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Background
Past studies have demonstrated the importance of studying heterogeneity in treatment 
response or prognostic outcome [1]. Differing rates or trajectories of response may be 
associated with relevant clinical and biological characteristics of interest and identifying 
subgroups of patients with shared outcomes may allow treatments to be targeted more 
effectively. Recent studies, including COVID-19 research, have highlighted the need for 
clustering algorithms for mixed data types [2, 3]. This paper presents a novel pipeline 
for clustering using topological data analysis (TDA) that brings several advantages over 
existing approaches. These include the ability to identify homogeneous clusters with 
respect to an outcome of interest; to incorporate prior knowledge into the clustering 
process; and the use of machine learning to examine the composition of derived clusters.

TDA is a growing field (see Additional file 1: Table S2) providing tools to infer, ana-
lyse, and exploit the shape of data [4, 5]. TDA has seen increasing adoption in recent 
years [6]. It holds particular promise as a set of tools to further precision medicine [7, 8] 
where we often want to identify groups of patients with similar treatment or prognostic 
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outcome. Our pipeline focuses on Mapper [9], a clustering algorithm to identify topo-
logical features in complex data that has shown big potential in uncovering homogene-
ous subgroups sharing common characteristics [10].

The Mapper algorithm for clustering

The Mapper algorithm [9] reduces complex data into a one-dimensional graph. It 
assumes a finite point cloud for which distances between any two points can be com-
puted; and a filter function that assigns a value to each point in the dataset. Shown in 
Additional file 1: Fig. S1, the algorithm then: (i) divides the range of the filter function 
into a number of smaller overlapping intervals; (ii) finds the sets of data points whose 
values assigned by the filter function lie within each interval; (iii) decomposes each set 
into clusters using a chosen clustering algorithm (e.g. DBSCAN); and (iv) represents 
each cluster as a node. Nodes are connected by an edge if the clusters intersect non-
trivially (i.e.  they share a minimum number of individuals). The connected nodes thus 
form shapes. Typical shapes that appear in the graph are ‘loops’ (continuous circular seg-
ments) and ‘flares’ (long linear segments) [11].

The above procedure requires the user to define several parameters, such as the num-
ber of intervals and their percentage of overlap, the choice of clustering algorithm, and 
the threshold at which to connect nodes. Although Mapper is independent of the choice 
of clustering algorithm, it is common practice to use clustering methods with param-
eters that can be derived automatically (e.g. hierarchical clustering or DBSCAN). Users 
are also recommended to compare several clustering techniques, particularly when 
analysing small sample sizes [12]. Of particular relevance here is the choice of filter—a 
lens through which to view the point cloud. Changing the filter will result in a different 
ordering of values along the range of the filter, different overlapping intervals, and pro-
duce differing clusters, nodes and features.

Mapper offers several advantages over traditional clustering algorithms. Of particular 
relevance here is the integration of prior knowledge through the selection of the filter. By 
choosing one or more variables as a lens through which to view their data, users can ori-
ent the clustering algorithm towards theoretically relevant markers. Another advantage 
of Mapper is that it allows identification of subgroups belonging to ‘flares’ and ‘loops’, 
rather than the ‘connected components’ detected in classical clustering algorithms. By 
forming clusters within overlapping intervals of the data it avoids artificially breaking 
continuous variation into discrete clusters. Mapper can also be used as a form of feature 
selection, by including all variables as filters and evaluating their ability to discriminate 
subpopulations of interest.

Implementation
Our pipeline performs a grid search of the parameter space by evaluating all combina-
tions of input parameters. It proceeds in five stages: 

1. Compute the Gower distance matrix [13] for the input dataset;
2. Enumerate all combinations of input parameters;
3. For each set of input parameters, (i) compute Mapper graph; and (ii) identify statisti-

cally significant representative topological features (i.e. Clusters);
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4. Among all mapper graphs, rank clusters in terms of their impurity [14, p. 309] with 
respect to a chosen outcome or variable of interest; and

5. Visualise and summarise the top five clusters.

In an example application with a sample of 430 patients, we aimed to identify subgroups 
that were similar in terms of baseline clinical and genetic characteristics (140 variables) 
as well as outcome (remission following 12 weeks of treatment). Input data were a mix-
ture of categorical and continuous variables.

Step 1

We first construct a distance matrix for clinical and genetic predictors from the input 
dataset. To allow a mix of continuous and categorical variables we use the Gower dis-
tance [13] implemented in the gower package for Python [15]. This computes distances 
between pairs of variables using appropriate measures (Manhattan distance metric for 
continuous variables; Sørensen-Dice coefficient for categorical) and then combines 
these into a single distance averaged over all variables ranging from 0 to 1. Importantly, 
outcomes are not used to derive the Gower matrix.

Step 2

We then define sets of input parameters for the Mapper algorithm. While some param-
eters can be derived automatically [16] several must be specified by the user includ-
ing: (i) the choice of filter(s); (ii) gain; (iii) resolution; and (iv) clustering algorithm. ‘Gain’ 
and ‘resolution’ control how the range of the filter function is divided into intervals (see 
Additional file 1: Fig. S1). The ‘gain’ refers to the overlap between consecutive intervals 
whereas the ‘resolution’ refers to the diameter of the intervals. By choosing the number 
of intervals and the percentage overlap between them, the user can adjust the level of the 
detail at which to view their data. For a single filter, resolution can be derived automati-
cally, but must be specified when combining multiple filters. We enumerate all combina-
tions of parameters and store these as inputs for subsequent steps (i.e.  a grid search). 
Since optimal parameters will depend on the input dataset, we recommend exploring a 
range of values. Our example application considered combinations of: 

 i. Five filters comprising two ‘data filters’ based on continuous predictor variables; 
two ‘computed filters’, based on the first two components from Principal Compo-
nents Analysis (PCA); and combinations of data and computed filters.

 ii. Four values for gain (0.1, 0.2, 0.3, 0.4);
 iii. Six values for resolution (1, 3, 5, 10, 30, 50);
 iv. Two clustering algorithms (Density-based spatial clustering of applications with 

noise, DBSCAN; and Agglomerative Clustering).

In our application the ‘data filters’ were theoretically chosen. We considered as filters 
variables known to be important for the outcomes in question. However, an alternative 
approach could be to consider all continuous variables in the input dataset as candidate 
filters. Following the steps described below, the pipeline would then identify the ‘optimal’ 
clusters having considered all candidate filters. This approach would be computationally 
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intensive since the search grid would expand substantially. However, by allowing all fil-
ters to considered and ranked (based on clusters homogeneity in terms of the outcome 
variable, as described below) this process would provide an effective form of feature 
selection; the ranked list of filters would indicate their importance.

Step 3

For each set of input parameters, we (i) compute the Mapper graph; and (ii) identify rep-
resentative topological features; and (iii) evaluate the statistical significance of each rep-
resentative feature with the bootstrap. This uses re-sampling methods to assess whether 
a given topological feature is robust to small variations in the dataset [16].

Step 4

From the list of candidate topological features, we rank clusters based on the best sep-
aration with regards to the chosen outcome of interest (i.e.  homogeneity within clus-
ter). We first exclude non-significant or small features ( < 5 or > 95 percent of sample). 
We then calculate homogeneity for each feature with respect to the chosen outcome of 
interest as well as percentage improvement in homogeneity compared to overall homo-
geneity of the sample. For binary outcomes, homogeneity is assessed using Gini impurity 
[14, p. 309] defined as 1− (1− p)2 − p2 where p is the proportion of individuals in the 
feature experiencing the outcome of interest. Lower values indicate lower Gini impu-
rity, down to a minimum of 0 at which point all individuals in the cluster fall into a sin-
gle outcome category. For continuous outcomes homogeneity could be measured using 
the standard deviation. This is calculated for each candidate feature separately as well as 
for the overall sample. Finally, we sort all features by their percentage improvement in 
homogeneity.

Step 5

We select the top five features and describe each by: 

a. Describing differences in each predictor between members and non-members of the 
chosen feature, including p-values to indicate statistical significance;

b. Predicting membership to the feature using gradient boosted trees (XGBoost).
c. Visualising the Mapper graph and highlighting the chosen topological feature.

Results
We applied our pipeline to the GENDEP dataset [17], described in Additional files. We 
compared the performance obtained with our pipeline to that obtained with k-means 
clustering. We assessed impurity for a categorical outcome (remission at 12  weeks; 1 
= ‘Yes’, 0 = ‘No’) using each method. Presented in Additional files, we found that the 
top five clusters from our pipeline outperformed the five cluster solution from k-means 
clustering in terms of outcome impurity (Gini for our clusters 0.30–0.38; for k-means 
0.33–0.50). Clusters from our method also showed the highest reduction in impu-
rity when compared to the whole sample. Overall, we found that our pipeline outper-
formed k-means in identifying homogeneous clusters in terms of an external outcome 
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distribution. These results are shown in Additional file  1: Table  S1. The composition 
of the five best-performing clusters from our pipeline is presented in Additional file 2: 
Table S3. A summary of the software used in our pipeline can also be found in Addi-
tional files.

Discussion
While several software implementations of the Mapper algorithm exist—including open 
source packages such as Python Mapper and KeplerMapper and proprietary software 
such as Ayasadi—our pipeline allows identification of homogeneous subgroups with 
respect to one or more variables of interest. Mapper requires users to specify several 
parameters such as the ‘gain’ (the overlap between consecutive intervals) and ‘resolu-
tion’ (the diameter of the intervals). In contrast to trial-and-error used in most existing 
applications, our pipeline enables exploration of this parameter space to be informed 
by a chosen predictor or outcome of interest. By ranking clusters by homogeneity 
with respect to a chosen outcome or predictor, we automatically derive optimal tun-
ing parameters. Secondly, whereas researchers typically inspect the derived clusters by 
comparing relevant variables one-by-one across clusters, we use machine learning to 
examine clusters from a predictive and multivariable perspective. Thirdly, we use the 
bootstrap to exclude statistically insignificant topological features thereby focusing our 
inferences on clusters that are robust to outliers and inferable to the population [16]. 
Fourth, we allow mixed data types via the Gower distance matrix [13]. Fifth, we identify 
‘representative’ topological features and display these visually. While software exists to 
visualise the Mapper graph, most implementations emphasise membership to individual 
nodes rather than topological features.

Applied to a particular dataset our pipeline outperformed k-means in identifying 
homogeneous clusters of patients with respect of an outcome variable. The performance 
of the Mapper algorithm has been previously compared against standard algorithms 
in other datasets, including hierarchical clustering, k-means, DBSCAN, Single-linkage 
and Complete and average linkage clustering [18, 19]. In general, methods produced 
similar clusters when data points in the sample were vastly different, but Mapper was 
found to be more sensitive to small variations. Methods that do not require the num-
ber of clusters to be pre-specified (such as Mapper) showed a key limitation related to 
density issues. When clusters with different densities were present, Mapper tended to 
select only clusters with high densities. Other limitation of our pipeline is that it requires 
several parameters to be tuned (e.g. filter, gain, resolution). While some can be derived 
automatically, others cannot. A priori specification of parameter grid to explore (‘Step 2’) 
may be difficult, and moreover, must be repeated for each input dataset. When analysing 
small samples, users may need to consider several clustering methods [12] or alternative 
measures of impurity (e.g. using median or inter quartile range, rather than standard 
deviation to assess cluster impurity). Another limitation arises from a key strength of 
our approach: the ability to choose one or more ‘data filters’ through which to view the 
point cloud. While the ability to orient the clustering towards theoretically relevant vari-
ables represents a key strength, this requires users have a sense of which variables are 
suitable as filters, as well as the number and types to include. Finally, this procedure can 
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be computationally expensive, especially for large datasets or when the parameter grid 
includes a large number of parameters.

Conclusions
We have presented a novel pipeline built on recent advances in topological data analysis 
to identify homogeneous clusters with respect to a characteristic of interest. Our pipe-
line combines and extends existing software implementations of the Mapper algorithm 
to provide several unique strengths, as the integration of prior knowledge to inform the 
clustering process, the restriction of clusters search to significant topological features, 
the use of multivariable machine learning to describe clusters composition, and the abil-
ity to incorporate mixed data types.

Availability and requirements
Project name mapper-pipeline
Project home page https:// github. com/ kcl- bhi/ mapper- pipel ine
Operating system Platform independent
Programming language Python
Other requirements Python 3.6 or higher; see requirements.txt for details.
License GNU GPLv3
Any restrictions to use by non-academics None

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 021- 04360-9.

Additional file 1. Software used in the pipeline. Comparison of Mapper pipeline with k-means clustering.

Additional file 2. Main characteristics of the top five clusters derived with our pipeline applied to the validation 
dataset
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