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Abstract 

Background:  Jatropha curcas L. is an important non-edible oilseed crop with a 
promising future in biodiesel production. However, little is known about the molecular 
biology of oil biosynthesis in this plant when compared with other established oilseed 
crops, resulting in the absence of agronomically improved varieties of Jatropha. To 
extensively discover the potentially novel genes and pathways associated with the 
oil biosynthesis in J. curcas, new strategy other than homology alignment is on the 
demand.

Results:  In this study, we proposed a multi-step computational framework that 
integrates transcriptome and gene interactome data to predict functional pathways 
in non-model organisms in an extended process, and applied it to study oil biosyn‑
thesis pathway in J. curcas. Using homologous mapping against Arabidopsis and 
transcriptome profile analysis, we first constructed protein–protein interaction (PPI) 
and co-expression networks in J. curcas. Then, using the homologs of Arabidopsis 
oil-biosynthesis-related genes as seeds, we respectively applied two algorithm mod‑
els, random walk with restart (RWR) in PPI network and negative binomial distribution 
(NBD) in co-expression network, to further extend oil-biosynthesis-related pathways 
and genes in J. curcas. At last, using k-nearest neighbors (KNN) algorithm, the predicted 
genes were further classified into different sub-pathways according to their possible 
functional roles.

Conclusions:  Our method exhibited a highly efficient way of mining the extended 
oil biosynthesis pathway of J. curcas. Overall, 27 novel oil-biosynthesis-related gene 
candidates were predicted and further assigned to 5 sub-pathways. These findings can 
help better understanding of the oil biosynthesis pathway of J. curcas, as well as paving 
the way for the following J. curcas breeding application.
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Background
Jatropha curcas L. also called “physic nuts” (a member of the Euphorbiaceae family), 
is a small perennial tree or large shrub, metabolites and medicinal components of 
which have been used to manufacture soap and medicinal materials for a long time [1, 
2]. Because of its extraordinary tolerances to environmental stresses, such as drought 
and infertility, J. curcas can grow well in bad conditions, with no endangerment to 
food security being a non-eatable crop. In recent years, J. curcas attracted more atten-
tion for high potential of biofuel plantations. The oil content of J. curcas is around 
30–45% with a high percentage of monounsaturated oleic and polyunsaturated lin-
oleic acid [3], so that J. curcas can be used directly as diesel without processing. In 
addition, the filter-press cake from seeds is rich in protein (60–63%) as compared 
with soybean (45%) [4], making it a viable resource of various amino acids.

However, there are still many challenges that limit the commercial potential of J. 
curcas. First of all, the seeds of J. curcas contain high levels of polyunsaturated fatty 
acids, which negatively impact the biofuel quality. Therefore, optimizing oil com-
position would facilitate the improvement of the quality of jatropha biodiesel. For 
instance, the reduction of unsaturated fatty acids would increase oxidative stability, 
the decrease of free fatty acids could prevent soap formation and increase the yield 
of biodiesel, and the shrinkage of 18-carbon fatty acids could lower the viscosity for 
better atomization of biodiesel [5]. Meanwhile, how to effectively increase oil accu-
mulation is another critical issue in the research of oil plants, which is commonly 
implicated with the mechanism of lipid metabolism. However, little is known about 
the molecular biology of this plant as compared with other well-established oilseed 
crops. Besides, low seed production, uneven fruit maturation, and lack of high-yield 
genotypes limit the availability of this crop [6]. To make it commercially viable, new 
cultivars need to be developed. Genetic engineering methods could play a major role 
in J. curcas crop improvement, because the scope for classical breeding is limited due 
to the longer breeding cycle. For this purpose, functional genomics for understanding 
metabolic pathways and genetic improvement is urgent in J. curcas.

Driven by the development of sequencing technology, large-scale molecular biolog-
ical data were generated. They comprise the relatively static data on intermolecular 
physical interactions, such as PPI data, as well as the quite dynamic data collected for 
studying gene activation during development, such as gene expression profile. Net-
work science is gradually altering our view of cell biology by offering unforeseen pos-
sibilities to understand the internal organization of a cell [7]. Co-expression network 
analysis is a powerful method to extract functional modules from co-expressed genes, 
analyze their biological meanings, and identify important novel genes [8]. PPI net-
work also represents strong interactions. Based on the primary roles of proteins in 
biological function, their interactions determine molecular and cellular mechanisms, 
which control healthy and diseased states in organisms. Combination of transcrip-
tome and gene interactome data was successfully applied for efficient mining of key 
pathways [9, 10].
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Despite many progresses achieved in genomic and transcriptomic studies in J. curcas, 
especially the information of gene expression profiles that can provide a fundamental 
molecular understanding of fatty acid biosynthesis, the regulatory mechanisms control-
ling seed development and oil biosynthesis in J. curcas are not very clear. In general, the 
process of oil biosynthesis share some similar elements among oilseed plants, therefore, 
the identification of these oil-biosynthesis-related genes is mostly based on BLAST hits 
or domain homology methods. However, J. curcas seeds differ greatly from other oil-
seed plants in terms of their oil content and fatty acid composition. Therefore, a systemic 
identification and analysis of the specific oil-biosynthesis- related genes of J. curcas are 
needed.

In this study, we described a multi-step computational framework for extensively min-
ing novel oil-biosynthesis-related genes and pathways in J. curcas using transcriptome 
and gene interactome data. At first, PPI and co-expression networks in J. curcas were 
constructed using homologous mapping against Arabidopsis and transcriptome pro-
file analysis, and further validated by network structure parameters and GO annotation 
consistency. We then trained the RWR algorithm on the PPI network and NBD algo-
rithm on the co-expression network respectively, and predicted the oil-biosynthesis-
related genes in J. curcas using the homologs of Arabidopsis genes as seeds. As a result, 
27 novel oil-biosynthesis-related gene candidates were predicted. Consistent with other 
researches, most of the predictions exhibited high expression levels in seed develop-
ment. At last, using the KNN algorithm, these genes were assigned to 5 sub-pathways, 
such as fatty acid synthesis and triacylglycerol biosynthesis. All these above results have 
shown that our proposed multi-step computational framework is a highly efficient way 
to mine functional pathways in non-model organisms, and these findings can help better 
understanding the oil biosynthesis pathway of J. curcas, as well as paving the way for the 
following J. curcas breeding application.

Results
The workflow of the key pathway extended mining algorithm

Here, we designed a multi-step computational framework that integrates transcriptome 
and gene interactome data to mine functional pathways in non-model organisms in an 
extended process. The framework mainly includes three parts: data collection, gene pre-
diction, and sub-pathway assignment (Fig. 1).

In the data retrieved part, the known oil-biosynthesis-related genes were collected 
from the experimentally verified oil metabolism pathways in the model species. Gene 
expression data was obtained from high-throughput gene expression profiling technolo-
gies such as RNA-seq or Microarray. Another widely used functional linkage data is PPI 
that can be collected from the STRING [11] database.

In the gene prediction part, we first constructed PPI and co-expression networks in 
J. curcas. The reference PPI was driven from high reliable Arabidopsis thaliana data. 
We inferred the PPI of J. curcas based on a homologous-group-based method. The gene 
co-expression was measured by the Spearman or Pearson correlation coefficients based 
on RNA-seq or Microarray expression profiles [12, 13]. As our expression profile was 
RNA-Seq type, Spearman correlation was selected to generate an association matrix. 
Then according to the different properties of the network, we respectively applied two 
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algorithm models, RWR in PPI network and NBD in co-expression network, to predict 
oil-biosynthesis-related pathways and genes in J. curcas.

In the sub-pathway assignment part, we further classified the predicted genes into dif-
ferent sub-pathways according to their possible functional roles. The Euclidean distance 
was used to measure the distances between a candidate and all known oil-biosynthesis-
related genes. Then, KNN voting method is used to assign each predicted gene to the 
corresponding sub-pathway.

Data retrieved and network construction

Oil‑biosynthesis‑related gene in J. curcas

To obtain the whole picture of the oil synthesis pathway, we downloaded 132 Arabi-
dopsis oil synthesis genes from ARALIP (Additional file  1). According to ARALIP, 
Arabidopsis thaliana oil-biosynthesis-related genes were divided into 5 sub-pathways, 
40 in Fatty Acid Synthesis, 7 in Fatty Acid Elongation & Desaturation & Export From 
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Plastid, 6 in Lipid Trafficking, 66 in Triacylglycerol Biosynthesis, and 23 in Triacylglyc-
erol & Fatty Acid Degradation. We observed that some pathways overlapped with oth-
ers. Though homology-based method, 105 oil-biosynthesis-related genes were identified 
as known oil metabolism genes in J. curcas (Additional file 2), 30 in Fatty Acid Synthesis, 
10 in Fatty Acid Elongation & Desaturation & Export From Plastid, 6 in Lipid Traffick-
ing, 45 in Triacylglycerol Biosynthesis, and 28 in Triacylglycerol & Fatty Acid Degrada-
tion. Figure  2a shows that J. curcas’s known oil metabolism genes account for 75% of 
Arabidopsis oil metabolism genes. Fatty Acid Synthesis and Triacylglycerol Biosynthesis 
related genes in J. curcas were less than Arabidopsis (75% and 68.18%) while the opposite 
situation was observed in Fatty Acid Elongation & Desaturation & Export From Plastid 
and Triacylglycerol & Fatty Acid Degradation (144.86% and 121.74%). Moreover, for the 
Lipid Trafficking sub-pathway, the two species have the same gene number. The detailed 
statistic of gene number in each sub-pathway of the two species can be found in Addi-
tional file 3. These results indicated that the core lipid metabolic pathways in the two 
species are carried out by a comparable number of orthologous proteins. However, an 
inconsistent number of genes in some pathways also indicate that there are different oil 
synthesis pathways between J. curcas and Arabidopsis thaliana.

Construction of the protein–protein network

There are 22,446 coding genes in TAIR (version 10), of which 14,051 genes can find 
15,936 homologous in the J. curcas genome by inparinoid v4.1 (default parameters, see 
method). We have retrieved a very reliable Arabidopsis PPI network from literature and 
databases, giving a total of 17,894 Arabidopsis genes and 252,401 interactions. Through 
the homology-group-based method, we have finally produced the PPI network of J. cur-
cas which containing 9602 nodes and 118,839 edges. For oil-biosynthesis-related genes 
in J. curcas, 86 of them are in the PPI network while 19 are not. We next analyzed the 
network topological characteristic of J. curcas PPI network. The node’s degree exhibits a 
power-law distribution (Fig. 2b). The scale-free R2 value is 0.89 and scale-free gamma is 
1.52. More detailed network topological characteristics statistics can be found in Addi-
tional file 4.

Construction of co‑expression network

There are 25,297 genes and 114 samples in the J. curcas expression profile. To construct a 
co-expression network, a suitable Spearman’s correlation coefficient (SCC) cut-off value 
is needed. Figure 2c shows a negative correlation between gene number with GO and 
SCC cut-off. At about 0.6, the network gene number with GO began to drop rapidly. 
We need to keep the functional genes in the network as much as possible. Our results 
show that 102 (97%), 91 (86%), 53 (50%), and 10 (9%) functional genes were retained by 
using SCC cutoff 0.6, 0.7, 0.8 and 0.9 on co-expression network, respectively (Additional 
file 5). So, the SCC cut-off value of 0.6 was then selected to screen significant co-expres-
sion correlations from large-scale expression data sets. Our final co-expression network 
consists of 22,749 nodes, 19,739,995 edges. The scale-free R2 value is 0.59 and scale-
free gamma is 0.60. More detailed network topological characteristics statistics can be 
found in Additional file 6. From the above data, it’s clear that the co-expression network 
includes more genes in the network than the PPI network while with more noise.
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Network validation

To verify the reliability of our networks, we used the GO consistency test based on 
GO enrichment analysis [14, 15]. As it can be seen in Fig. 2d, both PPI and co-expres-
sion network have much higher GO consistency values than random networks. PPI 
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network reached 0.65, followed by co-expression network 0.22 and random network 
0.17 (Fig.  2d and Additional file  7). We need to mention that the GO consistency 
value in the co-expression network is positively correlated with the correlation coef-
ficient cutoff value. This indicates that GO consistency can be used as a standard to 
measure co-expression network reliability (Fig. 2c).

Besides, we checked if the known oil-biosynthesis-related genes are more closely con-
nected than randomly selected nodes in PPI and co-expression networks. Figure  2e 
shows that the number of interactions among known oil-biosynthesis-related genes is 
much larger than the random set in both co-expression network and PPI network (308 
vs 275.58 and 58 vs 5.8, P value 0.02 and 0, respectively). The detailed data can be found 
in Additional file 8.

Prediction of oil‑biosynthesis‑related genes and pathway of J. curcas in PPI 

and co‑expression networks

Because of the different topological characteristics of the co-expression network and PPI 
network, two different algorithms, NBD and RWR, were applied. We used leave-one-out 
cross-validation to evaluate the accuracy of our methods. The average area under the 
ROC (Receiver operating characteristic) curve (AUC) reached 0.83 by the RWR algo-
rithm on the PPI network (Fig. 3a). On the other hand, a 0.69 AUC score was obtained 
by the NBD method on the co-expression network (Fig. 3b). As the value of SCC was 
chosen more strictly, the AUC results were correspondingly higher (Additional file 5).

Next, we predict oil-biosynthesis-related genes by RWR and NBD methods. Of the 
9602 genes in the PPI network, 86 are known to be oil-biosynthesis-related and 9516 
are unknown. Using the RWR possibility P > 0.001 as the threshold, we selected the top 
14 candidate genes that are most closely linked to the known oil-biosynthesis-related 
genes (Additional file 9). Among them, gene JCDBG19737 (mtACP2), which ranks first, 
is the most attractive. JCDBG19737 encodes a member of the mitochondrial acyl carrier 
protein (ACP) family. As part of the mitochondrial matrix, it is likely to be involved in 
fatty acid or lipoic acid biogenesis. Although JCDBG19737 is less homology from known 
Arabidopsis oil-biosynthesis-related genes, RWR algorithm shows that it is more likely 
to have direct interaction with known oil-biosynthesis-related genes in the PPI network 
of J. curcas. Another example is gene JCDBG21654 (TRX-M1, TRXm2), which encodes 
m-type thioredoxin (Trx-m1), a redox activated co-chaperone, localized in the chlo-
roplast stroma. We know that the important process of oil synthesis lies in the plastid, 
which may suggest JCDBG21654 is an important regulatory gene.

In the co-expression network, we predicted the candidate genes related to oil biosyn-
thesis by calculating the possibility of each function unknown gene connecting with the 
known oil-biosynthesis-related genes using NBD method. As a result, 13 oil-biosynthe-
sis-related candidate genes were predicted using p value < 0.01 as a cutoff (Additional 
file 9). The gene annotation indicates that they are participate in different pathways, such 
as JCDBG23541 is a cytochrome P450 78A7-like gene, and JCDBG13536 is a pseudo-
gene. The known oil-biosynthesis-related genes and predicted genes by RWR and NBD 
methods together constitute an oil-biosynthesis-related gene network of 122 genes and 
659 connections (Fig. 3c).
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The extended oil‑biosynthesis‑related pathway of J. curcas

Next, we studied the extended oil pathway of J. curcas. The GO enrichment analysis 
shows that the most enriched GO terms are highly related to the oil pathway (Top 10 
were collected, Fig. 4a). The most enriched biological process is the metabolic process, 
fatty acid biosynthetic process, lipid metabolic process, and fatty acid metabolic process. 
The most enriched molecular function is catalytic activity, transferase activity (transfer-
ring acyl groups), flavin adenine dinucleotide binding, oxidoreductase activity (acting on 
the CH-CH group of donors), O-acyltransferase activity and ligase activity (Additional 
file 10).

Also, we did gene expression clustering analysis of predicted oil-biosynthesis-related 
genes at different time points of developing J. curcas seeds (14, 19, 25, 29, 35, 41, and 
45 days after pollination (DAP). The expression matrix was download from JCDB and 
normalized by z-score method. Five clusters were obtained by hierarchical clustering 
(Fig.  4b and Additional file  11). In these five clusters, Cluster 3 exhibited the highest 
expression at 14 DAP and 19 DAP, suggesting that they may play an important role in 
lipid accumulation; Cluster 1 has a higher expression at 25 DAP while cluster 2 has a 
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higher expression at 41 DAP; Cluster 5 continues to be highly expressed in the later 
stage.

Plant lipids are synthesized as triacylglycerols (TAGs) via a complex series of path-
ways in which many fatty acid (FA) biosynthetic enzymes are involved. The major FAs 
in plant oils are palmitic (16:0), stearic (18:0), oleic (18:1), linoleic (18:2) and lino-
lenic acids (18:3). Among them, palmitic and stearic acids are saturated, oleic acid is 
monounsaturated, and linoleic and oleic acids are polyunsaturated FAs. To further 
study the function of our predictions, we use the KNN method to assign them into 
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Fig. 4  GO enrichment analysis and gene expression clustering of predicted oil-biosynthesis-related gene. a 
GO enrichment analysis of J. curcas predicted oil-biosynthesis-related genes. b Gene expression clustering of 
predicted oil-biosynthesis-related gene at different time points after pollination (The expression value was 
normalized by z-score)
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different sub-pathway – ① Fatty Acid Synthesis, ② Fatty Acid Elongation, Desatura-
tion & Export From Plastid, ③ Lipid Trafficking, ④ Triacylglycerol Biosynthesis, and 
⑤ Triacylglycerol and Fatty Acid Degradation. KNN results (Fig.  5, see Additional 
file  12 for detailed data) showed the oil-biosynthesis pathway with our newly pre-
dicted oil-biosynthesis-related genes, of which 7 associated with Fatty Acid Synthesis, 
15 associated with Triacylglycerol Biosynthesis, and 1 associated with Triacylglycerol 
& Fatty Acid Degradation. The gene expression profiles of novel Fatty Acid Synthesis 

Fig. 5  The extended oil-biosynthesis-related pathway of J. curcas and the gene expression profiles 
and potential functional roles of predicted oil-biosynthesis-related genes. ACP, acyl carrier protein; 
G3P, glycerol-3-phosphate; LPA, lysophosphatidic acid; PA, phosphatidic acid; TAG, triacylglycerol; DAG, 
dihydroxyacetone



Page 11 of 17Zhang et al. BMC Bioinformatics  2021, 22(Suppl 6):409	

and Triacylglycerol Biosynthesis related genes was also shown in Fig.  5, indicating 
that these genes are involved in the whole process of oil biosynthesis.

Discussion
Studies on the regulatory pathways of oil biosynthesis have great theoretical and practi-
cal value in J. curcas. These pathways usually involve many genes and intricate regulatory 
networks, and, any abnomal change in the networks would affect the whole oil synthesis, 
such as oil content and component diversity. However, in J. curcas, the regulatory path-
ways of oil biosynthesis are still unclear due to data deficiency and technical limitations. 
To the best of our knowledge, only differential expression information of developing 
seeds has been provided by transcriptome analysis till now. Here, we provided a system-
atic approach to deeply mine the oil-synthesis-related genes and pathways in J. curcas. 
The result of present study represents the first method that combined transcriptome and 
gene interactome data analysis of J. curcas and can provide insight into the biosynthesis 
of oil including specific triglycerides, which will contribute to the genetic improvement 
of J. curcas in seed development and oil accumulation.

In the functional study of identifying key pathways, lack of adequate analytical data is 
a common challenge for non-model species. As for J. curcas, although high-throughput 
measurement technology that is becoming cheaper and cheaper enriched the data for 
the functional research, it is still far from meeting the needs. Correspondingly, model 
plants, such as Arabidopsis, accumulated plenty of data for pathway research because 
of their well-established genome, fast transformation, and various mutants. Therefore, 
they can act as a powerful reference and provide some primary information for the study 
of other non-model species. In this work, to compensate for the data shortage in J. cur-
cas, we exploited Arabidopsis transcriptomic data and functional networks as reference 
and scaffold to spot the potential genes and pathways associated with oil biosynthesis in 
J. curcas. By sequence alignment, we substantially found many oil-biosynthesis-related 
genes of J. curcas that were quite conservative between J. curcas and Arabidopsis. These 
highly conserved genes provide seeds for further prediction of more J. curcas specific 
oil-biosynthesis-related genes.

Due to the great difference between J. curcas and Arabidopsis in the process of oil bio-
synthesis, it is far from enough to rely on homologous analysis to find oil-biosynthesis-
related genes and pathways in J. curcas. We need a method to systematically identify and 
analyze oil-biosynthesis-related genes and pathway in J. curcas, especially which are J. 
curcas specific. Because genes tend to be closely linked to genes with similar functions in 
gene interaction network, we may look for more oil-biosynthesis-related genes by study-
ing the gene interaction networks of J. curcas, which are likely to be linked with known 
oil-biosynthesis-related genes in the network. On the other hand, network data may con-
tain quite a lot of noise, so they should be used carefully, especially when predicting new 
genes. In the co-expression network, we used the negative binomial distribution algo-
rithm to calculate the probability of each candidate gene participating in the key pathway. 
The predictions in this part were considered specific to the Jatropha oil pathway. Besides, 
it is important to emphasize the limitations of available PPI data once more. Our current 
knowledge about Jatropha protein interactome is neither complete nor distinct. The PPI 
data of J. curcas was derived from homology analysis and prediction based on Arabidopsis 
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data. That is, it is not sure that how many interactions detected are true, there are false 
positives and negatives indeed. It is more difficult to obtain large-scale gene interactome 
data than large-scale genome and transcriptome data, which may be a critical problem for 
functional genomics research of non-model organisms in the future. Our method, which 
combines transcriptome and gene interactome data, may be a feasible and effective way 
at present. For the predicted results of this study, we will further use molecular biology 
experiments to verify their functions (related experiments are in progress).

Conclusions
Understanding the oil metabolism pathway is key to promote the commercialization of 
J. curcas. In this paper, we presented a multi-step computational framework that inte-
grates transcriptome and gene interactome data for mining oil-biosynthesis-related 
genes and assign them to obtain an extended pathway. The major advantage over simple 
homology search methods is that we can predict the function related genes which are 
species-specific. Our method can be used widely in key pathway studies, especially for 
the non-model organism.

Materials and methods
Data sources

The gene expression profiles were downloaded at April 2019 from the J. curcas database 
(JCDB [16], http://​jcdb.​liu-​lab.​com) which contained 114 RNA-Seq samples. JCDB is 
a comprehensive database of J. curcas that we have developed in previous studies. The 
expression profile was normalized by upper-quartile method [17]. Other information 
such as sequence and gene annotation retrieval details from JCDB can be found in Addi-
tional file 13. Oil biosynthesis related genes in Arabidopsis thaliana were collected from 
ARABIDOPSIS ACYL-LIPID METABOLISM PATHWAYS database (ARALIP, http://​
aralip.​plant​biolo​gy.​msu.​edu/​pathw​ays/​pathw​ays) [18]. The PPIs in Arabidopsis thaliana 
were collected from literature [19–21] and databases (AtPID 5.0 [22], AtPIN 9.0 [23], 
and PAIR 3.0 [24]). The protein sequences and gene annotations of Arabidopsis thaliana 
were downloaded from The Arabidopsis Information Resource (TAIR) version 10[25].

Annotation and homologue search

We used InParanoid [26] version 4.1 to find the orthologous relationships between J. 
curcas and Arabidopsis thaliana genes with default parameters. The protein sequences 
of the two species were used as inputs, and genes were assigned to homolog groups 
according to the relatedness which were measured in BLAST scores (cutoff = 40 bits). 
The confidence interval (cutoff = 0.05) was calculated by the bootstrap approach [27].

Co‑expression network construction

The genes with high expression variation (top 75% percentile) were retained to construct 
a co-expression network. We calculated the Spearman’s correlation coefficient and its cor-
responding P value between the expression profiles of each gene-pair using our in-house 
Perl script (Available upon request). Only genes pairs with a correlation value higher than 
0.6 and adjusted P value less than 0.01 were regarded as co-expressed in our network.

http://jcdb.liu-lab.com
http://aralip.plantbiology.msu.edu/pathways/pathways
http://aralip.plantbiology.msu.edu/pathways/pathways
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Protein–protein interaction network migration

In one species, if two genes are detected as interacting protein–protein, we can infer 
that in another species, genes homologous to them are also considered to interact. These 
infered gene pairs are traditionally defined as interacting homologous genes. We used a 
homologous-group-based method to inferring J. curcas PPIs—If an Arabidopsis gene in 
group A interacts with an Arabidopsis gene in group B, then all the genes in group A of J. 
curcas interact with all the J. curcas genes in group B.

Network topological characteristics

In network theory, a scale-free network is a kind of complex network in which most 
nodes in the network only connect with a few nodes, while few nodes connect with a lot 
of nodes. Its degree distribution follows a power law, at least asymptotically. The log–log 
plot of power-law distribution was line fitting using Eq. 1:

where k is the degree of a node, P is the fraction of nodes.
In biological networks, nodes represent genes, and the interconnected edges of nodes 

reflect the degree of correlation of expression. A subset of nodes that are closely con-
nected to each other is a module. Within a module, highly connected genes, also known 
as "hub genes," are likely to have important biological functions. Metabolic, protein and 
gene interaction networks have been reported to exhibit scale-free behavior based on 
the analysis of the distribution of the number of connections of the network nodes [28]. 
To construct a biologically meaningful network with small world and scale-free struc-
ture, many network topological characteristics criteria were designed in the J. curcas 
tender shoot system [29]. We also calculated some network properties to reach this goal, 
such as number of genes, number of edges, connected components, the size of giant 
component, network density, average node degree, degree centrality, network hetero-
geneity, clustering coefficient, scale-free R2, and scale-free Gamma, using our in-house 
Perl script (Available upon request). For the PPI network parameters can be found in 
Additional file 4 and co-expression network parameters with different correlation coef-
ficient threshold can be found in Additional file 6.

GO consistency

To confirm the reliability of our PPI or co-expression network, we provided a GO con-
sistency test [14, 15]. The basic idea of GO consistency is that in a reliable gene interac-
tion network, a gene may share the same function (GO terms) with its neighbors. For 
each gene in the network, we performed GO enrichment analysis of its neighbor genes 
using GOATOOLS [30]. If the enriched GO terms overlapped with its own GO annota-
tion, we counted it as a GO match. And the GO consistency was defined as N/M. Where 
N is the total GO match, and M is the total number of genes tested in the network. To 
simulate the random networks for comparison, genes were randomly selected from the 
network and the above steps were repeated 5000 times.

(1)log10P(k) ∼ −γlog10k ,
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Negative binomial distribution algorithm on weighted co‑expression network

We assume that a novel oil-biosynthesis-related candidate gene has relatively more 
connections with known oil pathway genes than the random background. Connec-
tions across candidate and known oil-biosynthesis-related genes approximately follow 
a negative binomial distribution in networks. The probability P that a candidate gene 
is linked to k or more known oil-biosynthesis-related genes was calculated by Eq. 2:

where p is the probability that a gene is linked to a known oil-biosynthesis-related gene 
by chance (p = number of known oil-biosynthesis-related genes / number of all genes), 
and n is the degree of the candidate gene in the network.

Random walk with restart algorithm on PPI network

RWR is a ranking algorithm [31]. It simulates a random walker, either starts on a 
seed node or a set of seed nodes (here are known oil-biosynthesis-related genes), and 
moves to its immediate neighbors randomly at each step [32]. All the nodes in the 
graph are ranked by the probability of the random walker reaching this node. Let P0 
be the initial probability vector and Pt be a vector in which the ith element holds the 
probability of finding the random walker at node i at step t. The probability vector at 
step t + 1 can be given by Eq. 3:

where W is the transition matrix of the graph. r is the transition probability from node 
i to node j. The parameter rǫ(0, 1) is the restart probability. At each step, the random 
walker can return to seed nodes with probability r.

The connections between genes in the PPI network were transformed into the 
adjacency matrix. The restart probability was set to 0.8. The RWR function returns 
a matrix of values with only one column. These values represent the affinity score 
between each candidate genes and known oil-biosynthesis-related genes. The MAT-
LAB code of the RWR function was download from http://​www3.​ntu.​edu.​sg/​home/​
aspat​ra/​resea​rch/​Yongj​in_​BI2010.​zip.

K‑nearest neighbor algorithm on function assignment of candidate genes

Penalized k-Nearest-Neighbor-Graph (PKNNG) was designed to evaluate the dis-
tances in gene expression datasets [33]. We used a basic distance-voting strategy to 
determine which sub-pathway the candidate genes should belong to. A candidate gene 
was classified by a plurality vote of its neighbors. Given the k nearest neighbors of a 
gene A in a network (here we use k = 5), the naive KNN method selects the functional 
class that is voted for by the maximum number of neighbors, and assigns it to gene A. 
Gene expression data in 7 different developmental stages of J. curcas seeds was used 
to calculate the distance between the candidate gene and the oil-biosynthesis-related 
gene. Those expression data were obtained from JCDB [16] and Jiang’s paper [34]. The 
distance was calculated by Euclidean distance Eq. 4:

(2)P = 1−
i=k

i=0

pi × (1− p)n−i
× Ci

n

i!
,

(3)Pt1
= (1− r)WPt

+ rP0,

http://www3.ntu.edu.sg/home/aspatra/research/Yongjin_BI2010.zip
http://www3.ntu.edu.sg/home/aspatra/research/Yongjin_BI2010.zip
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where n is the sample number of the expression data, x is the candidate gene, and y is the 
known oil-biosynthesis-related gene.

Abbreviations
GO: Gene ontology; KNN: K-nearest neighbors; NBD: Negative binomial distribution; PPI: Protein–protein interaction; 
PKNNG: Penalized k-nearest-neighbor-graph; RWR​: Random walk with restart; RNA-seq: RNA sequencing.
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