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Abstract 

Background: Antifreeze proteins (AFPs) are a group of proteins that inhibit body 
fluids from growing to ice crystals and thus improve biological antifreeze ability. It 
is vital to the survival of living organisms in extremely cold environments. However, 
little research is performed on sequences feature extraction and selection for anti-
freeze proteins classification in the structure and function prediction, which is of great 
significance.

Results: In this paper, to predict the antifreeze proteins, a feature representation of 
weighted generalized dipeptide composition (W-GDipC) and an ensemble feature 
selection based on two-stage and multi-regression method (LRMR-Ri) are proposed. 
Specifically, four feature selection algorithms: Lasso regression, Ridge regression, Maxi-
mal information coefficient and Relief are used to select the feature sets, respectively, 
which is the first stage of LRMR-Ri method. If there exists a common feature subset 
among the above four sets, it is the optimal subset; otherwise we use Ridge regres-
sion to select the optimal subset from the public set pooled by the four sets, which 
is the second stage of LRMR-Ri. The LRMR-Ri method combined with W-GDipC was 
performed both on the antifreeze proteins dataset (binary classification), and on the 
membrane protein dataset (multiple classification). Experimental results show that 
this method has good performance in support vector machine (SVM), decision tree 
(DT) and stochastic gradient descent (SGD). The values of ACC, RE and MCC of LRMR-Ri 
and W-GDipC with antifreeze proteins dataset and SVM classifier have reached as high 
as 95.56%, 97.06% and 0.9105, respectively, much higher than those of each single 
method: Lasso, Ridge, Mic and Relief, nearly 13% higher than single Lasso for ACC.

Conclusion: The experimental results show that the proposed LRMR-Ri and W-GDipC 
method can significantly improve the accuracy of antifreeze proteins prediction 
compared with other similar single feature methods. In addition, our method has also 
achieved good results in the classification and prediction of membrane proteins, which 
verifies its widely reliability to a certain extent.
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Background
Antifreeze proteins (AFPs) are proteins that inhibit ice recrystallization by reducing the 
freezing point of intracellular fluids. It enables fish, insects, plants, algae, bacteria and 
other organisms to survive in extremely cold environments [1]. It is essential for the sur-
vival of organisms in extremely cold environments [2].

In the 1950s, Scholander et  al. [3] first observed that certain fish could survive at 
temperatures below their body fluid freezing point. Until 1997, some researchers first 
discovered that this antifreeze substance, which can make the living body tolerant of 
coldness, is a special protein and was named as antifreeze proteins [4]. In 2002, Davies 
et al. successively found that AFP can adsorb on the surface of ice crystals. The interac-
tion between AFP and ice crystals has a significant effect on the overall growth of ice [5]. 
The identification of new AFPs plays an important role in understanding the interac-
tion of proteins with ice and the creation of new ice-binding domains in other proteins. 
Because of the wide variety of antifreeze proteins, identifying new antifreeze proteins is 
a challenge for biologists. Identifying antifreeze proteins in organisms by traditional bio-
technology is time-consuming and costly. With the rapid growth of sequences genomic 
data, dealing with large amounts of biological sequences data requires fast and accurate 
automated methods for identification and annotation. Therefore, many research groups 
are dedicated to the study of biological sequences extraction algorithms, feature selec-
tion, and classification algorithms using machine learning and deep learning methods, 
such as amino acid composition (AAC), pseudo amino acid composition (PseAAC), pro-
tein position-specific scoring matrix (PSSM), dipeptide composition (DipC), tripeptide 
composition (TPC), 20-D condensed feature vectors (CFV), general dipeptide compo-
sition (GDipC), Lasso feature selection, neural network (NN), support vector machine 
(SVM), k-nearest neighbor (KNN), random forest (RF) and decision tree (DT), etc., and 
successfully applied them to protein structure and functional spectrum classification 
and prediction [6–23]. Recently Stochastic Gradient Descent (SGD) has been success-
fully applied to the field of sparse and large-scale machine learning [24, 25]. Strictly, SGD 
is only an optimization technique, not a specific machine learning model. However, it is 
a both simple and efficient method to fit linear classifiers and regressors under convex 
loss functions such as squared loss.

Until 2011, Daswamy et al. applied machine learning technology to antifreeze proteins 
prediction for the first time. In their proposed method, a variety of physicochemical 
properties were used to encode the features of the protein sequences, and a random for-
est algorithm was used as the classifier [26]. This innovation has attracted wide atten-
tion of researchers to related fields, and many researchers have joined the antifreeze 
proteins sequences research. In 2012, Zhao et al. proposed a prediction method called 
AFP_PSSM, which used support vector machine (SVM) and position-specific scoring 
matrix (PSSM) to predict antifreeze protein. PSSM was applied to predict antifreeze 
proteins for the first time in this study [27]. In 2014, Mondal et al. proposed a method 
called AFP-PseAAC in which Chou’s pseudo-amino acid composition (PseAAC) was 
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successfully applied to the prediction of antifreeze proteins with an accuracy of 84.75% 
[28]. In 2015, based on previous research, Yang et  al. proposed an AFP recognition 
system called AFP-Ensemble, in which random forest classifiers were trained by com-
bining different training subsets. Then it was aggregated into a consensus classifier by 
majority vote, and finally, the experiment achieved good results [29]. In the same year, 
He et al. proposed a new AFP predictor based on antifreeze proteins sequences, called 
TargetFreeze, whose main idea is the weighted combination of multiple protein extrac-
tion methods, including amino acid composition (AAC), pseudo amino acid composi-
tion (PseAAC) and position-specific scoring matrix (PSSM), and used support vector 
machine as the classifier [30]. In 2016, Xiao et al. proposed a method called iAFP-Ense 
based on AFP-PseAAC, whose main idea is to combine the gray model and the PSSM 
expression with PseAAC, and then to integrate eleven different random forest classifiers 
through the voting system. Xiao’s final experimental results show that the performance 
of the predictor is better than AFP-PseAAC [31]. In 2017, Pratiwi et  al. built a Web 
server for classifying antifreeze proteins from non-antifreeze proteins, and the predic-
tor has good performance with an accuracy of 88.82%. In addition, the server annotated 
AFPS using statistical and principal component analysis propensity scores and impor-
tant physical and chemical properties [32]. Recently, Khan et  al. proposed a method 
called RAFP-Pred, which first used information gain (IG) to extract feature of antifreeze 
proteins sequences and classified them with random forests. Experimental results show 
that the method has better robustness [33]. To further improve the robustness of the 
predictive model, Nath et  al. used k-means clustering algorithm to create diverse and 
balanced training and test set, overcoming the shortcomings of random segmentation, 
making the model more generalized and robustness [34].

At present, researchers usually combine multiple extraction methods of protein 
sequences to make the obtained protein sequences more comprehensive, but this will 
cause a lot of information redundancy. Feature selection methods can effectively solve 
information redundancy. Therefore, in this paper, we propose an improved feature 
extraction method for antifreeze proteins, called weighted generalized dipeptide compo-
sition (W-GDipC), and an ensemble feature selection method based on two-stage mul-
tiple regressions, called LRMR-Ri. In the study, we first discuss the weighted coefficients 
in the fusion expression and then perform the fusion feature expression on the support 
vector machine (SVM), decision tree (DT) and stochastic gradient descent (SGD) classi-
fication algorithms. The experiment was carried out and the effectiveness of the method 
was verified by a five-fold cross-validation based on five evaluation indicators, accuracy, 
recall, precision, F-Measure and Matheus correlation coefficient. Finally, four commonly 
used feature selection algorithms, Lasso, Ridge, Maximal information coefficient (Mic), 
and Relief are introduced to process high-dimensional protein data. To avoid the local 
optimal problem coming from each single algorithm of above four, and to remove the 
redundancy to a greater extent, the ensemble feature selection (LRMR-Ri) based on 
two-stage multiple regressions is proposed, which is carried out both on the antifreeze 
proteins dataset (binary-classification problem) and on the membrane protein dataset 
(multi-classification problem), respectively. From the experimental results and related 
analysis, it can be seen that the proposed W-GDipC and LRMR-Ri methods can obtain 
excellent prediction results.
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Results and discussion
The selection result of fusion coefficient

In order to reflect the effectiveness of W-GDipC and make the fusing effect optimal, 
we conducted several groups of comparative experiments with different weights. The 
threshold of fusion coefficient is set from 0 to 1, which is increased by 10% proportion-
ately in each experiment. In order to show the influence of different weights of DipC and 
GDipC on the accuracy in the fusion process more clearly and intuitively, we plotted the 
change of the accuracy under different fusion coefficients based on three different classi-
fiers SVM, DT, and SGD, as shown in Fig. 1.

It can be seen from Fig.  1 that with the increase of the fusion coefficient, the accu-
racy of three classifiers are all greatly improved, which shows that the features extracted 
by the DipC method are more recognizable. The higher the proportion of DipC is, the 
higher the recognition rate. When α is 0.8, the accuracy of DT is the highest among the 
nine groups of weight distribution experiments based on three different classification 
algorithms. At this time, the accuracy is 91.33% and the fusion expression of W-GDipC 
is (0.8DipC + 0.2GDipC). The accuracy was 2.92% and 0.23% higher than the highest val-
ues obtained by support vector machine (SVM) and stochastic gradient descent (SGD) 
at (0.8DipC + 0.2GDipC) and (0.9DipC + 0.1GDipC), respectively. Therefore, when the 
fusion coefficient is 0.8, the weight proportion of feature vectors extracted by DipC 
about 80%. At this time, the overall prediction effect is the best.

Comparison of sequences feature extraction algorithms

In order to further evaluate the effectiveness of the proposed W-GDipC feature extrac-
tion, two single feature expression methods, GDipC and DipC, are used to compare with 
W-GDipC. The SVM, DT and SGD classifiers with different features were constructed 
by five-fold cross-validation for comparison. The average accuracy and Matthew correla-
tion coefficient after the five-fold cross-validation were obtained.

From the experimental results, no matter which classifier is used, the ACC of 
W-GDipC is better than those of GDipC and DipC. Similarly, MCC of W-GDipC is 
better than those of GDipC and DipC. Specifically, in the prediction results with SVM, 

Fig. 1 Accuracy of W-GDipC with different fusion coefficients under three classification algorithms for 
antifreeze proteins dataset
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the average accuracy of W-GDipC, GDipC and DipC are 88.41%, 79.51% and 84.78%, 
respectively, and the average MCCs are 0.7704, 0.6232 and 0.7161, respectively. For clas-
sifier DT, the average accuracy of W-GDipC, GDipC and DipC are 91.33%, 83.37% and 
90.75% respectively, and the average MCCs are 0.8254, 0.6854 and 0.8188 respectively. 
With classification algorithm SGD, the average accuracy of W-GDipC, GDipC and DipC 
are 91.10%, 90.76% and 90.40% respectively, and the average MCCs are 0.8239, 0.8232 
and 0.8093, respectively. These data are sufficient to demonstrate the effectiveness of 
W-GDipC in the feature representation of antifreeze proteins sequences. In order to 
more intuitively see the prediction effects of three features representation under differ-
ent classification algorithms, we drew the following Fig. 2.

It can be seen from Fig. 2 that the cross-validation results of W-GDipC in the three 
classification algorithms are better than the two single feature representation methods. 
This is because the length of the antifreeze proteins sequences is mostly in the range of 
50–100, while GDipC is more suitable for short peptide and specific functionally promi-
nent biological sequences, which are mainly used to enrich partial sequences features. 
And the features extracted by DipC are more likely to lead to local data sparsity. The 
W-GDipC proposed in this paper can optimize the feature representation of the two 
feature extraction methods on the antifreeze proteins sequences to a certain extent, 
because it contains more features than the former two, so that the evaluation index has a 
robust improvement compared with the first two feature extraction algorithms.

Comparison of sequences feature selection methods

In order to verify the effectiveness of the proposed method, based on the feature repre-
sentation of W-GDipC, the above antifreeze proteins dataset was still used as the bench-
mark dataset 1, and the classification models constructed by LRMR-Ri and the original 
feature selection algorithms based on DT, SVM and SGD classification algorithms is ver-
ified by five-fold cross-validation respectively. The values of evaluation indexes are given 
in Table 1.

According to the Table  1, for the antifreeze proteins dataset, the conclusions of the 
three models DT, SVM and SGD are generally consistent, that is, the values of RE, ACC 
and MCC of LRMR-Ri are all much larger than those corresponding values of single fil-
ters Lasso, Ridge, Mic and Relief. Among the four single filters (feature selection meth-
ods), it is easily seen that the performance of Lasso is the worst among the four, Mic 

Fig. 2 Evaluation of three feature extraction methods for antifreeze proteins dataset
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is the third, the results of Ridge and Relief are close and both good while on the whole 
Ridge is better than Relief, which is the reason why Ridge is chosen in the second stage of 
LRMR-Ri method. Specifically, in the prediction model of DT, the differences of LRMR-
Ri and Lasso are 18.23%, 16.28% and 0.3299 for RE, ACC and MCC, respectively, these 
differences are 19.41%, 12.77% and 0.2531 for SVM model and 15.29%, 8.66% and 0.1657 
for SGD model, showing a generally outstanding performance of the proposed LRMR-
Ri, for example, with classifier SVM, whose ACC value is nearly 13% higher than that of 
Lasso. The prediction effect obtained by the Lasso method is the worst compared with 
the other three single filters. This may be due to the excessive compression of non-zero 
coefficients in the Lasso analysis, which increases the deviation of the estimation results, 
resulting in poor prediction performance. And Lasso uses L1 regularization to make it 
easier to make part of the weights take 0, making the weights sparse; and Ridge uses L2 
regularization can only make the weights close to 0, rarely equal to 0. This may also be 
the reason why the prediction effect of Ridge is higher than that of Lasso.

Figure 3 provides a more intuitive view of the performance comparisons among the 
models. As can be seen from Fig. 3, the proposed LRMR-Ri method is superior to the 
other four methods, Lasso, Ridge, Mic and Relief for the prediction of antifreeze pro-
teins. Therefore, it can be reasonably concluded that redundant features and local 
optimal or sub-optimal feature subsets are screened out to a great extent and a more 
effective feature subset is extracted by LRMR-Ri method.

Table 1 Evaluation based on four singer filters and LRMR-Ri for antifreeze proteins dataset with 
three models

Model Evaluating 
indicator

Lasso Ridge Mic Relief LRMR-Ri

DT RE (%) 77.65 90.59 88.82 92.94 95.88

ACC (%) 76.93 92.39 89.81 91.34 93.21

MCC 0.5328 0.8545 0.7932 0.8283 0.8627

SVM RE (%) 77.65 95.88 87.06 94.71 97.06

ACC (%) 82.79 93.56 90.75 93.21 95.56

MCC 0.6574 0.9001 0.8138 0.8639 0.9105

SGD RE (%) 76.47 88.82 81.87 87.13 91.76

ACC (%) 81.87 85.38 83.04 87.13 90.53

MCC 0.6675 0.7205 0.6698 0.7450 0.8332

Fig. 3 Evaluation of antifreeze proteins prediction by different feature selection methods based on three 
classification algorithms
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Prediction of membrane protein types by LRMR-Ri method

The prediction of these antifreeze proteins mentioned above is a binary classification 
problem, but membrane protein prediction belongs to the multi-classification problem. 
In order to verify the conclusion that the proposed method (and the fusion coefficient α 
of W-GdipC is still 0.8) is also effective to the multi- classification prediction, we carried 
out the related comparison experiment. The average PE, RE, F-Measure of eight catego-
ries and the overall ACC and MCC of membrane proteins are calculated based on differ-
ent feature selection methods and different models, whose values are shown in Table 2.

In Table 2, the ACC of the proposed LRMR-Ri method can reach as high as 80.15% 
based on SGD algorithm, around 9% higher than of Lasso. As far as ACC and MCC val-
ues are concerned, the performance of LRMR-Ri on membrane protein dataset is still 
better than that of the other four feature extraction methods no matter with which 
model. For the indexes of PE, RE and F-Measure, the performance of LRMR-Ri is gener-
ally average.

Figure 4 shows the evaluation of eight categories of membrane proteins by three differ-
ent classification algorithms, DT, SVM and SGD with different indexes. No Three clas-
sification algorithms consistently suggested that, some indexes of categories 3 or 4 are 
0, which intuitively reflects that the values of TP and FP of some categories are both 
zero in the process of prediction, indicating that those categories have not been recog-
nized. This is due to the much too small number of samples in these two categories (only 
30 sequences in category 3 and 56 sequences in category 4), whose training subsets are 
24 and 44, respectively, resulting in poor learning results. On the contrary, the indica-
tor values of category 5 (including 4581 sequences) are greater than 0.8 and higher than 
those of all other categories, showing that the more samples trained for the classification 
are, the better the prediction effect will be.

Figure 5 gives the overall prediction results of membrane protein types with ACC 
and MCC by three classification algorithms DT, SVM and SGD based on five feature 

Table 2 Evaluation based on four singer filters and LRMR-Ri for membrane protein dataset with 
three models

Model Evaluating indicator Lasso Ridge Mic Relief LRMR-Ri

DT PE 0.3296 0.4928 0.3487 0.6778 0.4585

RE 0.3350 0.3760 0.3425 0.4376 0.4258

F-Measure 0.3316 0.4021 0.3443 0.4339 0.4353

ACC (%) 69.86 77.97 71.82 77.59 79.83

MCC 0.5037 0.6101 0.5036 0.6171 0.6563

SVM PE 0.5446 0.5352 0.5228 0.5569 0.5159

RE 0.4853 0.4391 0.4762 0.4574 0.4432

F-Measure 0.5051 0.4616 0.4910 0.4842 0.4549

ACC (%) 65.68 67.41 67.70 68.43 72.57

MCC 0.5133 0.5766 0.5601 0.5951 0.6007

SGD PE 0.3487 0.5777 0.6304 0.4776 0.5593

RE 0.3425 0.4614 0.3911 0.3847 0.4460

F-Measure 0.3443 0.4934 0.4384 0.4076 0.4810

ACC (%) 71.82 78.19 75.88 75.88 80.15

MCC 0.5237 0.6304 0.5648 0.5827 0.6562
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selection methods. Even though there still exist 0 values of the predicted PE, RE or 
F-Measure for certain categories with small sample sizes, the overall accuracy and 
Matthew correlation coefficient of LRMR-Ri are relatively good among all, which ver-
ifies certain effectiveness of the proposed method in the multi-classification of mem-
brane proteins.

Fig. 4 Prediction and evaluation of eight categories of membrane proteins by different feature selection 
methods and models

Fig. 5 Membrane protein prediction with ACC and MCC by three classification algorithms and five feature 
selection methods
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Comparison of antifreeze proteins with other machine learning methods

We compare the method proposed in this paper with the other three classifiers that also 
predict the antifreeze proteins by machine learning methods. The three methods are: 
AFP-Pred [26], AFP-PseAAC [28], TargetFreeze [30]. It can be seen from Table 3 that 
although the prediction performance of W-GDipC combined with multi-regression fea-
ture selection ensemble method using SVM as classifier is not good, but the prediction 
performance of SGD and DT as classifiers is better than other methods. And the pre-
diction performance of DT as the classifier is the best, MCC and ACC are 0.158 and 
7.9% higher than the AFP-Pred method, respectively. The poor prediction performance 
of using SVM as a classifier may be due to the small number of samples in the dataset we 
use. Comparison of antifreeze proteins with other machine learning methods shown in 
Table 3.

Conclusion
In this work, we proposed a new feature representation method and a new feature selec-
tion method for predicting the antifreeze proteins, W- GDipC and LRMR-Ri. As far as 
W-GDipC, it uses a linear weighted fusion of GDipC and DipC. When the fusion coef-
ficient is 0.8, the overall prediction effect is the best. The average accuracy of five-fold 
cross-validation of W-GDipC based on SVM, DT and SGD is 88.41%, 91.33% andis 
88.41%, 91.33% and 91.10%, respectively. The average Matthew correlation coefficients 
are 0.7704, 0.8254 and 0.8239 respectively. The results show that the cross-validation 
results of W-GDipC in three classifiers are superior to two single feature expression 
methods. Then the LRMR-Ri method was used to select the features of high-dimen-
sional antifreeze proteins. LRMR-Ri method constructs classification models based on 
DT, SVM, and SGD classification algorithms on antifreeze proteins dataset, and achieves 
ACC of 93.21%, 95.56% and 90.53% respectively in five-fold cross-validation. For each 
single feature method that makes up of the proposed LRMR-Ri & W-GDipC method 
was used as the comparison method. The experimental results show that the proposed 
LRMR-Ri and W-GDipC method can significantly improve the accuracy of antifreeze 
proteins prediction compared with these single feature methods. Moreover, the method 
achieves ACC of 79.83%, 72.57% and 80.15% respectively on membrane protein dataset 
based on DT, SVM and SGD classification algorithms.

Especially, with antifreeze proteins dataset and SVM classifier, the values of ACC, 
RE and MCC of LRMR-Ri and W-GDipC have reached as high as 95.56%, 97.06% and 
0.9105, respectively, much higher than those of each single method: Lasso, Ridge, Mic 

Table 3 Comparison of our proposed method with other methods for antifreeze proteins dataset

Method MCC ACC (%)

AFP-Pred 0.6674 83.38

AFP-PseAAC 0.800 89.69

TargetFreeze 0.819 90.95

W-GDipC + SVM 0.7704 88.41

W-GDipC + SGD 0.8239 91.10

W-GDipC + DT 0.8254 91.33
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and Relief, nearly 13% higher than single Lasso for ACC. With membrane protein data-
set and SGD classifier, the values of ACC, RE and MCC of LRMR-Ri and W-GDipC 
have achieved 80.15%, 44.6% and 0.6562, respectively, also better than other methods, 
and around 10% higher than each value of Lasso. Therefore, LRMR-Ri is superior to the 
other four feature selection methods not only in the prediction of antifreeze proteins 
but also in the prediction of membrane proteins. The proposed method is superior to 
other machine learning methods in predicting the performance of antifreeze proteins 
data. The related source codes and dataset are available at https:// github. com/ Xia- xin-
nan/ W- GDipc- LRMR- Ri. 

In future research, different strategies can be used for the fusion of feature representa-
tion of protein sequences, such as a new feature extraction method based on pK value, 
which represents the dissociation constant of the amino acid, and amino acid frequency 
[35]. Different optimization algorithms can also be used to optimize the fusion coeffi-
cients [36]. For example, the particle swarm optimization algorithm can be used to opti-
mize the parameters [37]. Because particle swarm optimization (PSO) is easy to fall into 
the local optimal solution, once the dimension increases, its performance will decline in 
some degree, so better-performing parallel particle swarm optimization (PPSO) can also 
be introduced and used to find the optimal parameter and so on [38–41].

At last, we want to give an explanation about the choice of using five-fold cross-vali-
dation. In this test method, we selected four of them for training and one for testing in 
turn and the average of the results of five is used as the estimation of the accuracy of the 
algorithm, which relatively avoids the risk of data leakage. There are three main reasons 
for not using the independent testing datasets in this paper. First, according to literature 
[11], and two references which recently cited it, a review article [42] and another one 
[43], there are quite a few papers which focused on biopeptides, novel therapeutic pep-
tide functions and short antimicrobial peptides only used cross validation for test, which 
enhances the possibility for our W-GDipC method to compare with them. Second, the 
segmentation of training, verification and testingdataset sometimes may possibly lead 
to over-fitting, for there is a great randomness in the segmentation. For example, the 
independent set test is verified on the test set only once, which leads to the expansion 
of the randomness, while we can use the cross validation to reduce this randomness by 
dividing data several times and get a better robustness through the average method. On 
the other hand, how to reasonably divide training set, verification set and test set is a 
challenging problem, which is sometimes subjective, thus leading to the risk of insuffi-
cient model training or over fitting. Third, since we do not use deep learning algorithms 
in this paper and thus the number of parameters is not large, it is not so necessary to 
pay for the cost of time complexity and data segmentation due to independent dataset. 
Of course, for future study, some constructive approaches such as independent testing 
datasets method or others can also be attempted.

https://github.com/Xia-xinnan/W-GDipc-LRMR-Ri
https://github.com/Xia-xinnan/W-GDipc-LRMR-Ri
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Methods
Dataset

In this study, we used the antifreeze proteins (AFP) dataset as the benchmark dataset 1 
in case of binary classification, and the membrane protein dataset [44] as the benchmark 
dataset 2 in case of multiple classification. The dataset of AFPs contains 480 positive 
samples and 374 negative samples. The 480 positive samples were confirmed by bio-
logical methods, and selected from Kandaswamy et al. [26] and Zhao et al. [27], whose 
construction steps are as follows. First, we extract the initial AFP sequences from Pfam 
database [45]. Then we use PSI-Blast with a E-value of 0.001 to search for each sequence 
in the non-redundant database and only retain the proteins of AFPs [46]. Finally, we use 
CD-HIT [47] to remove the sequences whose similarities are large than or equal to 40% 
from the dataset [30]. The 374 negative samples were selected from the cell penetrat-
ing peptide sequences in CPPsite 2.0 [48] and independent of AFP. For the benchmark 
dataset 2, there are eight categories of membrane protein sequences, with a total of 7582 
proteins. The specific dataset information is shown in Tables 4 and 5.

Weighted generalized dipeptide composition (W-GDipC)

Dipeptide composition (DipC) is a feature extraction method that two adjacent amino 
acids are combined and the frequency of occurrence of residues are calculated. There 
are 20× 20 possible amino acid combinations of feature vectors of the extracted protein 
sequences [49, 50]. DipC can be defined by Eq. (1) [51]:

Table 4 Antifreeze proteins dataset (Binary classification data)

Benchmark dataset 1

Sample types Quantity

1 AFP 480

2 Non-AFP 374

Total 854

Table 5 Membrane protein dataset (multi-classification data)

Benchmark dataset 2

Sample types Quantity

1 Type I 1054

2 Type II 390

3 Type III 30

4 Type IV 56

5 Mutipass 4581

6 Lipid-chain-anchored 189

7 GPI-anchored 228

8 Peripheral 1054

Total 7582
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where f (i) represents the number of the ith dipeptide, n indicates the length of the anti-
freeze proteins sequences.

The generalized dipeptide composition (GDipC) is not limited to count the fre-
quency of occurrence of adjacent doublets, but counting the frequency of occurrence 
of residue pairs with isometric intervals [8, 11]. According to [11], the mathemati-
cal expression for the residue pairs with isometric intervals in generalized dipeptide 
composition is:

where qjqj+1+k , 1 ≤ j ≤ n− 1− k represents a pair of residues consisting of residues 
with isometric intervals, k(k≥1) indicates an isometric interval between two pairs of resi-
dues [11]. Then we gave the following notation:

where f ′(i) is the number of the ith kind of dimers in gdipc(k). When k = 0, GDipC(0) is 
DipC.

In [11], researchers arranged all GDipC(k), (0 ≤ k ≤ n− 2) into a vector with 
400× (k − 2) dimension, whose possible maximum dimensional value can reach 
400× (n− 2) . For short sequences of cell-penetrating peptides, the authors in [11] 
reasonably chose k = 1, 2, 3 to form 800-D, 1200-D and 1600-D vectors, respec-
tively. Then they used LDA method to reduce the dimensionality and redundancy. 
Generally, for heterogeneous feature data after pattern mapping, data redundancy is 
inevitable, which will impair the effectiveness and efficiency of data processing [52]. 
Therefore, a generalized dipeptide composition with a weighted fusion of sequences 
feature extraction methods (W-GDipC) is proposed in this paper, which is fused by 
GDipC(k) and DipC with certain weighting coefficient. Since GDipC is more suita-
ble for short sequences, the fusion of GDipC(k) and DipC allows both long and short 
sequences to get a better feature expression through proper weights.

The equation of W-GDipC is as follows:

where 
∑d

k=0 αk = 1, αk > αk+1, d = 1, 2, . . . , n− 2.
In Eq. (4), αk > αk+1 implies that the importance of generalized dipeptide decreases 

with the increase of the interval length of k.
The feature representation of W-GDipC is shown in Fig. 6.
W-GDipC method is proposed based on the characteristics of antifreeze protein 

sequences. Generalized dipeptide composition in [11] is more suitable for short 

(1)DipC(i) =
f (i)

n− 1
, i = 1, 2, . . . , 400

(2)gdipc(k) = {q1q2+k , q2q3+k , . . . , qjqj+1+k , . . . , qn−1−kqn}

(3)GDipC(k) =

(

f
′
(1)

n− k − 1
,

f
′
(2)

n− k − 1
, . . . ,

f
′
(400)

n− k − 1

)

(4)W -GDipC =
d
∑

k=0

αkGDipC(k)
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peptide biological sequences with outstanding specific function than the long AFP 
sequence here. As a way to eliminate the data sparsity of the traditional dipeptide 
composition (DipC), W-GDipC not only can preserve the important features of the 
generalized dipeptide composition algorithm, but also further complete the missing 
features, which greatly eliminates redundant features and enriches the feature expres-
sion of antifreeze protein sequences.

Especially, in this paper, considering the length of AFP sequences comprehensively, 
we use the following simple expression:

where α is the fusion coefficient. In the following section, to simplify the notation, 
GDipC(1) is denoted as GDipC in the case of no confusion.

There are two advantages of W-GDipC:

1. Data redundancy can be effectively reduced and a clear representation can be 
obtained after data fusion of DipC and GDipC;

2. The sparseness of local data resulted from singly using GDipC or DipC is avoided 
to a large extent, so existing feature data is more completely and concisely for long 
sequences.

Finally, how to select fusion coefficients is also an important step. Specifically, in 
Eq.  (4), how to select αk , d = 1, 2, . . . , n− 2 , satisfying 

∑d
k=0 αk = 1, αk > αk+1 , so 

as to get prediction results as good as possible, is a very complex and challenging 
search process. It is a combination optimization problem with high computational 
complexity. Commonly used methods for calculating feature weights include Boolean 
weights, word frequency weights, entropy weights etc. In addition, just like reference 
[20], when they searched the high dimensional fusion balance factors, they used the 
genetic algorithm. In [22], when researchers studied the kernel parameter selection 
method, besides the general grid searching method, they used a clever principle, that 
is, the optimal kernel parameter makes the reconstruction errors have a reasonable 
difference between the internal samples and the edge samples. In this paper, since a 
simplified Eq. (5) is studied, it is relatively easy to find a good α value. In order to find 
a suitable α, we search it from 0 to 1 with a fixed step in the experiments.

(5)W -GDipC = αDipC + (1− α)GDipC(1)

Fig. 6 Composition Analysis of W-GDipC
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Ensemble feature selection (LRMR-Ri) method based on two-stage multiple regressions

Inspired by the superimposed generalized learning framework [53], a hierarchical 
ensemble feature selection method named LRMR-Ri is proposed in this paper, which 
means Lasso, Ridge, Mic and Relief (abbreviated as LRMR) in the first stage and Ridge 
(abbreviated as Ri) in the second stage. Specifically speaking, four local optimal fea-
ture subsets are generated by using Lasso, Ridge, Maximal information coefficient 
(Mic) and Relief firstly. If there are some common features in the four feature subsets, 
the common features could be placed directly into the optimal subset, otherwise, the 
four feature subsets would be put into the public collection and be selected again by 
the Ridge filter as at the second stage, which is called two-stage method.

The specific operation of each single filter in LRMR-Ri is as follows.

Lasso

The characteristic of lasso regression is that it is a generalized linear model with various 
dependent variables, including one-dimensional continuous dependent variable, multi-
dimensional continuous dependent variable, non-negative times dependent variable, 
binary discrete dependent variable and multivariate discrete dependent variable etc. 
[54]. In addition, Lasso can also filter variables and reduce the complexity of the model. 
The variable filtering here refers to not putting all variables into the model for fitting, but 
selectively putting variables into the model to get better performance parameters.

Lasso has its own independent variable selection function, so the problem here is 
changed into how to choose the appropriate constant c  so that n independent variables 
we want can be selected. Since there is a strict positive correlation between the value of 
c and the number of selected independent variables, we use dichotomy to optimize it 
directly, and give an initial c value in 0–1,000,000. The iteration ends with a convergence 
condition that the number of selected independent variables is greater than or equal to 
n and less than or equal to n × 1.05. At the same time, the default value for the maxi-
mum number of iterations is 100. If it does not converge after 100 iterations, the initial 
interval is magnified ten times and the iteration is over again. The process of iterating is 
repeated up to 10 times. If it doesn’t converge after 10 repetitions, it is defaulted to no 
convergence. Due to the number of independent variables selected at the final conver-
gence position is not necessarily exact n (but must be larger), we select the maximum n 
coefficients among all the independent variables selected by Lasso as the final result.

Ridge

Ridge regression [55] is the least square regression with Euclidean norm as the penalty. 
In the least square estimation method, b = (X′X)−1X′Y,where (X′X) cannot be 0. How-
ever, when the correlation between variables is strong, (X′X) is very small, even tends to 
0.

Ridge regression is a biased estimation method for collinear data analysis. By giving up 
the unbiasedness of the least square method, the regression coefficient obtained at the 
cost of losing part of the information and reducing the accuracy is more practical and 
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reliable. In essence, a non-negative factor is artificially added to the main diagonal ele-
ments of the independent variable information matrix, i.e.,

When � = 0, b(�) = b ; if � → ∞ , b(�) → 0 . The track of b(�) changing with λ is called 
ridge trace. When processing highly correlated data, we usually draw the ridge trace and 
select an ideal λ corresponding to certain stability.

Since the Ridge algorithm itself does not make variable selection, we solve out the 
optimal regular coefficient through the grid search considering the principle of regular-
ity, then select n feature vectors whose absolute value of coefficient is the largest over the 
optimal regular coefficient as the result of the selection of the independent variables.

Mic

Maximal Information Coefficient (Mic) [56] is used to measure the linear or nonlinear 
intensity of the two variables X and Y, and is calculated by the mutual information (MI) 
and meshing methods. The calculation method is as follows:

where k(m) is the size of the grid, which is a variable, usually 0.6 power of the amount of 
data, R represents the dataset,MI∗(R, x, y) is defined as follows:

where P(x, y) represents the joint probability density of variables X and Y, P(x) and P(y) 
represent the marginal probability density of variables X and Y.

The calculation of Mic is divided into three steps. First, given i and j, the scatter dia-
gram composed of two variables X and Y is gridded with i columns and j rows, and the 
maximum mutual information value is calculated. Second, normalize the maximum 
mutual information value. Third, select the maximum value of mutual information 
under different scales as Mic value.

The computational logic of Mic is very simple, which is traversing all feature vectors 
and calculating the Mic of y and it to take the maximum n independent variables.

Relief

The relief algorithm [57] is a feature weighted filtering algorithm, which generates 
weight according to the correlation between features and classification. If the value of a 
feature is less than a certain threshold, the feature will be filtered. The relief algorithm is 
as follows:

Set the train dataset is D, the sampling frequency is m, the number of original features 
is N, the threshold of feature weight is θ, and the output is the weight T of each feature.

(6)b(�) = (X ′X + �I)−1X ′Y

(7)Mic(R) = max
xy<K (m)

{

MI∗(R, x, y)

log min
{

x, y
}

}

(8)MI∗(R, x, y) = max





�

x∈X

�

y∈Y
P(x, y) log

P(x, y)

P(x)P(y)
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1. Set the weight of all features is 0 and T is empty set;

2. for i = 1 to m do

2.1. Randomly select a sample R from D;

2.2. Find the k-nearest neighbor samples H and M of R from the same 
sample set and different sample sets of R;

2.3. for A = 1 to N do

W(A) = W(A)-
diff(A,R,H)/m + 

diff(A,R,M)/m;

3. for A = 1 to N do

3.1. if W(A) >  = θ

Add the A-th 
feature weight 
to T;

end

In 2.3 described by the above algorithm, diff(A, R, H) represents the difference between 
the samples R and H on the feature A, and its calculation formula is as follows:

The W-GDipC and LRMR-Ri methods we proposed are described as follows:

Step 1: Using DipC to generate 854 × 400  and 7582× 400 matrices.
Step 2: Using GDipC to generate 854 and 7582 400-dimensional feature vectors.
Step 3: The weighted fusion of the features in step 1 and step 2.
Step 4: Using Lasso, Ridge, Mic and Relief selecting features to generate 4 feature sub-
sets respectively.
Step 5: If there is a common feature set among the 4 feature subsets, it is the optimal 
subset, otherwise it goes to the next step.
Step 6: Using Ridge for feature selection, the resulting feature subset is the optimal sub-
set.
Step 7: Put the obtained optimal subset into the classifier.

The overall flow chart of the W-GDipC and LRMR-Ri methods proposed in this paper is 
shown in Fig. 7.

Validation method and performance evaluation index

In statistical prediction, the following three cross-validation methods are commonly used 
to test the effectiveness of prediction models in practical applications: independent data-
set testing, k-fold cross-validation, and jackknife testing. In the prediction studies of anti-
freeze proteins and membrane proteins, we used the k-fold cross-validation and set k to 
be 5. Positive and negative samples of the antifreeze proteins and 7582 membrane proteins 
dataset were randomly divided into five subsets in the five-fold cross-validation. In these 
five subsets, one of the subsets is retained as a test set, and the remaining four subsets are 
used as train set. The cross-validation process is then repeated five times with each subset 

(9)diff(A,R,H) =







|R[A]−H [A]|
max(A)−min(A) if A is continuous

0 if A is discrete and R[A] = H[A]
1 if A is discrete and R[A] �= H [A]
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being used as test data in turn. Then average the results of the five predictions as the final 
output [58, 59].

In this paper, five common evaluation indexes are used to measure the prediction results: 
accuracy (ACC), recall (RE), precision (PE), F-Measure and Matheus correlation coefficient 
(MCC). They are defined as follows [60]:

Among them, TP is the number of correctly recognized antifreeze proteins or cate-
gory C membrane proteins; TN is the number that correctly recognizes non-antifreeze 

(10)Accuracy =
TP + TN

TP + FP + TN + FN

(11)Recall =
TP

TP + FN

(12)Precision =
TP

TP + FP

(13)F-Measure =
2× Precision× Recall

Precision+ Recall

(14)MCC =
TP × TN − FP × FN

√
(TP + FP)(TN + FN )(TP + FN )(TN + FP)

Fig. 7 The overall flow chart of W-GDipC and LRMR-Ri methods
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proteins or classification membrane proteins of category C incorrectly into other cat-
egories; FP is the number of misidentified antifreeze proteins or the correct classifica-
tion of other membrane proteins categories into category C, and FN is the number of 
the misidentified non-antifreeze proteins or misclassified of other membrane proteins 
categories into category C. The closer the value of the above index is to 1, the better the 
performance of the classifier.
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