020]

KIAA0101 1.43 8.07E−21 5.95 – Cellular response to 
DNA damage stimulus 
[GO:0006974]; centro‑
some cycle [GO:0007098]; 
DNA replication 
[GO:0006260]

Centrosome [GO:0005813]; 
nucleoplasm [GO:0005654]; 
nucleus [GO:0005634]
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Table 1  (continued)

Genes CoMI p-valuea Log2 (FC)b Tissue 
specificityc

GO BP GO CC

KIF2C 1.33 3.31E−20 5.29 – Antigen processing 
and presentation of 
exogenous peptide 
antigen via MHC class II 
[GO:0019886]; attach‑
ment of mitotic spindle 
microtubules to kine‑
tochore [GO:0051315]; 
cell division [GO:0051301]

Centrosome [GO:0005813]; 
chromosome, centromeric 
region [GO:0000775]; 
condensed chromosome 
kinetochore [GO:0000777]

ATP8A2 1.31 8.43E−13 6.85 Brain Aging [GO:0007568]; 
axonogenesis 
[GO:0007409]; detection 
of light stimulus involved 
in visual perception 
[GO:0050908]

Endosome [GO:0005768]; 
Golgi apparatus 
[GO:0005794]; integral 
component of membrane 
[GO:0016021]

CENPK 1.31 4.27E−21 5.26 – CENP-A containing 
nucleosome assem‑
bly [GO:0034080]; 
kinetochore assembly 
[GO:0051382]; mitotic 
sister chromatid segrega‑
tion [GO:0000070]

Condensed nuclear chro‑
mosome inner kinetochore 
[GO:0000941]; cytosol 
[GO:0005829]; nucleoplasm 
[GO:0005654]

FOXM1 1.26 7.18E−19 4.95 – DNA damage response, 
signal transduction 
by p53 class mediator 
resulting in transcription 
of p21 class mediator 
[GO:0006978]; DNA repair 
[GO:0006281]; G2/M 
transition of mitotic cell 
cycle [GO:0000086]

Nuclear chromatin 
[GO:0000790]; nucleoplasm 
[GO:0005654]; nucleus 
[GO:0005634]

GTSE1 1.23 7.44E−19 5.23 – DNA damage response, 
signal transduction by 
p53 class mediator result‑
ing in cell cycle arrest 
[GO:0006977]; micro‑
tubule-based process 
[GO:0007017]; positive 
regulation of cell migra‑
tion [GO:0030335]

Cytoplasmic microtubule 
[GO:0005881]; cytosol 
[GO:0005829]; membrane 
[GO:0016020]

IGFBP2 1.22 1.01E−14 5.58 – Aging [GO:0007568]; 
cellular protein metabolic 
process [GO:0044267]; 
cellular response to 
hormone stimulus 
[GO:0032870]

Apical plasma membrane 
[GO:0016324]; cytoplas‑
mic vesicle [GO:0031410]; 
extracellular exosome 
[GO:0070062]

KIF14 1.22 7.45E−18 5.20 – Activation of pro‑
tein kinase activity 
[GO:0032147]; cell divi‑
sion [GO:0051301]; cell 
proliferation in forebrain 
[GO:0021846]

Cytosol [GO:0005829]; 
Flemming body 
[GO:0090543]; kinesin 
complex [GO:0005871]

MKI67 1.22 1.18E−16 5.67 – Cell cycle [GO:0007049]; 
cell population prolif‑
eration [GO:0008283]; 
regulation of chro‑
matin organization 
[GO:1902275]

Chromosome 
[GO:0005694]; membrane 
[GO:0016020]; nuclear 
body [GO:0016604]
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Table 1  (continued)

Genes CoMI p-valuea Log2 (FC)b Tissue 
specificityc

GO BP GO CC

F2R 1.21 9.11E−24 4.72 – Activation of cysteine-
type endopeptidase 
activity involved in 
apoptotic process 
[GO:0006919]; activa‑
tion of MAPKK activity 
[GO:0000186]; anatomical 
structure morphogenesis 
[GO:0009653]

Caveola [GO:0005901]; cell 
surface [GO:0009986]; early 
endosome [GO:0005769]

FAM111B 1.19 1.50E−17 5.47 – DNA replication 
[GO:0006260]

Chromatin [GO:0000785]; 
nucleus [GO:0005634]

PNMA5 1.18 2.62E−14 6.55 Brain Positive regulation 
of apoptotic process 
[GO:0043065]

–

PRKCG 1.18 1.06E−11 7.41 Brain Chemical synaptic trans‑
mission [GO:0007268]; 
chemosensory behavior 
[GO:0007635]; innerva‑
tion [GO:0060384]

Calyx of Held [GO:0044305]; 
cell–cell junction 
[GO:0005911]; cytosol 
[GO:0005829]

MLF1IP 1.17 2.29E−19 4.91 – CENP-A containing 
nucleosome assembly 
[GO:0034080]; chordate 
embryonic develop‑
ment [GO:0043009]; viral 
process [GO:0016032]

Centriolar satellite 
[GO:0034451]; condensed 
chromosome kinetochore 
[GO:0000777]; cytosol 
[GO:0005829]

CDCA2 1.17 5.25E−18 5.29 – Cell cycle [GO:0007049]; 
cell division 
[GO:0051301]; chro‑
mosome segregation 
[GO:0007059]

Chromosome 
[GO:0005694]; cytosol 
[GO:0005829]; nucleoplasm 
[GO:0005654]

E2F8 1.16 7.40E−19 5.30 – Cell cycle comprising 
mitosis without cytoki‑
nesis [GO:0033301]; cell 
population proliferation 
[GO:0008283]; chorionic 
trophoblast cell differen‑
tiation [GO:0060718]

Cytosol [GO:0005829]; 
nuclear chromatin 
[GO:0000790]; nucleolus 
[GO:0005730]

EZH2 1.15 2.37E−21 4.80 – Cardiac muscle hypertro‑
phy in response to stress 
[GO:0014898]; cellular 
response to hydrogen 
peroxide [GO:0070301]; 
cellular response to tri‑
chostatin A [GO:0035984]

Chromosome, telomeric 
region [GO:0000781]; 
cytoplasm [GO:0005737]; 
ESC/E(Z) complex 
[GO:0035098]

C1QL3 1.14 1.54E−11 6.92 Brain Regulation of syn‑
apse organization 
[GO:0050807]

Collagen trimer 
[GO:0005581]; extracellular 
region [GO:0005576]

CDK1 1.14 2.71E−19 4.91 – Activation of MAPK 
activity [GO:0000187]; 
anaphase-promoting 
complex-dependent 
catabolic process 
[GO:0031145]; animal 
organ regeneration 
[GO:0031100]

Centrosome [GO:0005813]; 
cyclin B1-CDK1 complex 
[GO:0097125]; cyclin-
dependent protein kinase 
holoenzyme complex 
[GO:0000307]

BUB1B 1.13 9.46E−19 5.12 – Anaphase-promoting 
complex-dependent 
catabolic process 
[GO:0031145]; apoptotic 
process [GO:0006915]; 
cell division [GO:0051301]

Anaphase-promoting 
complex [GO:0005680]; 
condensed chromosome 
kinetochore [GO:0000777]; 
condensed chromo‑
some outer kinetochore 
[GO:0000940]
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these approaches have shown to better define the prognosis of cancer patients, such as 
the PAM50 gene signature can use to classify breast tumors into four subtypes and to 
predict clinical prognosis [2, 3].

Table 1  (continued)

Genes CoMI p-valuea Log2 (FC)b Tissue 
specificityc

GO BP GO CC

KIF18A 1.13 1.24E−18 4.90 – Antigen processing 
and presentation of 
exogenous peptide 
antigen via MHC class 
II [GO:0019886]; cellular 
response to estradiol 
stimulus [GO:0071392]; 
male meiotic nuclear 
division [GO:0007140]

Caveola [GO:0005901]; 
cytoplasm [GO:0005737]; 
cytosol [GO:0005829]

SST 1.12 3.64E−09 6.66 Brain Cell–cell signaling 
[GO:0007267]; cell surface 
receptor signaling 
pathway [GO:0007166]; 
chemical synaptic trans‑
mission [GO:0007268]

Extracellular region 
[GO:0005576]; extracel‑
lular space [GO:0005615]; 
neuronal cell body 
[GO:0043025]

E2F2 1.11 2.48E−14 5.09 – Cell cycle [GO:0007049]; 
intrinsic apoptotic signal‑
ing pathway by p53 class 
mediator [GO:0072332]; 
lens fiber cell apoptotic 
process [GO:1990086]

Nuclear chromatin 
[GO:0000790]; nucleoplasm 
[GO:0005654]; nucleus 
[GO:0005634]

RYR2 1.11 6.41E−12 7.23 – Calcium ion transport 
[GO:0006816]; calcium 
ion transport into cytosol 
[GO:0060402]; calcium-
mediated signaling 
[GO:0019722]

Calcium channel complex 
[GO:0034704]; cytoplas‑
mic vesicle membrane 
[GO:0030659]; junctional 
sarcoplasmic reticulum 
membrane [GO:0014701]

a Calculated by T-test
b Absolute values of log2(fold change)
c RNA tissue specificity recorded in HPA database

GBM-C1 GBM-C2 GBM-C3 GBM-C4

A B

Gene expression

Low High

GBM-C1 (n=15)
GBM-C2 (n=64)
GBM-C3 (n=63)
GBM-C4 (n=4)

Log-rank 
test GBM-C1 GBM-C2 GBM-C3 GBM-C4

GBM-C1 0.06 0.006 0.10
GBM-C2 0.06 0.39 0.41
GBM-C3 0.006 0.39 0.52
GBM-C4 0.10 0.41 0.52

Months

S
ur

vi
va

l p
ro

ba
bi

lit
y

Fig. 4  Glioblastoma multiforme prognostic gene signature. A The hierarchal clustering of a 50-gene 
signature identified by CoMI in glioblastoma multiforme (GBM) tumor samples. Based on the gene expression 
patterns, the expression profile could be divided into four groups, including C1 (blue), C2 (green), C3 
(orange), and C4 (purple). B The 12-month overall survival analysis in four groups of GBM patients. The inner 
table showed p-value of log-rank test compared between four groups of patients.
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In this paper, we propose consensus mutual information (CoMI) to analyze omics 
data and to identify gene signatures. For multiple cancer omics data, we used CoMI 
to identify gene signatures, and those genes could reflect cancer-related signatures 
and have tissue-specific properties. In general, normal cells perform the function 
they are meant to perform, whereas cancer cells may not execute these functions. For 
example, cancerous thyroid cells may not produce thyroid hormone [20], and cancer-
ous white blood cells are not functioning as they should [21]. On the other hand, the 
genes recorded in cancer hallmarks are often activated in cancer cells [22].

Here, we hypothesize that tissue-specific genes are often related to lost-of-tis-
sue functions which are often down-regulated in the disease states. Our CoMI 
can identify these tissue-specific genes which are significant change (SDist score) 
and have consensus expressed values (SMI) within cancer and normal samples. The 
changes between cancer and normal samples were quantified by considering global 
gene expression values for all genes in omics data. Based on our scoring function, 
CoMI identified the liver-specific genes, such as CYP1A2 (CoMI score = 0.99 and 
FC = −  7.76), CYP2C8 (CoMI score = 0.71 and FC = −  4.14), and CYP3A4 (CoMI 
score = 0.55 and FC = −  5.85), are the members of the cytochrome P450 family 
involving in Lipid metabolism (meta-z score = 2.74) as well as Xenobiotics biodegra-
dation and metabolism (meta-z score = 3.72) in LIHC. Additionally, CoMI also iden-
tified gene SLC22A1 (CoMI score = 0.53 and FC = −  4.81) involving in liver unique 
functions, that is, bile secretion of Digestive system (meta-z score = 4.54). Conversely, 
MAP2K1, an essential component of the MAP kinase signal transduction pathway 
related to cancer hallmark, was not a tissue-specific gene. We found that MAP2K1 
significantly changed in most cancers, but its expression values are not consistent 
(CoMI score = 0.20). These results show that our CoMI identified gene signatures 
not only involved in cancer-related progress, such as Cell growth and death, but 
also reflect tissue unique functions of Nervous system (meta-z score = 7.49) in GBM. 
For clinical prognosis, our identified 50-gene signature could stratify GBM patients 
into high- and low-risk groups, and could predict clinical outcomes with 12-month 
survival.

There were some limitations to the current study. Firstly, the omics data (i.e., NGS) 
is only collected from TCGA, and different sources and platforms, such as microarray, 
are needed to use to validate our method and identified gene signatures. Secondly, the 
results of this study are mostly based on bioinformatics analysis and predictions, and 
further experiments are needed to prove the tissue-specific properties of our identi-
fied gene signatures. Thirdly, although we identified prognostic gene signatures, those 
genes remain to be further explored in our future work.

Conclusion
In summary, we have proposed CoMI for analyzing omics data and discovering gene 
signatures. Our method accomplished the identification of genes and gene signatures, 
which have consistently and significantly changed between normal and disease states. 
Our results indicated that CoMI could identify gene signatures with tissue-specific 
properties for interested diseases, and is able to be applied to predict clinical prognosis.
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Methods
To identify significantly and consistently expressed genes and gene signatures, we 
proposed a method, consensus mutual information (called CoMI), for analyzing 
omics data between normal and disease samples (Fig.  5A). We first calculated gene 
expression variations for each gene in a given omics data (Fig. 5B). For the evaluating 
of the consensus gene expression in normal and tissue states, we transferred the con-
tinuous gene expression to discrete integer symbols based on expression variations 
and intensities (Fig. 5C). Finally, we computed CoMI score for all genes, which can be 
used as a measure for significantly and consistently expressed genes and gene signa-
tures between two states (Fig. 5D).

Omics and validation data

Here, we collected omics data (i.e. NGS) in LIHC, GBM, BLCA, BRCA, and COAD 
from The Cancer Genome Atlas (TCGA) databases [23]. These datasets contain 228 
normal and 2315 tumor samples. To evaluate our method and compare to T-test and 
FC method, we collected the 1675 cancer-related genes derived from the Human 
Protein Atlas (HPA) database [18]. The tissue-specific genes were collected from 
HPA with protein annotation of tissue specificity in liver (409 genes), brain (1313 
genes), urinary bladder (56 genes), breast (82 genes), or colon (147 genes). Finally, 

Fig. 5  Overview of consensus mutual information. A Flowchart describing the main procedure. B We firstly 
evaluated the standard deviation ( σi ) of gene expression intensity for each gene in a given omics data. C 
We then computing the average standard deviation ( σ  ) from σi of all genes, as well as expression means of 
normal and disease samples (i.e., μN and μD), respectively, in each gene. For a given gene i in sample j, we 
assigned expression intensity into 7 integral symbols by considering the σ  and its μN and μD. D The gene 
expression values were converted to discretized integer symbol ranging from 0 to 6. The highly expressed 
genes were assigned to the highest symbol 6 and lowly expressed genes were assigned to the lowest symbol 
0. (D) The calculation of consensus mutual information (CoMI) values of all genes
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we calculated the p-values (i.e., T-test), fold changes, and SAM scores of all genes by 
using limma and samr R package [24, 25].

Discretization

To consider the readily quantifiable and significant expressions in the disease state of genes 
and gene signatures, we firstly evaluated the standard deviation ( σi ) of expression intensity 
of the gene i (Fig. 5B). Then, we calculated the average standard deviation ( σ  ) from σi of 
all genes (Fig. 5C). For each gene, computing expression means of normal (μN) and disease 
(μD) samples, respectively. For a given gene i in sample j, we utilize the average standard 
deviation ( σ  ), average expression (μN,i and μD,i) to assign expression intensity (EIi,j) into an 
integral symbol (ESi,j) by using the following equations:

The gene expression values were converted to discretized integer symbols ranging from 0 
to 6. The highly expressed gene was assigned to the symbol 6 and lowly expressed gene was 
assigned to the symbol 0. For instance, the σ  is 1.04 in LIHC, and the μN and μD of the gene 
NAT2 are 10.4 and 5.7, respectively. The expression intensity (EI) of NAT2 is 10.8 in sam-
ple TCGA-DD-AAE3-01A-11R-A41C-07, which satisfies the EIi,j >

µD,i+µN ,i

2
+ 2.5σ  (i.e., 

10.7), therefore, we assign the ESNAT2,TCGA-DD-AAE3-01A-11R-A41C-07 value to 6.

CoMI: Consensus mutual information

For each gene i in a given omics data, we evaluated its consensus mutual information 
(CoMI) and to identify significantly and consistently expressed genes and gene signatures 
between normal and disease states (Fig. 5D). The CoMI of a gene is defined as:

where SMI is gene expression difference between two states using mutual information; 
SDist is the gene expression distance between two states by using mean distance. For the 
gene i, the SMI is given as:

(1)ESi,j =



























































































6, ifEIi,j >
µD,i + µN ,i

2
+ 2.5σ

5, if
µD,i + µN ,i

2
+ 1.5σ < EIi,j ≤

µD,i + µN ,i

2
+ 2.5σ

4, if
µD,i + µN ,i

2
+ 0.5σ < EIi,j ≤

µD,i + µN ,i

2
+ 1.5σ

3, if
µD,i + µN ,i

2
− 0.5σ < EIi,j ≤

µD,i + µN ,i

2
+ 0.5σ

2, if
µD,i + µN ,i

2
− 1.5σ < EIi,j ≤

µD,i + µN ,i

2
− 0.5σ

1, if
µD,i + µN ,i

2
− 2.5σ < EIi,j ≤

µD,i + µN ,i

2
− 1.5σ

0, ifEIi,j ≤
µD,i + µN ,i

2
− 2.5σ

(2)CoMI = SMI × SDist

(3)SMI =

Y
∑

y=1

X
∑

x=1

p
(

x, y
)

log

(

p
(

x, y
)

p(x)p
(

y
)

)



Page 15 of 17Huang et al. BMC Bioinformatics          (2021) 22:624 	

where p(x,y) is the probability of gene i in symbol x and state y; p(x) is the fraction of 
gene i in symbol x, and p(y) is the fraction of samples in state y. Y is the number of states 
(here, Y = 2 for normal and disease states), and X is the number of symbols (here, X = 7). 
The SDist is given as:

where N and D are numbers of samples in the normal (y1) and disease (y2) states, respec-
tively; ESi,n and ESi,d are the integral symbols of gene i at the sample for normal and 
disease states, respectively.

According to the equation of mutual information, the SMI is related to the ratio 
between normal and cancer samples. SMI is also related to the overlap of integer symbols 
between normal and cancer samples. For example, SMI = 1, while p(normal) = p(cancer) 
and there is no overlap of integer symbols between normal and cancer samples; SMI 
is from 0.3 to 0.5, while p(normal) = p(cancer) and half of the integer symbols in nor-
mal and cancer samples are the same; SMI = 1, while p(normal) = p(cancer) and there is 
no overlap of integer symbols between normal and cancer samples; SMI = 0.44, while 
10 × p(normal) = p(cancer) and there is no overlap of integer symbols between normal 
and cancer samples; SMI is from 0.3 to 0.4, while 10 × p(normal) = p(cancer) and half 
of the integer symbols in normal samples are the same as integer symbols in cancer 
samples; SMI = 0.28, while 20 × p(normal) = p(cancer) and there is no overlap of inte-
ger symbols between normal and cancer samples. In our collected NGS data in LIHC, 
GBM, BLCA, BRCA, and COAD from TCGA databases, there are 228 normal and 2315 
tumor samples and the expected maxima of SMI might be 0.44. Here, we assumed that 
CoMI > 0.6 might be a suitable cut-off which could ensure only half of the integer sym-
bols in normal samples are the same as integer symbols in cancer samples and the SDist is 
greater than 2 (Additional file 1: Fig. S7).

Moreover, we found that both SMI and SDist could be used as good indexes to iden-
tify the genes with tissue-specific properties (Additional file 1: Fig. S8). SDist focuses on 
the distance between two states and is more related to the tissue-specific genes in our 
five data sets. In this study, we provide a scoring system that has a reliable discretiz-
ing method and consider both distances between two states and mutual information to 
identify gene signatures. Using SMI and SDist could evaluate the distance, significantly and 
consistently expressed value of the gene between normal and disease states under the 
same scale.
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