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Background
Numerous modelling approaches have been developed to describe and investigate the 
metabolic behaviour of an organism or a living cell [1, 2]. Constraint-based modelling 
has become one of the most successful and widely adopted approaches for modelling 
cellular metabolic networks [3, 4]. This approach relies on mass balance over intracel-
lular metabolites and the assumption of pseudo-steady-state conditions to determine 
intracellular metabolic fluxes. The information about the possible biochemical conver-
sion, transport and uptake or secretion of metabolites is contained in the stoichiometric 
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matrix. An additional set of constraints describe experimental measurements, such as 
measured uptake rates, reaction reversibility and maximum enzyme capacity. In addi-
tion, constraint-based genome-scale metabolic models (GEMs) contain the associations 
between genes and the corresponding reactions through the so-called gene-protein-
reaction (GPR) relationships, expressed through logical (or Boolean) functions [5, 6].

Such stoichiometric models result in an under-determined linear equation system, 
which is not enough to calculate a unique flux distribution. These models are there-
fore combined with additional experimental data or assumptions to yield well-defined 
flux distributions. The assumption of optimality is often used to construct a Flux Bal-
ance Analysis (FBA) problem [7]. Under this assumption, FBA is used to find the opti-
mal (maximum or minimum) value of a selected function, called the objective function, 
compatible with the constraints. Objective functions are often chosen to represent max-
imization of growth, ATP production, or minimization of glucose consumption among 
others [8].

One of the limitations of constraint-based modelling is that intracellular fluxes are 
most often left unconstrained due to lack of knowledge of real flux bounds of the corre-
sponding reactions. Modelling conditions under which the cell behaves optimally, such 
as exponential growth, allows to side step this limitation by implicitly assuming that cells 
are able to adjust their metabolism to accommodate the optimal metabolic state. Moreo-
ver, these models are not able to account for most of the regulatory activity inside the 
cells: transcriptional, translational and post-translational regulation. To overcome this 
limitation different approaches to integrate gene expression data into a metabolic model 
have been developed [9]. Transcriptomic data provide complete information of regula-
tory rules which can improve the predictive power metabolic flux distributions in a wide 
range of states in GEM.

Several algorithms have been developed that demonstrated how gene expression data 
can be incorporated into metabolic models. These methods further constrain the solu-
tion space of the GEM by incorporating expression values as a proxy for flux using dif-
ferent approaches. For instance, iMAT and GIMME assume that mRNA levels below a 
certain threshold reveal that corresponding reactions are inactive [10, 11]. E-Flux and 
PROM assume that transcript level indicates the degree to which the reactions are active 
by constraining the upper bounds [12, 13]. The main assumptions and characteristics 
of the methods have been reviewed in [14], to where we refer the reader. Nevertheless, 
a systematic evaluation of their performance shows that there is still a lack of an opti-
mal and general approach [14]. Although methods have been developed to incorporate 
quantitative proteomics data and enzyme kinetic data to constrain fluxes [15], quantita-
tive proteomics datasets remain hard to come by.

One of the main challenges these methods face is how to link transcript levels, protein 
levels, enzyme activity and flux values. This is reflected in previous studies where correla-
tions have often been found to be poor in the following cases: (i) between mRNA (gene 
expression) and protein concentration (abundances) across all genes and proteins expressed 
in an organism; and (ii) between enzyme activity and metabolic flux, considering combined 
measurements of gene expression, protein levels and metabolic fluxes [16–19]. This could 
be due to multiple factors. For instance, enzymes might accept several different substrates 
thereby participating in multiple reactions thus relating the expression of one gene to 
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several fluxes. For reactions catalysed by enzyme complexes, the opposite situation applies 
where several genes are related to one flux. Similarly, for isoenzymes different genes are 
coupled to one or several fluxes depending on interpretation of the inter-conversions of the 
different enzymes. Finally, there can be instances of combinations of the above cases where 
many genes are related to many fluxes. Therefore, it is not trivial to make quantitative or 
even qualitative comparisons between gene expression and metabolic flux. Methods to 
integrate gene expression data and metabolic models assume, in most cases, that the struc-
ture of the network combined with the expression data, retains enough information about 
the state of the system to lead to meaningful predictions [20].

E-Flux is an algorithm that relates flux bounds with gene expression data so that reactions 
associated with highly expressed genes are allowed to carry higher flux values [12]. This 
method does not assume that enzyme concentrations, activities or kinetics are the only 
determinants of reaction fluxes. E-Flux constrains the upper bound of a reaction accord-
ing to the expression of the associated genes relative to a specific threshold. In cases where 
the gene expression level is below a certain threshold, tight constraints are placed on the 
flux through the corresponding reactions. The rationale behind E-Flux is that mRNA levels 
can be used as an approximation to the amounts of protein available, and these in turn can 
be used as an approximation to the upper bound on reaction rates. The E-Flux algorithm 
was originally developed for global microarray data and was later adapted to RNAseq data 
[20]. In these calculations normalized gene expression is used to constrain the fluxes. Thus, 
a proportionality constant (PC) is implicitly included that models the gene specific link 
between expression and flux. Implicit inclusion means that these factors are often taken 
to have a unit value. The PC is unique to each reaction in GEM and would thus implicitly 
account for a broad range of effects, like translation efficiency, protein degradation rate and 
enzyme kinetics. The value of this PC greatly impacts the results of the metabolic simula-
tions. A too high value would result in reaction upper bound so high that effectively it does 
not constrain the reactions. A too low value would over-constrain the model, effectively 
preventing reactions from carrying any flux and leading to an infeasible model, as con-
straints associated for instance with maintenance requirements or thermodynamic require-
ments on reaction reversibility cannot be fulfilled.

Here, we present a systematic evaluation of the impact of various PC on the perfor-
mance of E-Flux algorithm. To this end, we have selected published data from two stud-
ies in Escherichia coli and one in Saccharomyces cerevisiae that have been used earlier for 
systematic evaluation of methods for data and model integration [14]. The value of this PC 
can greatly influence the accuracy of the predictions and our result shows that a consist-
ent choice can greatly increase the model’s predictive power. In addition, we provide sug-
gestions for selection of optimal values. The presented approach is a novel extension of 
the E-Flux algorithm, is generic and can be adapted to other methods for data and model 
integration.

Results
In order to evaluate the impact of the PC after integration of transcriptomics data, we 
have selected four studies: Ishii et al. [21], Holm et al. [22] and Gerosa et al. [23] for E. 
coli; and Rintala et al. [24] for S. cerevisiae. Three of these studies have previously been 
selected as a gold standard for assessment of methods to integrate expression data and 
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metabolic models [14, 21, 22, 24]. The Gerosa et al. dataset complements those studies 
as it also provides intracellular flux measurements.

For the selected datasets and models, we have applied the E-Flux algorithm with 
varying values of the PC and used the integrated model to predict a selected pheno-
type measurement (here the growth rate). We observed that the value of the PC highly 
impacts the growth rate prediction and we have fitted the value for the PC to that pro-
ducing best agreement between model prediction and measured value. This PC value 
was then used to predict additional phenotypes (secretion rates and/or flux through 
intracellular reactions).

E. coli (Holm et al.)

This study reports E. coli strains growing aerobically in batch culture [22]. The con-
sidered strains are wild-type (WT) MG1655 and two mutant strains over-expressing 
NADH: flavin oxidoreductase/NADH oxidase (NOX) and atpAGD (F1-ATPase), respec-
tively. A major impact of the introduced genetic mutations is the reduction in growth 
rates (shown in Fig. 1A), even when there is a major increase in glucose uptake rate: 27% 
and 70% for the NOX and ATPase mutant respectively [22]. We have used gene expres-
sion data from this study to constrain the E. coli GEM. GEMs are often used to pre-
dict growth rates from carbon uptake rates. The nature of these GEM and the optimality 
principle in FBA ensures that (in the absence of additional constraints) higher uptake 
rates correspond to higher growth rate predictions. However, the integration of expres-
sion data and explicit inclusion of a proportionality constant influences this behaviour as 
shown in Fig. 1A. As previously stated, large values of the proportionality constant lead 
to reaction bounds so high that they effectively do not constraint the reactions. This is 
clearly seen in Fig. 1A, where for large values of the PC (> 150) growth rate predictions 
were higher for the mutant strains NOX and ATPase than for WT, following the glucose 
uptake measurements.

However, lower PC values (< 100) do show the reduced growth rate of the mutant as 
compared to the wild type. Comparison of the model predictions and measured growth 
rates lead us to select, for each strain, the PC that provides the best match. These values 
were found to be 119.8, 141.90 and 175.4 for ATPase, NOX and WT strains respectively.

Once these fitted values were included, the model was used to predict acetate secre-
tion by sampling the steady-state flux space. Predictions for acetate secretion show the 
measured trend, with the lowest secretion rate in WT (9.15 ± 4.71 mmol  g−1  h−1) Fig. 1B 
followed by mutant strain NOX (11.34 ± 5.25  mmol   g−1   h−1) Fig.  1C and the highest 
secretion in mutant strain ATPase (12.89 ± 6.61  mmol   g−1   h−1) Fig.  1D. For WT and 
NOX the predicted flux overestimates the measured one, while for the ATPase the pre-
dicted flux was lower than the measured flux. In two of the three cases inclusion of the 
PC improves the predictions.

E. coli (Ishii et al.)

In their work, Ishii and co-workers experimentally investigated the response of E. coli to 
environmental and genetic perturbations and provided multiple high-throughput omics 
data for both wild-type and mutant strains. To study the effect of environmental per-
turbations, they cultured WT cells at various dilution rates, while the effects of genetic 
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perturbations were examined by disrupting 24 single genes in the glycolysis and in the 
pentose phosphate pathways. In order to understand how phenotype modelling predic-
tions are improved upon integration of experimental data. We have used gene expres-
sion data from E. coli strains growing aerobically in a chemostat at a higher dilution rate 
of 0.7  h−1 [21].

First, we used the measured growth rate to estimate the value of the PC, so that 
model predictions best fit the data. This fitting led to a PC of 322.80, as shown in 
Fig.  2A. Once the PC was fit, we used the parametrized model to predict  CO2 secre-
tion rates. This showed that secretion rates were slightly overestimated by the model 
when compared to measured secretion rates. In this case the predicted secretion 
rate is 13.8 ± 4.67  mmol   g−1   h−1 (Fig.  2B), while the measured secretion rate was 
10.83 mmol  g−1  h−1. Similarly, we used the model to predict production rates for other 
fermentation products such as acetate, ethanol, lactate, pyruvate and succinate for which 
no secretion was predicted regardless of the inclusion of the PC (Additional file 4: Figure 
S1). In the case of pyruvate, ethanol and acetate this contrasted with the experimental 
measures.
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Fig. 1 Exploration of impact of proportionality constant on predicted flux in WT and two mutant strains 
overexpressing NOX and ATPase, respectively, in E. coli (Holm dataset): A growth, B WT acetate secretion, C NOX 
acetate secretion, D ATPase acetate secretion. Data from growth simulations in (A) are used to identify optimal values 
for the proportionality constant as those for which model predictions match experimental values (119.8, 141.90 and 
175.4 for ATPase, NOX and WT strains respectively). Simulations of acetate production (B, C, D), are done by fixing the 
fitted values followed by sampling of the solution space. The error bars indicate the standard deviations
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E. coli (Gerosa et al.)

In this study, Gerosa et al. developed an experimental-computational approach to deci-
pher the regulatory events that drive cellular adaptations between carbon sources in 
E.coli [23] Thereby generating data on metabolite concentrations, transcript levels, and 
13C-tracer data during exponential growth. This dataset was used to evaluate perfor-
mance when predicting intracellular fluxes. We first used the measured growth rate to 
estimate the PC in glycerol as a carbon source which corresponds to a value of 76.32 
(Fig. 3A). This could suggest that the metabolic network has adapted to growth in glyc-
erol carbon source without further constraining the model with gene expression data. 
Once the PC was fit the model was used to predict all possible fluxes using E-Flux + PC 
by sampling the steady-state flux space. Figures 3B-G show predictions for the internal 
and external fluxes for a selected set of reactions. Simulation predicted no secretion 
rates for fructose, galactose and gluconate under this condition (Additional file  1 and 
Additional file 5: Figure S2). This was comparable to the result shown by Gerosa et al. 
[23].

The results for the different carbon sources considered are summarized on Table 1 (see 
full results in Additional file 1). For the fluxes considered in this data set, the introduc-
tion of the proportionality constant improves flux predictions in about 70% of the cases.

S. cerevisiae (Rintala et al.)

Rintala et al. [24] grew S. cerevisiae strains in a glucose-limited chemostat with a dilu-
tion rate of 0.1  h−1 at different oxygen levels. These include intermediate oxygen levels, 
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ranging from fully anaerobic to fully aerobic. The dataset contains genome-wide gene 
expression data from microarray. Fluxomic data for the same conditions were obtained 
from Jouhten et  al. [25]. We analysed growth and ethanol production in two extreme 
conditions: fully aerobic as well as anaerobic growth, as shown in Fig. 4. Again, growth 
data were used to establish the optimal values for the PC in aerobic and anaerobic con-
ditions. These values correspond to 40.06 for anaerobic growth and 86.56 for aerobic 
growth as shown in Fig. 4A. This could suggest that the metabolic network of S. cerevi-
siae is adapted to aerobic growth and no further regulation of gene expression is needed 
for these conditions. As previously stated, high values of the PC lead to flux boundaries 

Fig. 3 Exploration of impact of proportionality constant on predicted flux in glycerol carbon source in E.coli 
(Gerosa dataset): A growth, B acetate uptake/ = secretion, C glycerol uptake, D pyruvate dehydrogenase 
(PDH), E triose‑phosphate isomerase (TPI), F ribose‑5‑phosphate isomerase (RPI), G ribulose 5‑phosphate 
3‑epimerase (RPE). Data from growth simulations (A) are used to identify optimal values for the 
proportionality constant as those for which model predictions match experimental values. Simulations of 
internal and external flux were done by fixing the fitted values followed by sampling of the solution space. 
The error bars indicate the standard deviations
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so high that they do not effectively impact model predictions. Under aerobic conditions 
this would correspond to values of 96 or higher.

Since S. cerevisiae is commonly employed to produce ethanol, we used FBA to calcu-
late production of ethanol by fixing the PC obtained from growth in aerobic and anaero-
bic conditions. In both cases, we still assume maximum growth rate and sampling of the 
solution space is performed to identify ethanol production rates compatible with maxi-
mum growth. Aerobic ethanol simulations predicted by the model showed flux values of 
2.8 ± 1.12 mmol  g−1  h−1, whereas the measured production rate was zero Fig. 4B. From 
the results shown in Fig. 4C, for the anaerobic condition E-Flux predicted a flux value 
of 5.86 ± 3.81  mmol   g−1   h−1 which is lower than the measured ethanol production at 
a rate of 9.46 mmol   g−1   h−1. Similarly, we used the model to predict production rates 
for other products, such as glycerol and acetate. We observed that there were no pre-
dicted production rates for acetate in both aerobic and anaerobic conditions. This was 
comparable to the experimental values reported by Rintala et al. In the case of glycerol, 
there were no predicted production rates in aerobic and anaerobic conditions. Although 
in agreement with the measured production rates in the aerobic conditions, this was 
not the case for anaerobic conditions (measured value = 1.094 mmol  g−1  h−1; predicted 
value = 0 mmol   g−1   h−1). Similarly, no secretion rates were predicted for acetate when 
E-Flux + PC algorithm was applied to the Rintala dataset (Additional file 6: Figure S3). 
This is supported by the fact that no predicted secretion rates were observed for any of 
the metabolites if the E-Flux algorithm without any modification was used. In summary, 
in five out of the six considered rates, inclusion of the PC does not modify the E-Flux 
predicted values. Only in one case, ethanol secretion in aerobic conditions, the results 
are changed, and in that case both algorithms wrongly predict secretion.

Discussion
Gene expression is known to play a major role in controlling metabolism when there 
is a significant change in gene expression between different conditions. Several studies 
in the past show a strong qualitative relation between gene expression and metabolic 
flux, especially in the case of microbes [26, 27]. Association between transcript levels 
and reaction fluxes could be represented through a reaction specific proportionality 

Table 1 Comparison between E‑Flux + PC and E‑Flux on predicted intra‑ and extra‑cellular fluxes of 
E. coli growing on different carbon sources (Gerosa et al.)

The table indicates the number of reactions for which each algorithm predicts values more similar to the measured ones. 
Full results are provided in Additional file 1

Carbon Source All measured reactions Uptake /secretion

E-Flux + PC E-Flux E-Flux + PC E-Flux

Glycerol 15 6 8 2

Glucose 13 8 8 2

Acetate 14 7 6 4

Pyruvate 11 10 7 3

Gluconate 14 8 7 3

Succinate 17 4 8 2

Galactose 14 7 8 2

Fructose 18 3 8 2
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constant that would capture and, to some extent, summarize transcription, translation 
and degradation dynamics as well as reaction kinetics. Detailed knowledge of these con-
stants for every reaction in the model would entail exhaustive knowledge and measure-
ments not currently available. Therefore, and for practical purposes, we have considered 
a single PC for all gene/reaction pairs and we have considered it as a pure phenomeno-
logical constant that provides an extra degree of freedom when reproducing a systems 
level measurement. Availability of additional datasets and detailed reaction information 
would allow, to some extent, estimation of reaction specific constants or value ranges 
that could be used for ensemble modelling. For this task, Bayesian statistical learning 
shows promise as demonstrated by Li et al. [28]. We can envisage a set up on which for 
each reaction a precise determination of the link between transcript level and activity 
is established by measuring transcript levels, protein levels and reaction kinetics. This 
approach is used when building dynamic models of metabolism based on differential 
equations of a subset of relevant reactions. However, this is a data intensive approach 
that can only be applied in a reduced set of cases.
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In this study we integrate a single measure at systems level (growth rate) with the 
expression data and show how this can improve predictions without dramatically over-
fitting the model. Here, we have assessed the impact of using different values of propor-
tionality constant, based on the phenotypic parameter growth, to model proportionality 
between transcript abundances and fluxes to make accurate predictions on the fluxes. 
The underlying assumption is that even though the correlation is unknown, the meta-
bolic network retains additional information that led to more accurate predictions.

We have used one set of measurements (growth) for parameter estimation and fit-
ting. The new parametrized model was then used to make predictions on secretion rates 
for specific metabolites (Fig. 2B); our algorithm predicted secretion rates for  CO2 were 
higher than those of the Ishii dataset. However, we did not predict any secretion rate 
for pyruvate, ethanol, acetate, succinate and lactate (Additional file  4: Additional Fig-
ure S1). This is maybe due to the fact that 1) the E-Flux method, as an algorithm, does 
not incorporate the biological principles that govern the cellular response, and 2) this 
method is designed for making quantitative predictions and not for qualitative predic-
tions. Therefore, this methodology that introduces a varying proportionality constant 
gives more insights for correlation of transcriptomics and metabolic flux as compared 
to existing methods which only consider unit values, such as the original E-Flux method. 
However, the applicability of these varying proportionality constant in terms of model 
performance is dependent on many other factors. Apart from the specificity of the algo-
rithm, there could also be other factors affecting the performance of the method. This 
was previously seen on a study where algorithms such as pFBA, GIMME, iMAT, MADE 
etc. were tested and some metabolites were wrongly predicted irrespective of the algo-
rithm [14].

Identifying the parameter that most accurately predicts cellular metabolism under a 
given condition can be viewed as a way to improve FBA calculations, leading to a bet-
ter understanding of metabolism. Here, we have used growth to fit the proportion-
ality constant, as it is a comprehensive measurement of the status of the organism. In 
some experimental cases other phenotypes and objective functions could be considered 
for fitting the proportionality constant. For instance, secretion rates of other metabo-
lites could also be used for the fitting, but it is not very common to do so. Growth as 
the objective function is considered more suitable for bacterial cells (growth focused), 
whereas in mammalian cell’s objective functions, such as ATP production, glucose con-
sumption, etc., are likely more reflective of the physiological state of mammalian tissue 
(maintenance focused). By choosing the objective function most appropriate for the 
physiological state of a system, this method can potentially be applied to many systems.

Conclusion
When using expression data to predict metabolic fluxes, a choice of proportionality 
constant is necessary to link gene expression levels with metabolic fluxes. In any case, 
a choice has to be made on how these two levels are related to each other. Therefore, 
simplifications have to be introduced, as it is often not possible to perform a detailed 
analysis for each and every gene and its reaction(s). The extension of E-Flux pre-
sented here used a constant empirically informing on this correlation at the systems 
level (here growth rate). The results show that in many cases E-Flux + PC performs 
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better and without losing accuracy in the rest of the cases, thus we recommend using the 
E-Flux + PC approach. Such an approach can be extended to any of the commonly used 
algorithms, thereby improving their performance. Furthermore, the approach that we 
have described here is not restricted only to the E-Flux method but also to other algo-
rithms to integrate gene expression data with GEMs.

Methods
E-Flux algorithm with proportionality constant

In E-Flux, gene expression data are used to constrain the associated reactions. Gene 
expression data are initially normalized by dividing them by the maximum level of all the 
measured genes  (gmax):

where gi is the expression level of gene i. Here, we assume gene expression values have 
been pre-processed using algorithms suitable to the corresponding technology (global 
microarray or RNAseq measurements). It should be noted that these algorithms often 
include a so-called normalization step to eliminate possible technology specific biases 
(such as those due to different library depth in RNA sequencing experiments). This nor-
malization step should not be confused with the one described below.

To evaluate the impact of differences in the proportionality constant used for scaling 
gene expression levels and relate them to fluxes, we have explicitly introduced a propor-
tionality constant in the scaling process. Equation 1 is thus replaced by:

Here, δi is a gene specific factor that in principle would incorporate effects related to 
transcription and translation rates, degradation rates and post-translational modifica-
tions, among others thereby quantitative linking transcript levels and enzyme activ-
ity values. Knowledge of this constant requires detailed knowledge, or at least a close 
approximation, of how a transcription level relates to an enzyme activity for a specific 
transcript/protein in the model. This knowledge is not (yet) available and, in the follow-
ing, we will use a common δ value for all genes, to which we will refer as PC.

After introducing this constant, the remaining steps of the E-Flux algorithm have 
been left unmodified. In brief, the scaled gene expression values are used to evaluate 
the Boolean rules in the GPR associations. In the case of “OR” relationships, describ-
ing isozymes, these values are added, in the case of “AND” relationships, describing 
complex formation, the minimum value in the corresponding set is selected. The so 
obtained values are then used to adjust reaction bounds in the model. For irrevers-
ible (unidirectional) reactions the value is used to set the upper bound. For reversible 
(bidirectional) reactions, lower and upper bounds are set to ± the value.

To fix the value of the PC, an initial analysis was run on which the impact of the 
PC on the selected measurement informing on the state of the system (here growth) 
was evaluated. For this, PC values in the [0, 600] range were taken and for each of 
them the growth rate was computed. The upper limit of the PC value range was tested 

(1)gnorm,i =

[(

1

gmax

)

gi

]

,

(2)gnorm,i =

[(

1

gmax

)

gi × δi

]

.
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to ensure that a sufficiently high value had been explored and that the growth rate 
prediction had reached a plateau. Then, the PC value was set at the value where the 
measured value intersected the predicted value.

Metabolic models

Simulations have been performed using the E. coli GEM iAF1260 and the S. cerevisiae 
GEM iTO977 [29, 30]. iAF1260 consists of 1260 metabolic genes, 2077 reactions and 
1039 unique metabolites. iTO977 has four compartments, namely cytoplasm, mito-
chondrion, peroxisome, and extracellular. iTO977 consists of 977 unique genes, 1566 
reactions and 1353 metabolites. Models were obtained from supplementary files from 
previously published studies by Feist et al. and Österlund et al. [29, 30].

Data

We obtained data published by Ishii et al., Holm et al. and Gerosa et al. for E. coli, and 
by Rintala et al. for S. cerevisiae, where both expression data and 13C flux were meas-
ured under identical conditions [21–24]. Flux measurements and expression data 
after pre-processing are given in Additional file 2 and Additional file 3, respectively.

Model simulations

Maximization of flux through the biomass synthesis reaction was set as objective for 
the FBA problem in order to simulate growth. For the simulations, constraints related 
to nutrient uptake (bounds of the corresponding exchange reactions) were modi-
fied and experimental values from the respective datasets were used instead. Calcu-
lations presented in this manuscript have been performed using MATLAB R2017b 
(The Mathworks, Inc.) with Gurobi Optimizer 6 (Gurobi Optimization, Inc) and the 
COBRA Toolbox v2.0[31]. SBMLToolbox was used to convert a SBML (Systems Biol-
ogy Markup Language) model into a MATLAB data structure [32].

Sampling the steady state

Sampling the steady-state flux space was performed using the random walk algorithm 
artificial centering hit-and-run (ACHR) [33]. Sampling the solution space allows us 
to investigate the flux distributions that satisfy the steady state condition. The ACHR 
algorithm method chooses an initial point within the solution space. It then calcu-
lates warm-up points from the initial point using several iterations of a basic hit-
and-run algorithm [34]. These warm-up points are stored as columns of a matrix W  , 
and an approximate centre, s , is calculated. The direction for the next iteration from 
a sample point, xm , is chosen by randomly taking one-point y out of the matrix W  
and applying the direction vector of y and s(y → −s →) to xm . At each iteration, the 
newly calculated point, xm + 1 , is substituted randomly into W  in the place of a previ-
ously calculated point [34]. After each iteration, approximate values of the centre are 
recalculated.
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Here, in each sampling procedure, 10,000 randomly distributed points were computed 
with 200 iterations between each point. All sampling calculations were done in MAT-
LAB version R2017b using the COBRA toolbox v2.0 and Gurobi solver version 6 [3].
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