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Abstract 

Background: Approximate Bayesian Computation (ABC) has become a key tool 
for calibrating the parameters of discrete stochastic biochemical models. For higher 
dimensional models and data, its performance is strongly dependent on having a 
representative set of summary statistics. While regression-based methods have been 
demonstrated to allow for the automatic construction of effective summary statistics, 
their reliance on first simulating a large training set creates a significant overhead when 
applying these methods to discrete stochastic models for which simulation is relatively 
expensive. In this τ work, we present a method to reduce this computational burden by 
leveraging approximate simulators of these systems, such as ordinary differential equa-
tions and τ-Leaping approximations.

Results: We have developed an algorithm to accelerate the construction of regres-
sion-based summary statistics for Approximate Bayesian Computation by selectively 
using the faster approximate algorithms for simulations. By posing the problem as one 
of ratio estimation, we use state-of-the-art methods in machine learning to show that, 
in many cases, our algorithm can significantly reduce the number of simulations from 
the full resolution model at a minimal cost to accuracy and little additional tuning from 
the user. We demonstrate the usefulness and robustness of our method with four dif-
ferent experiments.

Conclusions: We provide a novel algorithm for accelerating the construction of sum-
mary statistics for stochastic biochemical systems. Compared to the standard practice 
of exclusively training from exact simulator samples, our method is able to dramatically 
reduce the number of required calls to the stochastic simulator at a minimal loss in 
accuracy. This can immediately be implemented to increase the overall speed of the 
ABC workflow for estimating parameters in complex systems.

Keywords: Approximate Bayesian Computation, Summary statistics, Discrete 
stochastic reaction systems, Biochemical reaction systems, Gillespie algorithm
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Background
In recent years, stochasticity has been shown to play a crucial role in many molecu-
lar biological processes such as genetic toggle switches [1, 2] and robust oscillators 
[3]. Systems biologists will often model these stochastic biochemical reaction systems 
using continuous-time, discrete-space Markov Chains [4], which allow one to capture 
stochasticity in a system caused by the limited availability of certain reactants, such as 
transcription factors. A critical step in building an accurate mechanistic model of these 
stochastic systems is calibrating the kinetic rate constants, to experimental data. While 
efficient methods exist for parameter estimation using maximum likelihood or Bayesian 
inference for similar models, for these discrete stochastic models, the intractability of 
the likelihood function forces researchers to rely on the growing class of Likelihood-Free 
Inference (LFI) methods [5–7], which depend only on the availability of a model simula-
tor. Recently, Approximate Bayesian Computation (ABC) [8, 9] has become one of the 
most popular LFI methods for discrete stochastic models due to its simplicity and dem-
onstrated effectiveness.

Parameter estimation for biochemical systems

In this section, we briefly describe parameter estimation in the context of biochemical 
reaction systems. Given a biochemical reaction system describing M reactions among N 
biochemical species, a single reaction can be specified in the form

where f (θ) is the kinetic rate function, parameterized by θ , quantifying the rate at which 
the reaction occurs. In the common situation where f (θ) = θ , it is commonly referred 
to as a kinetic rate constant. The dynamics of the reaction system can be described using 
numerous mathematical methods such as ordinary differential equations (ODEs), sto-
chastic differential equations (SDEs) and Markov processes. Provided with an experi-
mentally observed dataset, Xo , measuring the evolution of the N species over time, 
parameter estimation is concerned with calibrating all of the unknown kinetic rate 
parameters θ so that the resulting model replicates the observed data.

A large set of methodologies exist for parameter estimation of biochemical systems, 
especially when the dynamics are modeled using ODEs. Extensive reviews of some of 
the prominent optimization, metaheuristic, and Bayesian schemes are detailed in [10–
13]. In this work, we are interested in Bayesian parameter estimation when the dynamics 
of the biochemical system exhibit intrinsic stochasticity and are modeled using a con-
tinuous time, discrete-space Markov process [4]. The Bayesian approach allows us to 
quantify uncertainty in our estimates by using Bayes formula to compute the posterior 
distribution over the kinetic rate parameters,

A major challenge to this is that the intractability of the resulting likelihood, p(X |θ) , lim-
its algorithms to those in the class of Likelihood-Free Inference (LFI) methods [5–7], 
such as Approximate Bayesian Computation, which we present below.

A+ B
f (θ)
→ C .

(1)p(θ |Xo) =
p(Xo|θ)p(θ)

p(Xo)
.
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Approximate Bayesian computation

Given a prior over parameters p(θ) and a stochastic simulator p(X |θ) , Approximate Bayes-
ian Computation (ABC) approximates the posterior distribution p(θ |X) ∝ p(X |θ)p(θ) 
using only forward simulations and without computing the likelihood [8]. The basic Rejec-
tion ABC is presented in Algorithm 1.

When X is high dimensional, comparing exact trajectories often results in very low 
acceptance rates due to the curse of dimensionality. For this reason, it is standard practice 
to trade bias for efficiency by first reducing the dimensionality of X using a set of summary 
statistics, S(X), and subsequently comparing trajectories using d(S(Xo), S(X)) , where d is 
a user selected distance function. This can lead to much higher acceptance rates, however, 
selection of an appropriate S(X) for any given model can be difficult.

Regression‑based summary statistics

The performance of ABC is highly dependent on having an effective set of summary sta-
tistics for the experimental data, which becomes increasingly difficult for domain experts 
to hand-select as the dimensionality of the problem grows [8]. For stochastic biochemi-
cal reaction systems, where data is often in the form of sample paths of molecular species 
over time, this is a common issue due to complexity of trajectories where simple means and 
correlations may not effectively capture the features. For this reason, significant focus has 
recently been given to the automatic learning of summary statistics from model simula-
tions, which we will refer to as regression-based summary statistics.

Fearnhead and Prangle [14] formulate the problem of regression-based summary statis-
tics for ABC as a least squares estimation of the posterior mean:

where f� is an arbitrary expressive function and ǫ is standard normal noise. 
The parameters of f� are fit using maximum likelihood on a simulated dataset 
D = {(θ0,X0) . . . (θN ,XN )} drawn from the model p(θ ,X) . While initially proposed as 

(2)S(X) = E[θ |X] = f�(X)

(3)θ |X ∼ N (f�(X), 1)

(4)θ = f�(X)+ ǫ,
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a linear f�(X) for each parameter, nonlinear Neural Network architectures have shown 
promise in producing accurate results [15]. For discrete stochastic models, Akesson 
et al. [16] show that Convolutional Neural Networks (CNNs) tend to outperform other 
architectures. The general procedure for this is detailed in Algorithm 2.

A major bottleneck of regression-based summary statistics is their requirement to 
first draw a large number of simulations N to train accurate summary statistics. For dis-
crete stochastic models which rely on expensive simulators such as Gillespie’s stochastic 
simulation algorithm (SSA) [17] for generating exact trajectories, this step introduces 
a significant overhead in ABC. Fortunately, many faster approximate simulators exist 
for biochemical reaction systems, such as Ordinary Differential Equations (ODEs) in 
the form of the reaction rate equations (RRE), the Chemical Langevin Equation (CLE) 
[18], or τ-Leaping [19]. However, training a regression-based summary statistic using an 
approximation will inevitably lead to bias due to the unknown approximation error as 
the summary statistics will learn incorrect features.

In this work we propose to use data driven machine learning models to train approxi-
mate summary statistics for discrete stochastic models using a mix of samples from an 
approximate simulator and the SSA. This is done with the aim of significantly lowering 
the computational cost while also mitigating the potential introduced bias in a black-
box way. The key insight used for this is that, although the quality of an approximate 
simulator can vary significantly as we move around parameter space, in many parts it 
is sufficiently accurate, but also often unknown. To take advantage of this, we train an 
approximate ratio estimator to inform when the approximation is significantly different 
and thus when we need to simulate using the SSA to prevent bias. In the following, we 
demonstrate the ability for our algorithm to effectively reduce the number of expensive 
SSA calls made, while maintaining accuracy of the learned summary statistics.

Related work

The use of multifidelity simulators for Approximate Bayesian Computation has been 
explored, but under the assumption of the existence of a set of summary statistics. 
Prescott and Baker [20] construct a similar decision process for using multifidelity sim-
ulators within ABC-MCMC and ABC-SMC algorithms. In their method, they derive 
optimal continuation probabilities from a set of assumptions, while we take the more 
black-box approach of using Deep Neural Networks and approximate ratio estimators.



Page 5 of 17Jiang et al. BMC Bioinformatics          (2021) 22:339  

Approximate Likelihood Ratios have been used to perform likelihood free inference 
within both an MCMC and an ABC framework [21–24]. These works have mainly 
focused on estimating the likelihood ratios within a single model at different parameter 
points, whereas our focus is on estimating the likelihood ratio between approximate and 
full models.

Results
Approximate summary statistics overview

The goal of our algorithm is to reduce the computational cost of constructing a set of 
regression-based summary statistics for ABC by leveraging the availability of a single 
approximate simulator. This is accomplished by our algorithm in two major steps. First, a 
ratio estimator is trained to distinguish between approximate and SSA trajectories using 
M samples from both simulators. Next, to train the summary statistic, N −M additional 
samples from the approximate simulator are drawn and passed through the ratio esti-
mator. If the ratio estimator falls below a certain threshold, indicating that it is signifi-
cantly different than the true model, we resample it using the full simulator, preventing 
unnecessary resamples from the costly SSA. For complete details see “Methods” and 
Algorithm 3.

Experiments

To assess the computational savings of our method, we evaluate our method on four dis-
crete stochastic models of varying complexity and compare to the baseline Algorithm 2 
which uses no approximate simulations. We report the total number of SSA calls used to 
train a summary statistic as opposed to wall clock time due to the highly parallelizable 
nature of the problem. The baseline method utilizes N SSA calls but produces the most 
accurate summary statistic by definition. Accuracy of the resulting summary statistic is 
evaluated using normalized posterior mean absolute error E% [16] on a large hold out 
test set of SSA trajectories. We briefly explain E% in the following section.

For each experiment, we denote X for trajectories that are simulated from SSA and X̃ 
for trajectories simulated from the approximation. Each trajectory is also labeled with 
Y = {0, 1} where Y = 1 indicates that the trajectory came from the SSA simulator and 
Y = 0 indicates that the trajectory came from the approximate simulator. Errors are 
reported using 30 replications of training and evaluation. We also plot the predictions of 
the trained approximate ratio classifier on samples drawn from the approximate simula-
tor for each experiment. The output of this is interpreted as the probability, under the 
trained ratio estimator, that the approximate trajectory X̃ at θ came from the SSA model, 
P(Y = 1|X̃ , θ) . Values near 0 or 1 inform the decision to resample using the SSA model, 
as we know that the true class label for X̃ is Y = 0 . Probabilities near 0.5 indicate that 
the ratio estimator cannot distinguish between SSA and approximate samples and the 
approximate does not need to be resampled. Complete details for each experiment can 
be found in the Supplementary Materials.

All experiments were conducted using the StochSS and gillespy2 [25] packages for 
simulating biochemical reaction systems. Specifically, for our approximate simula-
tors, ODE trajectories were generated using the adaptive LSODA integrator [26] and 
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τ-Leaping trajectories were generated using the adaptive τ-Leaping algorithm of [27] 
under the default package parameters of gillespy2.

Normalized posterior mean absolute error E%
We evaluate the performance of our experiments using the normalized posterior mean 
absolute error E% [16], which is defined as,

In this setup, θ̂ is the posterior mean and θ̄ is the prior mean. This quantity can be 
approximated for a uniform prior U(a, b) over a set of N test points as

where θ̂i is obtained using the regression based summary statistic, which is trained to 
predict the posterior mean.
E% aims to quantify the information gained in the posterior distribution. A value of 

E% = 1 indicates no information gained while values of E% < 1 indicate relative accuracy 
improvements. The true value of this quantity depends on the informativeness of obser-
vations, which is unknown in general for most problems. For this reason, the quality of 
different summary statistics are compared relative to each other under the assumption 
that the SSA trained summary statistic is maximally informative and the ground truth.

Pure‑birth process

The Pure-Birth Process, or homogenous Poisson Process, is a trivial example where the 
likelihood is tractable and the τ-Leaping approximation produces exact trajectories for 
all parameter values. In a biochemical system, the pure-birth process represents the 
spontaneous generation of a molecular species at a fixed rate, which, while simplis-
tic by itself, is often a fundamental component in more complex models. The model is 
described by a single parameterized reaction where S denotes an arbitrary biochemical 
species:

with initial condition of S0 = 0 . We assign a wide uniform prior k ∼ U(0, 10000) and 
observe the process at times t = {0 : 100 : 1} . Though trivial, this example explores the 
ability to learn the correct approximate ratio-estimator, which should always predict 
around 0.5 due to the exactness of the approximation.

Figure  1a shows the output of the approximate ratio estimator trained on only 
M = 300 samples from the parameter space and evaluated on 5000 samples from the 
approximate model. The concentration around 0.5 indicates that the ratio estimator is 
able to detect that the two models evaluate the same likelihood. Indeed, in Fig. 1b, we 
see that the posterior distributions using summary statistics trained via only τ-Leaping 
samples or only SSA samples are effectively the same. In this situation, we use a very 

E% =
Eθ∈p(θ)|θ − θ̂ |

Eθ∈p(θ)|θ − θ̄ |
.

E% ≈
4

b− a

1

N

N∑

i=1

|θi − θ̂i|,

φ
k
−→ S,
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small amount of samples from the SSA model to build the ratio estimator but otherwise 
rely entirely on the τ-Leaping approximation for no loss in accuracy.

Lotka‑volterra stochastic oscillator

A more challenging and commonly used test problem is the Lotka-Volterra stochastic 
oscillator. This model describes predator-prey population dynamics and can be mod-
elled as a discrete stochastic system. With S1 representing the count of predators and S2 
representing the count of prey, the system is specified via the following set of reactions:

with initial populations of S1(0) = 50, S2(0) = 100 . We assign priors,

and observation frequency following [28] and select a deterministic ODE as our approxi-
mating simulator. A key characteristic of this model is that, over the specified prior, only 
a small region of parameter space leads to consistent oscillations in both the ODE and 
the SSA models. In most other regions, population explosions are the typical behavior. 
We train the ratio estimator using M = 3000 samples and train the summary statistic 
with N = 105 samples. E% is evaluated using 300000 hold out SSA test samples.

As shown in Fig. 2a, the trained ratio estimator assigns significant mass around 0.5 but 
with heavy tails, suggesting that some proportion of samples should be resampled using 
SSA for better accuracy. Figure 2b shows the sensitivity of E% as we increase the pro-
portion of SSA samples according to the ratio estimator. In this case, the error rapidly 
reduces to the level of the full SSA summary statistic by introducing only 1.5% of SSA 
samples. Assigning an insufficient proportion of SSA samples leads to significantly larger 
errors.

Figure 2c shows the posterior distribution of the trained summary statistics for a 
set of observations in the oscillatory regime. All three posteriors are able to capture 

S1 + S2
k1
−→ 2S1 S1

k2
−→ φ

S2
k3
−→ 2S2 S1 + S2

k2
−→ S2

log(k1) ∼ U(−6, 2) log(k2) ∼ U(−6, 2)

log(k3) ∼ U(−6, 2) log(k4) ∼ U(−6, 2),

Fig. 1 Calibrated Ratio Estimates for the Pure Birth Process a The trained ratio estimator captures that the 
τ-Leaping approximation is exact, assigning a probability of  0.5 to all samples. b The posterior from both 
summary statistics captures the ground truth
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the true parameters, indicating that for certain parts of parameter space, the ODE 
and the approximate ratio summary statistic can perform just as well as the SSA 
trained summary statistic. However, the lower E% indicates that globally the mixed 
summary statistics may perform better. Of note in this example is that, despite the 
ODE being deterministic, we still obtain good results, demonstrating the robustness 
of the method to having a perfectly precise ratio estimator.

Comparison to random

To evaluate the benefit provided by the ratio estimator, we compare summary sta-
tistics trained via our ratio estimator method to summary statistics trained by ran-
domly re-sampling a fixed proportion of approximate samples to SSA samples on the 
Lotka-Volterra model. Under this setting, each summary statistic is trained using the 
same proportion of expensive stochastic simulations however how the trajectories 
are selected differ.

Table 1 shows the E% as we increase the proportion of SSA trajectories under these 
two methods. We see that, while the randomly trained summary statistic is capa-
ble of producing comparable results to our ratio estimator approximate summary 
statistic, it is far less robust, especially when the proportion is small. This can be 
explained because as we include more random samples, the chance of randomly 
including the same samples as the ratio estimator becomes much higher. For the 
Lotka-Volterra model, as it does not require many SSA samples to obtain good per-
formance, as seen from our experiments, this happens relatively quickly.

Fig. 2 Trained Ratio Estimates for the Lotka-Volterra Stochastic Oscillator a The trained P(Y = 1|X̃ , θ) for the 
Lotka-Volterra easily classifies many cases, indicated by the peak at the left tail, but remains uncertain for the 
majority. b As the proportion of included SSA calls increase using the ratio estimator, the error quickly falls. 
Note the nonlinear x-axis, suggesting a very stiff decline in error. c Posterior marginals for the four parameters 
shows that all three summary statistics are able to perform roughly equivalently in the oscillating region
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Genetic toggle‑switch

The Genetic Toggle-Switch is a model for a biological system which exhibits stochastic 
switching behavior at low-population counts [29]. With U and V representing two bio-
chemical species which mutually repress the other, the system is described by the follow-
ing set of reactions:

For our study, we set the initial conditions to U = 10,V = 10 , assign the following priors 
to the parameters,

and use an adaptive τ-Leaping solver [27] as our approximate simulator, which in this 
model produces trajectories with consistently higher population counts than the SSA 
model. Since these differences correspond to areas that have small population counts, 
the difference in ensemble results are significant. We train the ratio estimator using 
M = 5000 and train the summary statistic using a budget of N = 105 . E% is evaluated 
using 300000 hold out SSA test samples.

Figure 3a shows the predicted ratios for all 105 low-fidelity samples after training, indi-
cating that the classifier can easily distinguish the correct class of most of the τ-Leaping 
samples. However, as there is still mass near 0.5, using a very small ρ = 0.01 , we are able 

φ

α1
1+Vβ

−→ U φ

α2
1+V γ

−→ V

U
µ
−→ φ V

µ
−→ φ.

α1 ∼ U(0, 3) α2 ∼ U(0, 3)

β ∼ U(0, 3) γ ∼ U(0, 3) µ ∼ U(0, 3),

Table 1 Approximate Summary Statistic Median E% for Lotka-Volterra for 100 iterations with 90% 
intervals

% of SSA samples Random E% Ratio estimator E%

0.25 1.22 [0.44, 2.47] 0.53 [0.42, 1.12]

0.75 0.60 [0.43, 1.89] 0.46 [0.42, 0.85]

1.5 0.46 [0.42, 1.19] 0.45 [0.42, 0.71]

4.0 0.46 [0.42, 0.87] 0.46 [0.42, 0.70]

Fig. 3 Trained Ratio Estimates for the Genetic Toggle-Switch a The trained P(Y = 1|X̃ , θ) can easily classify 
most of the cases. b The E% error only slightly increases by using our mixed training set but still reduces SSA 
calls significantly
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to reduce the number of SSA calls by 50% while only losing 2% in E% . Under this prior, 
though most of the parameter space leads to small population counts, significant por-
tions lead to growth in the populations of U and V, where the τ-Leaping approximation 
is more accurate. The trained ratio estimator is able to capture this difference and pre-
vent expensive resampling.

Vilar oscillator

To investigate our method on a larger problem with a questionable approximation, we 
look at a stable stochastic genetic oscillator [3] modelling a circadian clock. The sys-
tem is defined with 9 species and 18 reactions controlled by 15 rate constants, and is 
designed to produce robust oscillations in the presence of intrinsic noise. See the Appen-
dix for further details for the reactions of this model. The Vilar Oscillator is a challenging 
problem for inference due to oscillations of a certain amplitude being localized to small 
region of parameter space coupled with the large prior space. We use an ODE model 
with log-normal noise as our approximation and only observe species C, A,   and R of 
the system. Under the observational settings for this model, the parameters are generally 
poorly identified [16]. The ratio estimator is trained using M = 10000 and the summary 
statistic is trained using N = 200000 . E% is evaluated using 300000 hold out SSA test 
samples.

Figure 4a shows that the trained approximate ratio estimator is able to easily classify 
most of the ODE solutions with added noise, suggesting that the ODE model is a fairly 
poor approximation. While this model is robust to noise and the mean is captured well 
by the ODE, at the same time, the log-normal noise does not properly capture the vari-
ance and the ratio estimator is able to distinguish the two. This is potentially also useful 
to diagnose whether an approximation is appropriate to study the model. Nevertheless, 
due to the addition of noise, the ratio estimator remains uncertain about some areas and, 
using a ρ = 0.1 corresponding to the ratio estimator, we are still able to reduce the num-
ber of SSA calls by  45% and obtain a similar E% to that of the full SSA dataset as seen in 
Fig. 4b. This shows that, even when the approximation is poor, computational savings 
can still be accomplished while maintaining accuracy by intelligently selecting resamples 
according to the ratio estimator.

Fig. 4 Trained Ratio Estimates for the Vilar Oscillator a The trained P(Y = 1|X̃ , θ) can easily classify most of 
the cases. b The E% error only slightly increases by using our mixed training set but still reduces SSA calls 
significantly
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Discussion
Tables  2 and 3 summarize the primary results for all of the experiments. The results 
report the average E% over 30 replications. Notably, in each case, using our method we 
are able to train a summary statistic using significantly fewer expensive SSA calls with 
only a small loss in accuracy. Overall the trained ratio estimator is able to detect when 
the approximate simulator is good and thus when to lean heavily into the approximate 
simulator for training.

Practical implementations

While a precise ratio estimator will inevitably lead to an accurate algorithm, we find that 
in many cases, the ratio estimator for training a summary statistic does not need to be 
incredibly accurate. In fact, a very expressive ratio estimator may overfit to noise and 
lead to perfect classification while less expressive ratio estimators can produce a similar 
level of accuracy in the summary statistic. This is most apparent when we use an ODE as 
an approximation, where the ratio estimator can quickly learn to discriminate based on 
the smoothness of solutions. Nevertheless, this can still be useful for summary statistics, 
as approximate models can often still represent the high-level features. In our examples, 
we use a variety of Neural Network architectures to learn the ratio estimator, but we 
find that often, a simple DNN suffices to obtain similar results. For the Lotka-Volterra 
ODE model, we use a DNN to prevent overfitting to noise, as mentioned above. We use 
a CNN architecture similar to [16] for the other models where the approximation is sto-
chastic, and suggest a similar approach based on the approximate simulator used.

Selecting the number of samples M to train the ratio-estimator is important both 
for the efficiency and accuracy of our method. In general, M depends on how sensi-
tive the output of the model is through parameter space. If the model exhibits heavily 
varies throughout parameter space, M would naturally need to be larger to capture 
this. In Fig. 5, we show the performance of the approximation trained summary sta-
tistics as we change the number of initial samples M for the Lotka-Volterra model. 

Table 2 Ratio-estimated approximate summary statistic SSA calls

Total simulations Approximate total SSA 
calls

% Approximate 
reduction in SSA 
calls

Pure-Birth 30000 0 − 100%

Lotka-Volterra 100000 10000 − 90%

Genetic Toggle-Switch 100000 50000 − 50%

Vilar Oscillator 200000 110000 − 45%

Table 3 Approximate summary statistic average E%

Approximate only SSA Mixed % Change in E%

Lotka-Volterra 1.45 0.46 0.48 − 4.3%

Genetic Toggle-Switch 0.71 0.47 0.49 − 2.1%

Vilar Oscillator 0.74 0.68 0.69 − 1.5%
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While this is highly model dependent, we can see that in this case, the number of 
samples does not need to be high to obtain good accuracy for the summary statis-
tic. As the approximation is relatively accurate and behavior does not rapidly change 
through parameter space, we only need to add full simulations from a few locations to 
obtain an accurate ratio estimator. After which, larger M only marginally changes the 
accuracy or robustness of the summary statistic.

In selecting ρ , we are trying to maximize accuracy while minimizing the number 
of SSA samples. An effective heuristic is to simulate a large batch of cheap, approx-
imate trajectories, pass it through the ratio estimator, and choose ρ to capture the 
first major mode in the distribution. For the Lotka-Volterra model, Fig. 2a would sug-
gest to set ρ around 0.01. Empirically, we find that setting the threshold quite low 
and effectively only correcting for the worst cases can still produce effective summary 
statistics. Optimal selection of ρ is something to investigate in the future, as it repre-
sents a key computational trade-off. One possibility is to use Bayesian Optimization 
to build an estimate of Ê% = f (ρ) [30]. As each individual experiment may be expen-
sive for simulation, this can lead to a more efficient hyper-parameter search technique 
than grid-search. Furthermore, as ρ is a cut-off, computation can be accelerated for 
hyper-parameter tuning by saving simulations and re-using them for training sum-
mary statistics, only simulating more if necessary.

Learning an approximate ratio-estimator via binary classification, while gener-
ally an easier task than learning summary statistics, can be expensive if the param-
eter space is very sensitive or very high dimensional. In these cases, to distinguish 
between models we may need to set M to a large number to get the precision needed. 
In our examples, we are able to use a much smaller number of samples than needed 
to train the summary statistic. As model complexity increases, the number of training 
samples needed to learn a good ratio estimator will likely increase. One possibility to 
save some computational cost is to pre-train the first layers of the ratio-estimator to 
be an encoder, and then fine-tune the encoder layers to learn the summary statistic. 

Fig. 5 E% error vs Number of Ratio Estimator Training Samples for Lotka-Volterra Larger N increases the 
accuracy and robustness but with diminishing returns. Selecting M is highly model dependent



Page 13 of 17Jiang et al. BMC Bioinformatics          (2021) 22:339  

This would act as a semi-supervised algorithm [31] that may be useful for learning a 
good summary statistic.

Conclusions
We have presented a method to utilize approximate simulators together with exact sim-
ulators of discrete stochastic reaction models to train summary statistics for ABC. Using 
advances in Machine Learning and approximate ratio estimators, we demonstrate that 
when properly calibrated, we can significantly reduce the number of expensive SSA calls 
required for learning a summary statistic. Using four examples of reaction systems, we 
showed that significant computational savings can be achieved while preserving accu-
racy of approximate summary statistics.

In this work we have focused on utilizing only a single approximation at a time. In 
practice, there are numerous approximations available for the same model of varying 
accuracy. Extending this method to choose between different levels of approximations 
could further reduce the number of full SSA calls needed, even in cases where one of the 
approximations is sufficiently poor in all regions.

Methods
Approximate summary statistics

Given access to an approximate simulator q(X̃ |θ) and the full SSA simulator p(X |θ) for 
a given discrete stochastic biochemical system, our goal is to train a summary statis-
tic according to (2) that utilizes as many approximate samples as possible, while miti-
gating the bias in doing so. We assign a computational budget of N total simulations 
and assume that the approximate simulator is much faster to simulate from than SSA. 
For discrete stochastic models, this assumption is accurate much more often than not. 
As the approximation error is often non-trivial, training a summary statistic using only 
approximate trajectories will likely lead to bias depending on the problem.

Constructing an approximate dataset for training via likelihood ratios

Our approach to solving this problem is to treat each sampling step as a decision on 
whether the approximate simulation is sufficient. Specifically, suppose that for each sam-
ple, we draw θ ∼ p(θ) and then simulate from the approximate simulator X̃ ∼ q(X̃ |θ) . 
The sample X̃ will induce bias in training S(X) if at θ , q(X̃ |θ) is significantly different 
from the full SSA simulator p(X̃ |θ) . Intuitively, to avoid this bias, we will need to resam-
ple, X ∼ p(X |θ) and discard X̃ . Computational savings will be attained if, in a substantial 
portion of parameter space, the approximate simulator yields a good approximation to 
that of SSA.

We quantify the difference between the two models using the likelihood ratio between 
the SSA model and the approximate model evaluated at the approximate sampled trajec-
tory X̃ and θ:

This can be seen as conducting a hypothesis test at each step to determine whether there 
is sufficient evidence to distinguish which simulator the trajectory came from. If at a 

(5)r(X̃ , θ) �
p(X̃ |θ)

q(X̃ |θ)
.
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given θ and X̃ , we cannot distinguish whether it came from the approximation or the 
full model, using the approximate simulation should induce little bias. If the two models 
produce the exact same likelihood, we would expect a value of 1, expressing indifference 
between the two. Most importantly, evaluating this ratio often requires simulating only 
from the approximate simulator, requiring a call to SSA only if we are not confident in 
the approximate trajectory.

Unfortunately, for discrete stochastic biochemical models, this ratio is unavailable due 
to the intractability of the likelihood. However, using recent advances in machine learn-
ing, we can construct powerful approximations to the likelihood ratio.
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Approximate ratio estimation

Although the likelihood ratio in (5) cannot be directly computed, recent work has 
shown that it can be well approximated by using a binary classifier to distinguish 
between samples from the two different models [22, 23, 32]. Specifically, suppose 
we assign labels Y = 1 to trajectories X ∼ p(X |θ) and Y = 0 to trajectories from 
X̃ ∼ q(X |θ) . If we have access to a probability p(Y = 1|X , θ) , the likelihood ratio is 
directly related via:

As we do not have access to p(Y = 1|X , θ) , we must approximate it. Recent advances 
in deep learning have demonstrated how to build powerful approximations to 
p(Y = 1|X , θ) despite the dimensionality of the trajectories X. Letting gψ(X , θ) be an 
arbitrarily complex function with inputs X and θ parameterized by ψ , such as a deep 
neural network, we can approximate the probability using:

with dataset

Despite the need to train a ratio estimator, the binary classification task is easier than 
the regression task, allowing us to use fewer training samples than for training the sum-
mary statistic. The parameters of gψ are estimated via maximum likelihood. With this 
initial step, we describe the full summary statistic training procedure in Algorithm 3. As 
p(Y = 1|X , θ) is directly proportional to r̂(X , θ) , we use the probability as a more inter-
pretable surrogate within the algorithm.

Implementations of this algorithm and replications of the experiments can be found 
at https:// github. com/ rmjia ng7/ appro ximate_ summa ry_ stati stics.
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(6)p(Y = 1|X , θ) =
p(X |θ)

p(X |θ)+ q(X |θ)

(7)r(X , θ) �
p(X |θ)

q(X |θ)
=

p(Y = 1|X , θ)

1− p(Y = 1|X , θ)
.

(8)p̂(Y = 1|X , θ) = φ(X , θ) =
exp(gψ(X , θ))

1+ exp(gψ(X , θ)

(9)Y ∼ Bernoulli(φ(X , θ))

D = {(θ1,X1, 1), (θ1, X̃1, 0), . . . , (θM ,XM , 1), (θM , X̃M , 0)}.
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