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Abstract 

Background: Nerve discharge is the carrier of information transmission, which can 
reveal the basic rules of various nerve activities. Recognition of the nerve discharge 
rhythm is the key to correctly understand the dynamic behavior of the nervous system. 
The previous methods for the nerve discharge recognition almost depended on the 
traditional statistical features, and the nonlinear dynamical features of the discharge 
activity. The artificial extraction and the empirical judgment of the features were 
required for the recognition. Thus, these methods suffered from subjective factors and 
were not conducive to the identification of a large number of discharge rhythms.

Results: The ability of automatic feature extraction along with the development of the 
neural network has been greatly improved. In this paper, an effective discharge rhythm 
classification model based on sparse auto-encoder was proposed. The sparse auto-
encoder was used to construct the feature learning network. The simulated discharge 
data from the Chay model and its variants were taken as the input of the network, and 
the fused features, including the network learning features, covariance and approxi-
mate entropy of nerve discharge, were classified by Softmax. The results showed that 
the accuracy of the classification on the testing data was 87.5%, which could provide 
more accurate classification results. Compared with other methods for the identifica-
tion of nerve discharge types, this method could extract the characteristics of nerve 
discharge rhythm automatically without artificial design, and show a higher accuracy.

Conclusions: The sparse auto-encoder, even neural network has not been used to 
classify the basic nerve discharge from neither biological experiment data nor model 
simulation data. The automatic classification method of nerve discharge rhythm based 
on the sparse auto-encoder in this paper reduced the subjectivity and misjudgment of 
the artificial feature extraction, saved the time for the comparison with the traditional 
method, and improved the intelligence of the classification of discharge types. It could 
further help us to recognize and identify the nerve discharge activities in a new way.
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Background
The neuron is the basic structure and functional unit of the nervous system. The nerv-
ous system can receive, transmit, and integrate information through abundant nerve dis-
charge rhythms. Nerve discharge plays a key role in nerve information processing [1]. A 
typical neuron consists of a cell body (soma), dendrites, and an axon. There are ion chan-
nels constructed by pore-forming proteins embedded in the neuron membrane. These 
channels allow passage of ions through the channel pore and generate intracellular-
versus-extracellular concentration differences of ions to establish the resting membrane 
potential. While the neuron’s internal and external environment changes to a certain 
extent, the ion channels can generate an electrochemical pulse called an action potential 
(AP) by gating and controlling the flow of ions across the cell membrane. This movement 
of ions is an important part of maintaining life for an organism [2]. The action potentials 
and other electrical signals can travel rapidly along the neuron’s axon, and activate syn-
apses which are located at various points throughout the dendrites tree of the down-
stream neurons. Thus, the common nerve discharge phenomenon is generated [3].

Researches on the nerve discharge can be helpful to better understand the neuronal 
coding and neural information processing, and to reveal basics and underlying mecha-
nisms of various neural activities. Different types of nerve discharges contain abundant 
and complex information [4]. Therefore, the identification of nerve discharges is the key 
to correctly understand the dynamical behavior of the nervous system. Nerve discharge 
was a complex non-linear phenomenon with many influencing factors and many non-
linear action modes, including such basic forms as random, chaotic, and periodic nerve 
discharge rhythms [5]. The development of nonlinear science, especially chaos theory, 
has provided abundant theoretical knowledge and analytical methods for the identifi-
cation of nerve discharges. The relevant studies showed that the nonlinear time series 
analysis method could describe the randomness and certainty of the discharge rhythms 
and identify their signal sources [6]. However, over-reliance on the chaotic time series 
analysis methods can easily lead to misjudgments of the non-chaotic discharge rhythms, 
especially for the random rhythm. It was suggested that the characteristics other than 
nonlinear dynamic properties may also play a positive role in the identification of nerve 
discharge rhythms [7].

The simulation of the neuron model is also usually used to study the nerve discharge 
mechanism. Neuron models can make the complex influencing factors in the real bio-
logical neuron systems to be standardized, concrete and programmed. They are helpful 
to understand the mechanisms such as the generation of AP, the dynamics change of 
nerve discharges under different electric current stimulations, and so on [6]. Meanwhile, 
the simulation of the neuron model could effectively compensate for the shortcomings 
of complex and expensive animal experiments. Various nerve discharge rhythms were 
successfully simulated by using the same mathematical model under different parameter 
configurations [7, 8].

In both experimental and numerical simulation studies of neural activities, the fol-
lowing methods were often used to identify the nerve discharge rhythms: First, the 
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observed discharge was fitted to the existing pattern by using the statistical descriptor 
or distribution of discharge activity. Second, based on the visualization of discharge 
sequence and the statistical histogram of interspike interval (ISI) [9], nonlinear time 
series analysis could characterize the randomness and certainty of discharge rhythms 
and identify their signal sources [10]. Therefore, according to several analysis indexes 
of ISI, certainty and randomness components were detected in neuronal discharge 
activities, which played a positive role to recognized and distinguished complex nerve 
discharge rhythms in the nervous system [11].

However, these methods with unknown parameters of nerve discharge mode were 
always subjective, as the parameters were usually estimated empirically by research-
ers or inferred from theoretical simulation data [5]. This made the feature extraction 
from the nerve discharge data with high nonlinearity and high dimensions more dif-
ficult [3]. And the excessive dependence on a few empirical indexes even caused con-
fusion in the identification of nerve discharge mode [2]. Meanwhile, these methods 
were always time-consuming, as each discharge rhythm needed to be analyzed by 
various time series analysis methods artificially, and then each analysis result needed 
to be compared with the basic discharge types to determine the type of the testing 
discharge rhythm artificially [7]. In summary, it is difficult to accurately, objectively 
and fast add a class label to an unknown nerve discharge sequence. Therefore, it is 
essential to design a feature learning model that can automatically extract useful fea-
tures from the long time nerve discharge series while keeping the feature compact.

Recently, deep learning rapidly developed and greatly improved the ability of the 
feature extraction methods in various fields, such as classification, recognition, and 
segmentation [12–17]. Such huge improvement is partially attributed to the feature 
extraction power of deep neural networks [18–21], especially in nonlinear feature 
extraction of high levels [22–25]. The sparse auto-encoder (SAE) is a special artifi-
cial deep neural network, which combines unsupervised learning and feature extrac-
tion [26–29]. It can effectively learn useful features from massive unlabeled data in an 
unsupervised way and show a powerful capability to extract nonlinear features from 
high-dimensional data. So it has been widely applied in many areas, like face recog-
nition [30], complex industrial system monitoring [31], medical images recognition 
[32], radar image classification [33], wind speed forecasting [34] and so on. However, 
to the best of our knowledge, SAE, even deep neural networks, has not been applied 
in the basic nerve discharge classification tasks, neither in single neuron or neural 
fiber case.

The purpose of this study is to automatically extract some important features from the 
testing nerve discharge sequence and effectively classify the nerve discharge rhythms. 
Considering each nerve discharge sequence as a vector, an effective nerve discharge 
rhythm classification model based on SAE was proposed in this paper. The SAE was 
used to construct the feature learning network. The nerve discharge data, which was 
simulated by the commonly used theoretical neuronal firing model (Chay model) and 
its variants, were taken as the input of the network. The features learned were classi-
fied by the Softmax classifier. To combine supervised and unsupervised learning, two 
other common characteristics from testing time series were also fused with the features 
extracted from the SAE. Finally, by some restrictions on the hidden layer, the network 
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could effectively learn the features that can best express the complex sample, the dimen-
sions of the sample, and get a higher accuracy compared with other methods.

Experiments and results
Simulated dataset

The simulation data were obtained by the numerical simulation of the determinis-
tic Chay model, stochastic Chay model with global Gauss white noise, stochastic Chay 
model with global Gauss color noise, stochastic Chay model with potassium ion Gauss 
white noise, stochastic Chay model with potassium ion Gauss color noise and improved 
deterministic Chay model. The simulation data set was composed of four types of nerve 
discharge: periodic discharge (PD) with category label 0, random discharge alternat-
ing with two periodic clusters discharge (RD) with category label 1, chaotic discharge 
(CD) with category label 2, and integer multiple discharge (IMD) with category label 3. 
Each discharge rhythm consisted of 60 ISI sequences with a length of 1024, of which 40 
were training datasets (see Additional file 1) and 20 were testing datasets (see Additional 
file 2).

Dataset theoretical model

Chay model was a multi-scale neuron system composed of fast and slow variables [2]. 
It was a typical ion channel model based on the Hodgkin-Huxley model to describe the 
complex nerve discharge rhythms. In previous studies, this neuronal firing model vividly 
restored real nerve discharge activities. As based on the ion channel dynamics, the key 
parameters in this model can correspond to the experimental operation well [4–9]. The 
model system was defined as:

where, Eq. (1) represented the differential equation followed by the change rule of cell 
membrane potential, Eq. (2) represented the change rule of the probability of potassium 
channel opening depending on potential, and Eq.  (3) represented the change rule of 
intracellular free calcium concentration.

When Gauss white noise ξ(t) was add to Eq. (1), a stochastic Chay model with global 
Gauss white noise was constructed. When Gauss colored noise σ(t) was added to Eq. (1), 
a stochastic Chay model with global colored noise was constructed. Other stochastic 
models were constructed in this way. The characteristics of Gauss white noise were as 
follows:

(1)
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D was noise intensity and δ was the Dirac-delta function.
The characteristics of Gauss colored noise were as follows:

The Gauss white noise of potassium ion and the Gauss color noise of potassium ion 
were added to Eq. (2) to form a stochastic Chay model. The Gauss white noise of potas-
sium ion was described as follows:

where ξn(t) was Gauss white noise, N was the number of ion channels, τn(V ) was the 
relaxation time of ion channels, and n was the probability of opening ion channels. 
When ξn(t) was Gauss color noise, ηn was Gauss color noise of potassium ion.

In our previous studies, a biological fact was considered that when the action potential 
voltage reaches its peak, the K+ channel opened completely instantaneously at the point 
between the end of depolarization and the beginning of repolarization. On this basis, the 
improved deterministic Chay model was proposed. The biological process was expressed 
as:

The parameter wK  controlled the process. Equations  (1), (3) and (10) constituted an 
improved deterministic Chay model. For more information, please refer to Ref. [10].The 
improved model could simulate the nerve discharge type with random rhythm without 
noise, which rhythm could not be simulated in the original deterministic Chay model 
and only observed in the stochastic Chay model before.

Using the above models, the discharge sequences could be simulated, and the ISI time 
series could be transformed from the spike trains.

Parameter analysis and valuation indicators
Network parameters

The structure and training parameters of the SAE in this paper were shown in Table 1.

Confusion matrix (CM)

CM, also known as error matrix, was a standard form of precision evaluation, which 
expressed in N rows and N columns [35]. Each column of the CM represented the actual 
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category, and each row represented the prediction category. The value of each column 
represented the number of data predicted for this class.

Through the CM, the following equation could be obtained:

The overall accuracy was the proportion of all correctly judged results in the total 
observation value of the classification model. Ni j represented the number of discharge 
sequences of class i predicted to class j. Ni,i represented the number of discharge 
sequences of class i predicted to class i.

Results
We validated the SAE in this paper on the simulation datasets, which contained four 
basic types of nerve discharge. The total training time was 17 min and the test time was 
15 s. With the same data size, the time consumption of traditional artificial classification 
method was at least 30 min. The CM on the testing datasets classified by only the auto-
matically extracted features from stacked SAE was shown in Table 2.

The results showed that the overall accuracy was ACC = 68.75%. All the IMD rhythms 
were predicted correctly, and almost all the RD rhythms were classified incorrectly. 
Most of them were classified into CD rhythms. Therefore, we considered adding some 
important statistical features to the network manually and then observed the classifi-
cation results. As a classical statistical index to measure the overall error of variables, 

(11)Overall Accuracy =
∑k

i=1Nii
∑k

i=1

∑k
j=1Nij

Table 1 Network parameter settings of the SAE

Parameter name Parameter value

Number of input layer nodes 1024

Number of output layer nodes 4

Number of nodes in layer 1 1224

Number of nodes in layer 2 824

Unsupervised training epochs 1000

Supervised training epochs 1000

L2 weight regularization 0.01

Loss function Crossentropy

Sparsity regularization β 0.1

Training algorithm Trainscg

Table 2 CM on the testing datasets classified by the features from stacked SAE

The subscript p and t represent the predicted value and the true value respectively

Type PDp RDp CDp IMDp Overall accuracy (%)

PDt 15 3 2 0 68.75

RDt 4 2 11 3

CDt 2 0 18 0

IMDt 0 0 0 20
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covariance was widely used in neuroscience [36–39]. In this paper, we merged the 
covariance (the calculation method was described in Ref. [38]) of discharge data with 
the features extracted automatically by the stacked SAE and trained them in the Softmax 
classifier. The testing data were validated and the CM was obtained as shown in Table 3.

The results showed that after incorporating the covariance of discharge data, the 
overall accuracy was increased from 68.75 to 76.25%. The accuracy of classification of 
RD rhythms was improved, while the classification results of other rhythms remained 
unchanged. However, the improvement to the classification result of RD rhythms with 
covariance fused was limited. As a complexity measure suitable for short data, approxi-
mate entropy was frequently applied to feature description of neural discharge data 
[4–7]. So the approximate entropy (ApEn, the calculation method was described in Ref. 
[7]) of discharge data was also merged with the features extracted automatically by the 
stacked SAE and then trained them in the Softmax classifier. The testing data were vali-
dated and the CM was obtained as shown in Table 4.

The results showed that after incorporating the ApEn of the discharge data, the overall 
accuracy was increased from 68.75 to 72.5%. The introduction of ApEn to the features 
learned from the stacked SAE further improved the classification of RD rhythms. But 
simultaneously, the number of CD sequences correctly classified declined. Therefore, 
we merged the ApEn and covariance of discharge data with the features automatically 
extracted by the stacked SAE and trained them in the Softmax classifier. The testing data 
were validated, and the CM was showed in Table 5.

The results showed that the overall accuracy was significantly increased with a value 
of 87.5%. Especially, by the fine-tuning with these fused features, the Softmax classifier 
obtained better training and correctly identified more RD sequences. Thus the results 
suggested that the fusion of the covariance, ApEn with the features extracted automati-
cally by the stacked SAE, could effectively distinguished and identified the different types 
of nerve discharge rhythms, which was based on the good classification effect.

Table 3 CM on the testing datasets classified by the features from stacked SAE and covariance 

The subscript p and t represent the predicted value and the true value respectively

Type PDp RDp CDp IMDp Overall accuracy (%)

PDt 15 3 2 0 76.25

RDt 5 8 7 0

CDt 2 0 18 0

IMDt 0 0 0 20

Table 4 CM on the testing datasets classified by the features from stacked SAE and ApEn 

The subscript p and t represent the predicted value and the true value respectively

Type PDp RDp CDp IMDp Overall accuracy (%)

PDt 16 2 2 0 72.5

RDt 5 5 10 0

CDt 2 1 17 0

IMDt 0 0 0 20
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Table  6 summarized the classification results of different methods on the dataset. 
Compared with other methods, the accuracy of this novel method is higher. A model 
was proposed and trained in this work to learn the automatic feature extraction from the 
discharge sequence. The model effectively reduced the subjectivity, the time consump-
tion and other adverse factors of the previous methods. At the same time, cov and ApEn 
of the discharge sequence were integrated as a new feature, which was introduced into 
the model, and then classified. The comparison results showed that these two character-
istics of the discharge sequence had a great influence on the classification results, espe-
cially on the results of RD discharge rhythm.

Discussion
The nerve discharge rhythms, which constructed the classification experiment data-
set of the present study, were simulated by the original deterministic Chay model and 
its variants, including stochastic Chay model with global Gauss white noise, stochastic 
Chay model with global Gauss color noise, stochastic Chay model with potassium ion 
Gauss white noise, stochastic Chay model with potassium ion Gauss color noise and 
improved deterministic Chay model. The improved deterministic Chay model based 
on the rational biological fact had a strong ability to simulate abundant nerve discharge 
forms. It could simulate not only the rhythms simulated by the original Chay model, but 
also the rhythms simulated by the stochastic Chay model with noise. Various complex 
discharge rhythms would be observed in a same dynamical bifurcation process. This 
improved model may provide the possibility to understand the unity of the uncertainty 
and randomness of the neuron system in a new light, and further enrich the understand-
ing of the mechanism of neuron multi-peak discharge modes.

In this work, a learning neural network model based on SAE was proposed for the 
automatic classification of nerve discharge rhythms. In fact, the auto-encoder (AE) itself 
has powerful abilities of unsupervised feature extraction and has a great advantage in 

Table 5 CM on the testing datasets classified by the features from stacked SAE, covariance and ApEn 

The subscript p and t represent the predicted value and the true value respectively

Type PDp RDp CDp IMDp Overall accuracy (%)

PDt 17 1 2 0 87.5

RDt 2 17 1 0

CDt 1 3 16 0

IMDt 0 0 0 20

Table 6 Performances of different methods to classify nerve discharge rhythms

Method Overall 
accuracy 
(%)

KNN 65.00

SVM 68.75

SAE 68.75

Our proposed method 87.50
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vector processing. The more neurons exit in the hidden layer, the stronger expression 
ability the model has and the more complex features could be learned. But too many hid-
den neurons would easily lead to over-fitting, effecting the generalization ability of the 
network. This was the reason why we chose the stacked sparse auto-encoder. Without 
sparsity, the input couldn’t be correctly expressed in compression. Specifically, if sparse 
constraints were added to hidden neurons, the auto-encoder neural network could find 
some interesting structures in the input data even in the case of a large number of hid-
den neurons, and effectively avoided the over-fitting. The results showed that the feature 
of the nerve discharge rhythms could be really automatically extracted by the SAE learn-
ing, especially accurately for the IMD and PD rhythms. This model exactly classified the 
nerve discharge rhythms more intelligently with low time-consuming than the previous 
methods.

However, the accuracy obtained by only the SAE model was low as the RD rhythms 
were not well distinguished from the CD rhythms. In fact, these two discharge rhythms 
were quite confounding in both previous biological experiment and numerical simu-
lation studies, in which the statistical characteristics and the nonlinear characteristics 
of these two rhythms are very similar. Considering the combination of supervised and 
unsupervised classification, a statistical characteristic "covariance" and a nonlinear char-
acteristic "ApEn" often used in previous analysis were fused additively with the features 
extracted by the second SAE. The covariance was a measurement of dispersion, and 
revealed the degree of fluctuation among samples. The ApEn could describe the com-
plexity of the discharge sequences, and detect determinate components and random 
components in the mixed information. The larger value of ApEn indicated the higher 
complexity and the stronger randomness of the discharge sequence. It was found that 
the accuracy was significantly improved after incorporating these two features, indicat-
ing that the model was helpful for the classification of nerve discharge and improved the 
reliable quantitative evaluation for the recognition of nerve discharge rhythms.

These results also suggested that the classification model based on SAE proposed in 
this paper still had limitations to identify the nerve discharge rhythms with more disor-
der, although its advantages were significant. Because of the high complexity, irregular-
ity, nonlinearity and difference of the nerve discharge activities, it was difficult to classify 
the nerve discharge rhythms by a single method or simple methods. These were also 
the reason that the time-consuming, empirical and subjective combined methods were 
used in the past but couldn’t get a satisfying result. The final results of this work also 
provided a new effective approach to classify the more complex or unknown nerve dis-
charge rhythms, that was integrating some simple features to the classification model 
based on SAE.

Conclusions
In this study, an automatic classification of nerve discharge rhythms based on sparse 
auto-encoder and time series feature was proposed. A stacked sparse auto-encoder 
was constructed by integrating two SAEs to realize the automatic extraction of nerve 
discharge features. A Softmax classifier was integrated on the top of the stacked 
sparse auto-encoder to complete the automatic classification of simulated nerve dis-
charge rhythms. The time series feature of the simulated nerve discharge sequence 
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was fused with the feature extracted from the SAE, and significantly improved the 
accuracy of classification results. In addition, the improved deterministic Chay model 
based on the generation mechanism of AP was used to simulate the nerve discharge 
in this paper. This model showed great ability for simulation and promoted the con-
struction of simulation datasets.

SAE was firstly used to classify the basic types of discharge data from a neuron or a 
single nerve fiber, and achieved automatically extract the characteristics of the nerve 
discharge. This model reduced the time of artificial judgment, avoided the empiricism 
of traditional methods, and made the classification of nerve discharge types more 
intelligent. This work could provide new viewpoints and relatively reliable methods 
for the recognition of nerve discharge.

The final goal of this method proposed is to solve the identification of real biologi-
cal nerve discharge rhythms. However, the real data from neurophysiological experi-
ment is very difficult to obtain, as experimental instrument, experimental operator, 
and even experimental reagent may become restrictive factors. With the accumula-
tion of real data, the method proposed in this paper will be validated and improved in 
the further studies.

Methods
Preprocessing

As the parameters of neuron models, which were set by researchers, were different 
during simulation, the length of the nerve discharge sequence and the size of the ISI 
obtained would also be different. Therefore, we normalized the discharge data and 
controlled the length of the discharge sequence at 1024. This length was also fre-
quently used to analyze the nerve discharged data in many experimental and clinical 
studies.

Sparse auto‑encoder (SAE)

The stacked sparse automatic encoder used in this paper was made up of two SAEs 
superimposed [32]. Its network structure consisted of four layers, including an input 
layer, two hidden layers, and an output layer, as shown in Fig. 1. The 1024-dimensional 
axial data was input into the model as input data to obtain depth representation, and 
then the classifier was trained according to the representation and its corresponding 
labels.

As an unsupervised nonlinear neural network, the SAE was trying to make the out-
put of the model infinitely close to the model input, so that the feature representa-
tion of the model was more robust. The encoding process was from the input layer to 
the hidden layer, and the decoding process was from the hidden layer to the output 
layer. In encoding, the input vector x was mapped by function h = f (1)

(

W (1)x + b(1)
)

 , 
and the hidden layer representation was obtained. In decoding, the representation h 
of hidden layer was re-mapped by function x̂ = f (2)

(

W (2)x + b(2)
)

 to obtained recon-
structed data. The model was optimized by minimizing the cost function of recon-
struction error, and the cost function was defined as the mean square error function:



Page 11 of 14Jiang et al. BMC Bioinformatics          (2021) 22:619  

�weights was the L2 regular constraint, �sparsity was the sparse restriction.
For each SAE, Eq. (12) was used to minimize the difference of features to optimize 

network parameters and obtained representative depth features. In the training pro-
cess, the gradient descent method was used to optimize the loss function.

Then, in the stacked sparse auto-encoder constructed by two SAE models, the out-
put of the SAE on the previous level served as the input of the SAE on the next layer. 
More and deeper abstract information from data could be obtained. However, the 
deep information learned from stacked sparse auto-encoder was adaptive and could 
not classify. Therefore, to effectively classify the learned features, a classifier was inte-
grated at the top of the stacked sparse auto-encoder to complete the training of the 
classification model. Sometimes, several statistical features would be fused with the 
learned features by stacked SAE to fine-tune the training of classifier.

Softmax classifier

When SAE was used in the classification field, a robust classifier was often added 
to the last layer of the network. Since this work was a multi-category classification 
experiment, Softmax classifier was used for classifying to make the network applica-
tion more extensive and reach more accurate results [34].

For training sets {{x(1), y(1)}, {x(2), y(2)},…, {x(m), y(m)}}, label y was assigned k different 
values to represent k categories, and p( y = j | x) was assumed to represent the proba-
bility that the sample is determined as category j when input x. Therefore, for a k-class 
classifier, the classification result was a k-dimensional vector, and the classification 
result was expressed as:

(12)J (W , b) =
[

1

m

m
∑

i=1

(

1

2
f
(

x(i) − x̂(i)
)2

2

)

]

+ �×�weights + β ×�sparsity

Fig. 1 Neural network architecture of the stacked SAE and nerve discharges corresponding to the 
classification results. The left part of the figure shows the structure of the stacked SAE. The right part of the 
figure shows the different nerve discharges corresponding to the classification results. The text illustrates the 
added statistical features to tune the training process
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where, θ was a matrix of k rows, and each row corresponded to the parameters of the 
classifier. 1

∑k
j=1 exp

(

θTj x(i)
) was the normalization of probability distribution so that the 

sum of all probabilities was 1. Therefore, the cost function of the Softmax classifier was 
defined as:

In the above formula: 1{·} was the indicator function, that was, 1{true} = 1, 1{false} = 0.
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