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Background
The vast diversity across all environments of viruses that infect bacteria and archaea, 
herein together referred to as bacteriophages, has long been postulated [1]. Viral 
metagenomics or viromics, the application of metagenomics methods to identify and 
study viruses in mixed samples, has enabled us to more effectively catalogue bacterio-
phage diversity. New information is being accrued both on the level of their taxonomy 
and on the level of their genomic content and encoded functions. New lineages are being 
discovered in different environments, such as crAssphage [2] and megaphages [3] in the 
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human gut or novel Vibrionaceae-infecting phages with relatively wide host-range in 
marine biomes [4], shedding light into the unexplored component of the virosphere’s 
diversity [5].

Concurrently, our view of the functional repertoire of phages is being expanded. Char-
acterizing the functions encoded by bacteriophage proteins is an invaluable step towards 
understanding their role as drivers of processes within an ecosystem, via their interac-
tions with their bacterial hosts. For example, it is becoming clear that bacteriophage 
genomes may encode functions that were previously thought to be carried out exclu-
sively by cellular organisms, such as auxiliary metabolic genes involved in photosynthe-
sis and carbon metabolism [6] or sulfur and nitrogen cycling [7].

However, functional annotation of most viral proteins remains challenging. Paez-
Espino et al. [8] were able to match 5.1% out of a total of 6.1 million proteins to ones with 
a known function by using similarity searches of proteins against a constructed database 
of 25,000 viral protein families, while Elbehery et al. [9] were able to find matches for up 
to 50% for a relatively well-studied environment, the human gut. These examples dem-
onstrate the shortcomings of classical approaches, such as sequence similarity searches, 
for the annotation of viral genes and proteins [10]. This is mainly because (1) currently 
deposited bacteriophage sequences only capture a small portion of their naturally occur-
ring diversity, and (2) they exhibit a high mutation rate and higher frequency of novel 
genes, leading to higher sequence diversity.

Clustering the encoded proteins into protein families provides a framework for rapid 
function annotation [11], since typically proteins in the same family perform similar 
functions. A useful resource for bacteriophage protein families is the prokaryotic Virus 
Orthologous Groups (pVOGs) database [12], although we note that establishing ortholo-
gous relationships between proteins encoded by viruses can be challenging, as horizon-
tal gene transfer and recombination between viral genomes is a major driver in their 
evolution. The pVOGs are based on nearly 300,000 protein-coding genes from approxi-
mately 3000 viruses infecting bacterial or archaeal hosts, that have been clustered into 
9518 orthologous groups. However, currently 83% of the 9518 pVOGs consist of hypo-
thetical proteins that do not have a meaningful functional annotation.

Biological function is a loosely defined term and can take different meanings depend-
ing on the context in which is examined. This gives rise to a framework that describes 
the function of a protein on the molecular, cellular or phenotypic level [13]. In com-
parative genomics, an established approach to overcome the issues arising from lack of 
homology-based evidence is using genomic information to improve function prediction 
[14]. In prokaryotes, genes encoding for functionally associated proteins often exhibit 
similar phylogenetic profiles i.e. co-occurrence patterns across several genomes [15]. 
Additionally, they tend to be commonly regulated and are organized in single transcrip-
tional units (operons) with the same orientation [16]. Similar observations have been 
made for viral genomes, where genes are organized in cassette structures with preserved 
orientation [17].

Predicting functions for unknown genes and their products from their association 
with other genes, commonly referred to as guilt-by-association [18], can be an alterna-
tive to functionally annotate proteins. The notion of functional association has been suc-
cessfully used for organisms from all domains of life in the popular STRING database 
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[19]. It encompasses a great number of proteins that are functionally associated in com-
prehensive networks of interactions. A version of STRING specifically designed for viral 
proteins is currently available (Viruses.STRING, [20]). Its main focus is to catalogue 
virus-host interactions, expanding protein–protein interaction networks from within-
species to cross-species interactions.

Here, we explore the potential of functional association between pairs of pVOGs by 
predicting their interaction based on guilt-by-association signals. We measured seven 
features on a reference set of bacteriophage genomes for pairs of pVOGs, namely co-
occurrence, average genomic distance, orientation relationship (co-orientation, con-
vergent, divergent), average nucleotide identity and average amino acid identity and 
integrated these values to predict pVOG-pVOG interactions by using a Random Forest 
classifier. Although we train the current version of the prediction pipeline with a rela-
tively small dataset of known physically interacting protein pairs [21], we make the asso-
ciated software publicly available so that users can apply it to larger datasets once they 
become available.

Methods
Interaction datasets

A discretely labeled ground truth dataset of interacting (1) and potentially non-interact-
ing (0) protein pairs for supervised machine leaning with Random Forest [22] was con-
structed as follows: profile Hidden Markov Models (HMMs) of bacteriophage protein 
families and their functional annotations were retrieved from the pVOGs database [12] 
(http:// dmk- brain. ecn. uiowa. edu/ pVOGs/ downl oads. html, accessed 01/2020). To estab-
lish the interaction dataset (1) we used the IntAct database, a publicly available database 
of physical molecular interaction information [21] (accessed 04/2019) to define a posi-
tive set of 102 interacting protein pairs, labeled with 1. While IntAct contains protein 
pairs that were experimentally shown to engage in physical molecular interactions, this 
is not a requirement for our prediction pipeline and we note that the positive set may 
be readily expanded to include more loosely defined interaction pairs once they become 
available.

Non-interaction (0) is difficult to establish since interaction between protein pairs may 
depend on very specific cellular conditions. Thus, ten different negative sets were ran-
domly sampled from all possible protein pairs that were present in RefSeq [23] bacterio-
phage genomes on which IntAct proteins were found, but that were not present in the 
positive set. Bacteriophage genomes were retrieved from the RefSeq database with the 
query.

‘Viruses[ORGN] NOT "cellular organisms"[ORGN] AND vhost bacteria[filter] OR 
vhost archaea[filter] AND "complete genome" [All fields]’

for viruses infecting bacteria and archaea (accessed on 01/2019). Protein–protein 
interactions were translated to pVOG-pVOG interactions using hmmsearch v3.2.1 with 
default options [24], querying all pVOG HMM profiles against the list of IntAct proteins 
and selecting the hit with the highest bitscore (Additional file 1).

As we were interested in predicting interaction between protein pairs on the same 
genome, all pairs that could not be significantly matched to pVOG pairs which 

http://dmk-brain.ecn.uiowa.edu/pVOGs/downloads.html
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co-occurred on at least one genome were excluded. From the remainder we randomly 
selected ten different negative (non-interacting) datasets containing 102 pVOG pairs 
each, which were each combined with the same 102 positive (interacting) pVOG pairs 
to form ten training datasets N1-N10. Finally, the target dataset consisted of all possible 
pairwise combinations of the 9518 pVOGs, excluding self-pairs and the 204 pairs from 
the ground truth set.

Feature selection and measurement

A description of all measured genomic features is provided in Table 1. All bacteriophage 
genomes were 6-frame translated with the transeq utility from the EMBOSS package 
version 6.6.0.0, options “-clean-frame 6-table 11” [25]. An hmmsearch was subsequently 
carried out with all pVOGs HMM profiles against the translated RefSeq genomes and 
results were parsed with the help of custom python scripts to extract the relevant infor-
mation about genomic occurrence, distance and orientation.

Classification with random forest

Hyperparameter tuning was performed based on a split of each dataset to 70% training 
and 30% holdout. The training set was used for a randomized search and fivefold cross-
validation approach available from python’s scikit-learn package version 0.21.3 [28]. 
A subset of the parameters known to affect the classifier’s performance were selected, 
such as the maximum depth and number of decision trees to use. A range of values was 
defined for these parameters and 500 classifiers were built based on a random selection 
of the whole parameter space. Each classifier was used for a fivefold cross-validation to 
select the model with the best combination of hyperparameters.

This process gave us a best model for each of the ten datasets. To calculate the perfor-
mance of every model on different datasets, the remaining nine sets were used as input 
to the obtained model. The same split of the data to 70% training and 30% holdout was 
applied, but no hyperparameter optimization was performed. The final combination of 
model and training set for the classification of the target dataset was determined based 
on its consistent higher performance across the metrics described below.

Table 1 Features used in this study for the prediction of pVOG-pVOG functional association

All features except co-occurrence are calculated on genomes where both pVOGs have a significant hit

Name Description

Co-occurrence Calculated by dividing the number of genomes where both pVOGs have hits by the 
total number of genomes where either of the pVOGs have hits (Jaccard similarity)

Average distance Minimum distance in nucleotides of the alignment envelopes (sensu hmmsearch) 
between the two pVOGs, averaged across all common genomes

Co-orientation Fraction of hits where both pVOGs are found on the same strand

Convergent orientation Fraction of hits where both pVOGs are found on opposite strands with 3’ ends facing 
each other

Divergent orientation Fraction of hits where both pVOGs are found on opposite strands with 5’ ends facing 
each other

Mean ANI Average Nucleotide Identity (ANI) of all genome pairs where the pVOGs co-occur, 
calculated with fastANI [26]

Mean AAI Average Amino acid Identity (AAI) of all genome pairs where the pVOGs co-occur, 
calculated with CompareM [27]
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Performance evaluation, model and dataset selection

For every classification problem, there are four possible outcomes:

• An observation, in this case a pVOG-pVOG interaction, can be correctly identified 
and labeled as belonging to the positive class (True Positive, TP).

• An observation can be correctly identified and labeled as belonging to the negative 
class (True Negative, TN).

• An observation can be incorrectly identified and labeled as belonging to the positive 
class, while in reality it belongs to the negative class (False Positive, FP).

• An observation can be incorrectly identified and labeled as belonging to the negative 
class, while in reality it belongs to the positive class (False Negative, FN).

These can be summarized in various metrics for assessing the performance of the clas-
sification. Here, we used the following:

• Accuracy: The sum of correctly labeled interactions, either as positive or negative, 
divided by the sum of all predictions ((TP + TN)/(TP + TN + FP + FN)).

• Precision: The sum of true positives divided by the sum of all positive predictions. 
(TP/(TP + FP))

• Recall (or sensitivity): The sum of true positives divided by the sum of true positives 
and false negatives. ( TP / (TP + FN))

• F1 score: The harmonic mean between precision and recall. ((2 x (Preci-
sion + Recall))/(Precision + Recall))

• Area Under the Receiver Operating Characteristic Curve (AUROC): A single value 
representing the performance of the classifier, when taking the true positive and false 
positive rates into account. In general, an AUROC score higher than 0.5 is desired, 
which signifies that a classifier performs better than random [29].

Annotation processing

The pVOGs remain among the most comprehensive functional annotation platforms 
for viral proteins. Currently, pVOGs are functionally annotated with all the terms of its 
constituent proteins [12]. As pVOGs contain different numbers of proteins and protein 
annotations are free text fields, these may vary both in number and in syntax format. 
All occurrences of “hypothetical protein” were replaced with “unknown”, and the words 
“protein” and “putative” were removed. After this reformatting the annotation with 
the highest count was selected as a single annotation describing the pVOG. All statis-
tics referring to the annotations were calculated based on the processed annotations. 
To quantify the similarity between the functional annotations of pVOG pairs, a corpus 
was constructed from the terms appearing in the annotations of all pVOGs. The follow-
ing terms were excluded: ’hypothetical’, ’hypotheical’, ’hypothetical-acquired’, ’hypottheti-
cal’, ’hypothethical’, ’hyphothetical’, ’hypothetical-protein’, ’hypho’, ’predicted’, ’protein’, 
’unknown’, ’putative’, ’phage’, ’bacteriophage’, ’no’, ’annotation’, ’provided’, ’gene’, ’and’, ’in’, 
’conserved’, ’#’, and ’&’. Next, a weight was assigned to each word, based on its inverse fre-
quency of appearance (1—frequency of term) to assign a higher weight to more unique 
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terms. For each pVOG a frequency vector of its own annotation terms was constructed. 
Finally, we calculated the weighted cosine distance between the two term-frequency vec-
tors of pVOG pairs that had at least three or ten terms each.

Results
We explored the potential of functional association of bacteriophage proteins, by pre-
dicting interactions between pairs of pVOGs. We evaluated the performance of several 
Random Forest classifiers across 10 different datasets N1–N10 (see Methods). First, each 
dataset was split into 70% training and 30% holdout sets. After hyperparameter optimi-
zation on 500 different classifiers, the classifier with the best performance on the hold-
out set was selected as a candidate model. Then, the remaining nine datasets were split 
into 70% training and 30% holdout sets. The training set was used to train the candidate 
model from before and to make predictions on the holdout set, providing us with per-
formance metrics for each combination of model and dataset. This process was repeated 
for all datasets. We thus obtained a classifier, optimized based on dataset N8 and per-
forming better than the rest of the nine candidate models across all datasets. It achieved 
a mean accuracy of 0.77 (± 0.03) with a mean AUROC score of 0.83 (± 0.05) (Fig. 1a; 
Additional files 2, 3, 4). In absolute numbers, 47.5 (± 1.9) out of 62 interactions in each 
holdout dataset were correctly classified either as positive or negative. Its mean preci-
sion was 0.78 (± 0.04) and the mean recall score 0.8 (± 0.05).

Feature importance scores were calculated using Gini importance, defined as the 
total decrease in node impurity averaged over all trees of the forest [30]. Intuitively, 
it gives a measure of how the accuracy of classification changes when the values of a 
feature are randomly permuted. The most important feature for predicting interaction 
between a pair of pVOGs was the co-occurrence between the putative interactors across 
bacteriophage genomes (mean relative importance 0.24 ± 0.02) (Fig.  1b). While this is 
expected because proteins need to be present on the same genome to interact, it is still 
a significant result because the signal might be reduced if the candidate proteins would 

a b

Fig. 1 a ROC curves illustrating the performance of the final best Random Forest classifier on the dataset 
that was used for hyperparameter optimization (N8, thick gray line), as well as across the remaining datasets 
(AUROC = Area Under the Receiver Operating Characteristic). b Relative importance of each feature for 
classification, based on the Gini importance
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frequently occur on different genomes. The average distance between the HMM hits on 
the genomes had the second highest relative importance (mean = 0.22 ± 0.03) followed 
by mean AAI (0.19 ± 0.03) and mean ANI (0.18 ± 0.02) between the genomes containing 
the hits. The genomic orientation features did not appear to play an important role in 
predicting protein interaction, possibly because many bacteriophage proteins tend to be 
encoded in the same direction [31] (Additional files 4, 5).

We applied the best performing classifier to the target dataset of all pVOG pairs pass-
ing our filtering criteria, i.e. co-occurring on at least one genome. This dataset includes 
9369 out of the total 9518 unique pVOGs (98.4%). In total, 766,080 of the 2,133,027 
pVOGs pairs (35.9%) were predicted to interact, with 443,786 positive interactions 
(57.9%) having a high confidence, based on a cutoff of ≥ 0.65 from 500 decision trees. 
Additional file  5 shows the distribution of interaction probabilities predicted by the 
Random Forest classifier for all 2,133,027 target pVOG pairs, showing that a known and 
unknown pVOG could be linked in many cases. Note that the cutoff of 0.65 between 
low- and high-confidence predictions is arbitrary, but stricter than the cutoff of ≥ 0.5 
that is used in many classification studies using Random Forest.

Next, we leveraged information from the predicted interactions to provide a prelimi-
nary annotation for pVOGs with unknown functions. In total, 53,999 predicted interac-
tions (7%) in the final dataset occurred between pVOG pairs where both were annotated. 
These interactions can be viewed as an additional means of validation of our method 
(Table 2). Furthermore, 325,464 predictions (42.4%) had one unannotated pVOG inter-
acting with a pVOG with known functional annotation. For the remaining 386,617 inter-
acting pairs (50.5%) neither of the pVOGs had an annotation.

A total of 7627 out of the original 7974 pVOGs with unknown function (95.6%) were 
matched with to pVOGs with annotated functions when using a cutoff of 0.65, providing 
preliminary hints about their function through guilt-by-association (Additional file 2). 

Table 2 Top fifteen predicted interactions between pairs of pVOGs with annotated functions

P (interaction) represents the mean predicted probability of a pVOG pair to interact from 500 individual classifiers (decision 
trees) in the Random Forest. The full list is provided in Additional file 6

pVOG A pVOG B P (interaction) Annotation A Annotation B

VOG5511 VOG6633 0.996 Tail fiber protein Putative tail protein

VOG1215 VOG4545 0.996 Minor tail protein Tape measure protein

VOG0796 VOG5106 0.996 Terminase small subunit Phage terminase large subunit

VOG0205 VOG4586 0.996 Putative head taill joining protein Major tail protein

VOG4553 VOG4773 0.994 Major capsid protein Capsid portal protein Q

VOG4604 VOG5027 0.994 Portal protein Head morphogenesis protein

VOG4565 VOG9941 0.994 Lysozyme putative dna maturase b

VOG4555 VOG5106 0.994 Scaffolding protein Phage terminase large subunit

VOG1190 VOG2368 0.994 Portal protein Ribonucleoside triphosphate 
reductase, alpha chain

VOG4545 VOG9209 0.994 Tape measure protein Minor tail protein L

VOG4545 VOG4599 0.994 Tape measure protein Minor structural protein

VOG0641 VOG4763 0.994 Holin Peptidase_S74 protein

VOG0641 VOG4763 0.994 Holin Minor structural protein

VOG0692 VOG0796 0.994 Minor capsid protein Terminase small subunit

VOG4811 VOG6163 0.994 Tape measure Putative tape measure protein
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Based on the confusion matrix, which was calculated from 62 holdout interactions in the 
final best model derived from the N8 dataset, TP = 27, FP = 10, TN = 18, and FN = 7. The 
false discovery rate FP/(TP + FP) of the final model was 0.27, hence we expect less than 
~ 120 thousand false positive pairs among the 443,786 predicted functional associations.

We explored the relationship between the similarity in annotated functions of two 
pVOGs and their predicted interaction probability. To quantify similarity in annotated 
functions we used a weighted cosine distance between the annotation term vectors (see 
Methods), where pVOGs with similar functional annotations have a low cosine distance 
value and vice versa. We confirmed this method by testing it on the final training set, 
where we observed that the weighted cosine distances of interacting pairs were lower 
than of non-interacting ones (Fig.  2a). As expected, the separation between interact-
ing and non-interacting protein pairs was imperfect, reflecting a noisy signal. Figure 2b 
and c show the correlation between predicted pVOG-pVOG interactions with a mini-
mum of three and ten annotation terms, respectively. Notwithstanding the noisy signal, 
we observed an inverse relationship between the cosine distance and the probability 
of interaction, providing further support for our proof-of-concept approach to finding 
functional associations between viral proteins. Notably, pVOG pairs with a very low 
predicted interaction score all have a high cosine distance, while the majority of pVOG 
pairs with a very low cosine distance, especially the well-annotated ones with at least ten 
annotation terms, tend to have a high predicted interaction score.

Discussion
High throughput viromics experiments are shining new light on environmental bac-
teriophages, arguably the most unexplored components of the biosphere. Although 
sequence assembly now allows these phages to be mapped at genomic resolution, under-
standing the functions of their encoded proteins remains challenging. Here, we devel-
oped a method to integrate diverse genomic signals to predict functional associations 
between bacteriophage proteins, through a machine learning approach, thus providing 
initial leads for their interpretation. The classifier performed well on the holdout data-
sets, with the best model predicting 27 of 34 positive interactions and 18 of 28 nega-
tive interactions correctly (Fig.  1a). In our analyses, the co-occurrence and average 
distance between two genes were identified as the most important features, consistent 
with the existence of genomic organization [32] and functional gene cassettes [18] in 

Fig. 2 a Density plot of weighted cosine distance scores for the positive and negative interactions in the 
final training set (n = 184). b Linear regression plot of probability of interaction and weighted cosine distance 
for a set of 592,062 predictions between pVOG pairs with at least three informative annotation terms each 
(r = − 0.126, p = 0.0). c Same as (b), for a set of 146,456 predictions between pVOG pairs with at least ten 
informative annotation terms each (r = − 0.141, p = 0.0)
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bacteriophages. Interestingly, orientation is not important, consistent with transcrip-
tional directionality being more uniform in bacteriophages than in bacteria [31].

Several developments may be expected to further improve the interaction predictions. 
First, we used a small ground truth set limited to only 102 positive interactions, rep-
resenting physically interacting proteins in the IntAct database [21]. Application of the 
Random Forest classifier allowed us to predict interaction probability between millions 
of protein pairs, demonstrating the utility of machine learning approaches for datasets 
where limited information is available. However, we expect that future expansion of the 
training dataset with a larger number of high-quality known interactions will almost 
certainly increase the accuracy of the predictor. Second, additional meaningful guilt-
by-association features may be included into the predictor (Table 1). For example, gene 
co-expression provides a strong functional signal that is complementary to the genomic 
signals included here [33, 34]. Third, the use of a larger reference set of viral genomes 
should also be beneficial, as it will better reflect any genomic signals that link interact-
ing phage proteins. Moreover, including diverse viral sequences, including those from 
metagenomic datasets will allow functional associations between proteins to be identi-
fied in a greater diversity of viruses, decreasing database bias [35]. We expect that the 
automated, reproducible snakemake-based [36] workflow provided through the GitHub 
repository (see Methods) will help users to readily implement these and other additions 
and further improve the prediction of functional associations between bacteriophage 
proteins.

Conclusions
To conclude, we predicted functional associations for 95.6% of the phage protein families 
(pVOGs) that were previously not functionally annotated, by predicting their interaction 
with functionally annotated proteins. At an expected false discovery rate of 0.27, this still 
represents a significant step towards obtaining a more complete picture of bacteriophage 
biology. Approaches such as the one described here, will greatly benefit the ongoing 
efforts of bacteriophage genome annotation and, by extension, will facilitate ecological 
and evolutionary inferences about their role in shaping microbial communities.
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