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Abstract 

Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of 
renal carcinoma and patients at advanced stage showed poor survival rate. Despite 
microRNAs (miRNAs) are used as potential biomarkers in many cancers, miRNA bio‑
markers for predicting the tumor stage of ccRCC are still limitedly identified. Therefore, 
we proposed a new integrated machine learning (ML) strategy to identify a novel 
miRNA signature related to tumor stage and prognosis of ccRCC patients using miRNA 
expression profiles. A multivariate Cox regression model with three hybrid penalties 
including Least absolute shrinkage and selection operator (Lasso), Adaptive lasso and 
Elastic net algorithms was used to screen relevant prognostic related miRNAs. The best 
subset regression (BSR) model was used to identify optimal prognostic model. Five ML 
algorithms were used to develop stage classification models. The biological signifi‑
cance of the miRNA signature was analyzed by utilizing DIANA‑mirPath.

Results: A four‑miRNA signature associated with survival was identified and the 
expression of this signature was strongly correlated with high risk patients. The high 
risk patients had unfavorable overall survival compared with the low risk group 
(HR = 4.523, P‑value = 2.86e−08). Univariate and multivariate analyses confirmed inde‑
pendent and translational value of this predictive model. A combined ML algorithm 
identified six miRNA signatures for cancer staging prediction. After using the data bal‑
ancing algorithm SMOTE, the Support Vector Machine (SVM) algorithm achieved the 
best classification performance (accuracy = 0.923, sensitivity = 0.927, specificity = 0.919, 
MCC = 0.843) when compared with other classifiers. Furthermore, enrichment analysis 
indicated that the identified miRNA signature involved in cancer‑associated pathways.

Conclusions: A novel miRNA classification model using the identified prognostic and 
tumor stage associated miRNA signature will be useful for risk and stage stratification 
for clinical practice, and the identified miRNA signature can provide promising insight 
to understand the progression mechanism of ccRCC.

Keywords: Clear cell renal cell carcinoma, Biomarkers, MicroRNAs, Survival analysis, 
Regularized cox model, Machine learning classifiers

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi 
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHODOLOGY

Dessie et al. BMC Bioinformatics          (2021) 22:270  
https://doi.org/10.1186/s12859‑021‑04189‑2

*Correspondence:   
d6781@mail.cmuh.org.tw; 
ppiddi@gmail.com 
1 Department 
of Bioinformatics and Medical 
Engineering, Asia University, 
Taichung, Taiwan
2 Department of Laboratory 
Medicine, China Medical 
University, Taichung, Taiwan
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0001-6315-6326
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04189-2&domain=pdf


Page 2 of 15Dessie et al. BMC Bioinformatics          (2021) 22:270 

Background
Renal cell carcinoma (RCC) is one of the top ten cancer diagnoses, and it accounts for 
3–5% of all new cases in females and males [1]. Recently, there are more than 140,000 
death per year associated with RCC [2]. Clear cell renal cell carcinoma (ccRCC) is the 
most common RCC subtype and it represents 70–80%, of all renal malignant tumors [3]. 
Despite many advances in effective therapeutic and diagnostic strategies in ccRCC, and 
the overall survival rate is still poor, particularly for advanced-stage ccRCC patients[4]. 
CcRCC has poor prognosis due to the resistance to chemotherapy and radiotherapy[5]. 
Late tumor staging is the main risk factor of ccRCC patients [6] and detection of ccRCC 
patients at early-stage is crucial for better diagnosis and treatment options.

Currently, the development of next generation sequencing (NGS) technology has ena-
bled  researchers to explore genetic alterations in tumorigenesis and discovering molec-
ular biomarkers for many cancers[7]. NGS allows to examine the possible contributions 
of the upstream molecular regulators of gene expression such as miRNAs. MiRNA play 
critical roles in regulating various physiological and pathological processes, including 
regulation of cell division, apoptosis, cell maturation, angiogenesis, metastasis, migra-
tion, invasion, differentiation of cells, metabolism, and proliferation by negative regula-
tion of gene expression [8–10]. Moreover, in various cancers, dysregulated miRNAs can 
be used as biomarkers [11–13]

Statistical and machine learning approaches have been used to predict gene sets as 
biomarkers for patients with ccRCC [14]. Ng and Taguchi employed the tensor decom-
position method to identify miRNA signature in ccRCC [15]. Previously, studies were 
used miRNA expression profiles of liver and breast cancer patients, followed by a sup-
port vector machine (SVM) with genetic algorithm, to predict the early and advanced 
stages [16, 17]. Recently, miRNA profiles were used to detect lung cancer subtypes 
[18]. Several studies have reported miRNA biomarkers in ccRCC. For example, a three-
miRNA signature including miR-21, miR-155 and miR-584 is associated with survival in 
ccRCC [11]. Zhao and Bai identified 13-miRNA signature associated with overall sur-
vival in ccRCC [19]. However, the study of multi-miRNA signature models to predict the 
risks and tumor stages of ccRCC patients are still limited and hence, we aimed to select a 
small set of miRNAs as signature that can predict risk as well as tumor stages in ccRCC 
patients using genomic profiles, so that identified miRNA signature can provide promis-
ing insight to understand the progression and development mechanism of ccRCC.

In this study, we proposed a computational method for identifying prognostic-asso-
ciated miRNA signature as well as predicting the early and late tumor stages of ccRCC 
using miRNA expression profiles. We identified a four miRNA signature associated with 
the prognosis of ccRCC from high-dimensional miRNA expression profiles using multi-
variate Cox regression with Elastic-net, Lasso and Adaptive lasso penalties followed by 
best subset regression analysis. The prognostic risk model involving four miRNA sig-
nature effectively classified ccRCC patients into high and low risk groups; prognosis 
was significantly worse in high-risk group when compared with low-risk groups. Fur-
thermore, we extracted significant miRNAs that can distinguish early and late tumor 
stages using various machine learning approaches. We identified a six miRNA signature 
strongly related to tumor stages of ccRCC patients. The five machine learning algo-
rithms were used to evaluate classification performance of a six miRNA signature using 
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independent testing set. Finally, the SVM algorithm achieved the best classification per-
formance when compared with other classifiers.

Results
We proposed a computational method including penalized Cox models and machine 
learning approach to identify miRNA signature for risk and tumor stage prediction using 
miRNA profiles, which consists of several steps as described in detail in the “Methods” 
section. To develop optimal prognostic predictive model for ccRCC patients, combined 
penalized Cox models (including Elastic-net, Lasso and Adaptive lasso), best subset 
regression and risk score model were used. Furthermore, a combined machine learn-
ing approach was used to prioritize and identify miRNA signatures associated with early 
and late tumor stages in ccRCC patients. The systematic pipeline of the overall process is 
shown in Additional file 1: Fig. S1.

Identification of dysregulated miRNAs in ccRCC patients

After TCGA-ccRCC data quality assessment, preprocessing and normalization, a total of 
1046 miRNA expression profiles were used for differentially analysis based on “limma” 
package in R. We identified 124 differentially expressed miRNAs (DEMs), of which 80 
downregulated and 44 upregulated miRNAs in 254 primary tumor tissue samples com-
pared with 71 normal samples, using the criteria of absolute value log2foldchange > 1 
and Benjamin-Hochberg (BH) adjusted P-value < 0.05 (Additional file 1: Table S1). These 
abnormal miRNAs were used for subsequent survival and stage classification model 
development.

Identification of prognostic‑associated miRNAs and development of risk classification 

model

DEMs that altered in tumor samples are potential prognostic and diagnostic signatures. 
To identify significant prognostic DEMs, the TCGA cohort of ccRCC patient (n = 252) 
having survival information were used. Subsequently, three regularized survival meth-
ods (including Elastic-net, Lasso, and Adaptive lasso) with ten-fold cross validation were 
implemented to obtain the optimal lambda (λ) values that obtained from the smallest 
partial likelihood deviances. The estimated optimal penalty parameter λ values for the 
three algorithms were �Enetopt  = 0.093, �Lassoopt  = 0.056 and �Ad.lassoopt  = 0.015 and these optimal 
tuning parameters were used to choose informative features (miRNAs) that were associ-
ated with patient survival. Elastic-net, Lasso, and Adaptive lasso algorithms identified 13 
miRNAs, 11 miRNAs and 6 miRNAs respectively (Table 1). A union of candidate miR-
NAs selected by the three methods including: miR-21, miR-223, miR-146b, miR-30b, 
miR-3613, miR-187, miR-203, miR-514-3, miR-129-2, miR-200a, miR-508, miR-1.2 and 
miR-934 were used for BSR analysis. Then, all subset prognostic models created by the 
identified 13 miRNAs were assessed using BSR analysis based on the   “glmulti” pack-
age in R and finally we obtained an optimal miRNA prognostic model with four-miRNA 
signatures (including miR-30b, miR-21, miR-187 and miR-150 200a) having the small-
est AIC value (Additional file 1: Fig. S2). Then, using the regression coefficient obtained 
from the result of multivariate Cox regression analysis of the four-miRNA signatures 
(Additional file  1: Table  S2), we developed a risk score (RS) model, which is given by, 
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RS = (0.525 × miR-30b expression) + (1.485 × miR-21 expression) + (0.485 × miR-187 
expression) − (0.320 × miR-200a expression). Based on this risk score definition, we 
stratified ccRCC patients into high risk and low risk groups. The Kaplan–Meier curve 
shows that high risk group related to poor overall survival time relative to low risk group 
(Fig. 1a). Furthermore, the AUC values of the time dependent ROC curve were 77.40%, 
73.00%, 79.33% and 82.73% for a 1-year, 3-year, 5-year and 10-year survival (Fig.  1b). 
These results demonstrated that the time dependent risk prediction based on a four-
miRNA signature can be used for risk assessment for ccRCC patients.

Univariate and multivariate analysis for risk prediction evaluation

In order to further examine whether the identified miRNA signature can be used 
as independent predictor, we performed univariate and multivariate Cox analysis 
(Table 2). The results of univariate Cox analysis indicated that age, pathological stages 
and the miRNA signature are significantly correlated with overall survival. Meanwhile, 

Table 1 The penalized Cox regression coefficients of selected miRNAs from three methods

Gene name Elastic‑net Lasso Adaptive lasso

miR‑21 0.513 0.705 1.049

miR‑223 0.117 0.129 0.117

miR‑146b 0.083 0.017 –

miR‑30b 0.068 0.057 0.061

miR‑3613 0.058 0.034 –

miR‑187 0.045 0.053 –

miR‑203  − 0.011 – –

miR‑514‑3  − 0.019 – –

miR‑129‑2  − 0.037  − 0.003 –

miR‑200a  − 0.071  − 0.060 –

miR‑508  − 0.130  − 0.151  − 0.349

miR‑1.2  − 0.146  − 0.171  − 0.271

miR‑934  − 0.268  − 0.205  − 1.248

Fig. 1 Prognostic classification of ccRCC patients using the risk score model. a Kaplan–Meier (KM) survival 
analysis for high risk and low risk subgroup stratification based on the risk score model. b Validation of risk 
score classification performance by time dependent ROC analysis
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multivariate analysis showed that pathological stage (P-value = 0.048), pathological M 
stage (P-value = 0.035) and four miRNA signature (P-value = 4.23e−05) are significantly 
associated with unfavorable prognosis.

Identification of miRNA signature for classification of tumor stages

In order to identify tumor stage associated miRNA signatures, 124 DEMs expression 
profiles and the corresponding ccRCC patients with stage information (n = 252) were 
used. We applied ensemble learning feature selection algorithms including logistic 
regression (LR), random forest (RF), support vector machine with radial kernel (SVMR) 
and average  neural network   (avNNet)  model to identify optimal classifier of tumor 
stages. The maximum Relevance Minimum Redundancy (mRMR) algorithms were 
used to identify miRNA features having the most correlation with tumor stage and the 
least correlation with miRNA features themselves. The detail  of mRMR algorithm  is 
described in Fig. 2a. The utility of mRMR based ensemble ML algorithm is enhancing 

Table 2 Univariate and multivariate Cox analyses showed risk score is an independent risk factor

variables Univariate Cox analysis Multivariate Cox analysis

P‑value HR (95% CI) P‑value HR (95% CI)

Age 0.001* 1.808 (1.324–2.47) 0.061 1.598 (0.978–2.610)

Gender 0.757 0.953 (0.702–1.294) 0.078 0.610 (0.352–1.058)

Pathological stage 2e−16* 3.912 (2.857–5.362) 0.048* 3.303 (1.028–10.949)

Pathological T stage 3.8e−16* 3.204 (2.369–4.331) 0.272 0.573 (0.212–1.546)

Pathological M stage 2e−16* 4.254 (3.117–5.805) 0.035* 1.957 (1.048–3.655)

Pathological Grade 3.42e−08* 2.598 (1.851–3.646) 0.217 1.462 (0.804–2.633)

Four‑miRNA signature 2.14e−08* 4.628 (2.707–7.911) 4.23e−05* 4.324 (2.385–7.839)

Fig. 2 Stage associated features (miRNAs). a Implementation of feature selection using various machine 
learning algorithms. b Common features among top 20 ranked miRNAs selected by four ML learning 
algorithms. c Results of six differentially expressed miRNAs between early and late stage of ccRCC patients
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informative feature selection by minimizing the bias that might be introduced by sin-
gle algorithm. We identified top ranked features of 20 miRNAs using four ML meth-
ods and the ranking of miRNAs and their corresponding features importance relevance 
are shown (Additional file 1: Table S3). To determine the common  number of miRNA 
features for tumor stage classification, we performed an overlapping analysis of selected 
miRNAs by these algorithms and six common miRNAs including miR-106b, miR-144, 
miR-224, miR-9-1, miR-21, miR-342 (Fig. 2b) were identified. These identified miRNAs 
were used to develop a stage prediction model. We also further verified that the identi-
fied 6 miRNA features were differentially expressed between early and late stage groups. 
The box-plot shows for each miRNA, there was a significant expression difference in 
early and late stage subgroups (Fig.  2c). Interestingly, the identified 6 stage-associated 
miRNAs are significantly associated with the overall survival of patients with ccRCC 
(Additional file 1: Fig. S3).

SMOTE sampling data and stage classification  performance

In this study, SMOTE sampling was used to solve the class imbalance problem. Balanced 
dataset obtained from the SMOTE algorithm was then divided into training set and test 
set (80:20 ratio). The identified six miRNA signature was used to build prediction model 
based on five ML algorithms—SVMR, LR, Naïve Bayes, avNNet and KNN. The classifi-
cation performance evaluated after data balancing is shown in Table 3. The accuracy of 
all models were found to be in the range of 0.62–0.923 with maximum accuracy of 0.923 
for SVMR. The highest sensitivity and specificity, MCC and precision were observed for 
SVMR. To check whether SMOTE data sampling resulted improvement prediction, we 
used the original data (without SMOTE balancing) and constructed the training set and 
test set in a 80:20 ratio. Stage prediction and their classification performance delivered 
by the five ML methods were explored. The best accuracy and sensitively was observed 
in Naïve Bayes with an accuracy 0.775 and sensitivity 0.778. The details of model per-
formance comparison are shown in (Additional file 1: Table  S4). It is noteworthy that 
SMOTE data balancing algorithm can improve the prediction accuracy of all ML models 
except Naïve Bayes. The overall model prediction results indicated that the identified 

Table 3 The performance of ML based models constructed by identified six miRNA signatures on 
balanced training set and test set using the SMOTE algorithm

Algorithms Methods Performance measures

ACC Sensitivity Specificity MCC F‑score Precision

SVMR tenfold 0.990 0.987 0.993 0.981 0.989 0.991

Test 0.923 0.927 0.919 0.843 0.911 0.895

LR tenfold 0.688 0.649 0.713 0.357 0.620 0.594

Test 0.612 0.473 0.716 0.194 0.510 0.553

Naïve Bayes tenfold 0.761 0.737 0.776 0.508 0.711 0.688

Test 0.721 0.709 0.730 0.436 0.684 0.661

avNNet tenfold 0.902 0.918 0.892 0.801 0.882 0.848

Test 0.783 0.709 0.838 0.553 0.736 0.453

KNN tenfold 0.889 0.874 0.900 0.773 0.870 0.866

Test 0.775 0.782 0.770 0.547 0.748 0.717
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six-signature miRNAs can classify tumor stages of ccRCC patients with reasonable pre-
diction performance using miRNAs expression profiles.

Enrichment analysis and biological roles of identified miRNA signatures

The identified miRNA signatures are linked with the development and progression of 
various cancer types. Overexpression of miR-21 leads to amplified cell proliferation and 
reduced apoptosis [20] and high expression of miR-21 associated with poor survival in 
lung cancer and ccRCC [11, 21]. Downregulated miR-30b-5p act as a tumor suppressor 
to regulate renal cell carcinoma in cell proliferation, metastasis and epithelial-to-mesen-
chymal transition by targeting G-protein subunit α-13 [22]. Decreased miR-187 in clear 
cell renal cell carcinoma inhibits cell growth, migration though targeting B7-H3 and 
correlated with lower survival [23]. MiR-106p-5p upregulation targets several negative 
regulators of the Wnt/β-catenin pathway [24]. MiR-144 promotes RCC development by 
hampering mTOR expression [25]. Fujii N et al. reported that higher expression of miR-
224 associated with poor progression-free survival and overall survival in ccRCC [26]. 
MiR-200a regulates epithelial to mesenchymal transition-associated with gene expres-
sion and regulates prognosis in colorectal cancer [27]. In addition, miR-200a consistently 
decreased in RCC and serve as diagnostic biomarker for the early detection of RCC [28].

Biological roles of the identified miRNAs were assessed by using KEEG pathways and 
GO annotation analyses via DIANA-mirPath. The enriched biological pathways of the 
upregulated and downregulated identified miRNA signatures are presented in Fig.  3a, 
b. The upregulated miRNA signatures are enriched in Prion diseases, Lysine degrada-
tion, ECM-receptor interaction, Proteoglycans in cancer, Fatty acid elongation,Pathways 
in cancer, Cell cycle, FoxO signaling pathway, p53 signaling pathway, TGF-beta signal-
ing pathway, Biosynthesis of unsaturated fatty acids, Viral carcinogenesis, signaling 
pathways regulating pluripotency of stem cells, Renal cell carcinoma and other biologi-
cal pathways. The detail biological pathways and number of target genes for upregulated 
miRNA signatures are described in Additional file 1: Table S5. Similarly, downregulated 

Fig. 3 KEGG pathway analysis for up and down regulated miRNA signatures. a Enriched KEGG pathways for 
upregulated miRNA signatures. b Enriched KEGG pathways for downregulated miRNA signatures
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miRNA signatures involved in Fatty acid biosynthesis, Adherens junction, Fatty acid 
metabolism, Lysine degradation, Pathways in cancer, Viral carcinogenesis, p53 signal-
ing pathway, mRNA surveillance pathway, RNA degradation other KEGG pathways. The 
detail summary of downregulated miRNA signatures enriched pathways and number of 
target genes are indicated in Additional file 1: Table S6.

GO analysis also showed that upregulated miRNA signatures participated in cellu-
lar nitrogen compound metabolic process, biosynthetic process, mitotic cell cycle, cell 
death, DNA metabolic process, innate immune response, cell cycle, cell proliferation 
and others. The detail biological processes and target genes of upregulated miRNA sig-
natures are shown in Additional file 1: Table S7. Furthermore, the biological processes   
of downregulated miRNAs are enriched in nucleobase-containing compound catabolic 
process, macromolecular complex assembly, mitotic cell cycle, cellular protein modifica-
tion process, catabolic process, biosynthetic process, gene expression, viral process, cel-
lular component assembly, cellular protein metabolic process, small molecule metabolic 
process, Fc-epsilon receptor signaling pathway, response to stress, cell death and other 
biological process. The detail biological processes and target genes for downregulated 
miRNA signatures are shown in Additional file 1: Table S8.

Discussion
In this study, we showed an efficient strategy to identify miRNA signatures that can 
stratify high risk and low risk patients as well as classify early and late tumor stages. 
Several computational and machine leering algorithms have been developed to explore 
miRNA-associated diseases [17, 29]. Previous studies also used miRNA profiles to iden-
tify biomarkers for risk stratification [11, 30]; however, only a few research works have 
been conducted to explore miRNA signatures for early tumor stage of ccRCC. There-
fore, in our study, we proposed a novel hybrid ML strategy to identify miRNA signa-
tures associated with overall survival and tumor stages classification for ccRCC patients. 
The major findings and contributions of our work are outlined as follow. Identification 
of risk and stage predictive miRNA signatures with good predictive performance. The 
use of multivariate Cox regression with Elastic-net, Lasso and adaptive Lasso penal-
ties followed by optimal subset prognostic model selection strategy identified a four 
novel-miRNA signature, namely miR-30b, miR-21, miR-187 and miR-200a. This sig-
nature can effectively stratify high risk and low risk subgroups with good classification 
performance (time dependent ROC); hence, the four-miRNA signature may be use as a 
prognostic biomarker. Furthermore, the proposed combined  ML algorithms identified 
six top ranked miRNAs (miR-106b, miR-144, miR-224, miR-9-1, miR-21 and miR-342) 
based on their relative importance and their classification performance  were evaluated 
by five ML methods. The classification performance of the six-stage associated miRNAs 
revealed effective stratifying ability early stage and late stage. The stage classification 
performance can be further improved if we applied SMOTE algorithm to prepare bal-
anced early and late tumor stage data. The consistency and validation of the predictive 
models were assessed using an independent test set. The biological significance of the 
identified miRNA signatures in ccRCC development and progression were discussed 
and confirmed by the existed literature. The biological roles of the identified miRNA sig-
natures were examined using enrichment analyses.
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Future works: we will attempt to identify more robust features  and classification mod-
els and apply different balanced data algorithms to improve the efficiency of the classifi-
cation performance of early and late stage other than LR, Naive Bayes, KNN, and SVM 
classifiers.

Conclusions
In summary, we have attempted to identify potential miRNA signatures for stratification 
of risk using integrated statistical approach. An optimal four-miRNA based prognostic 
model with the smallest AIC criterion was identified and the four-miRNA signature can 
effectively classify ccRCC patients into high and low risk groups. Moreover, using state-
of-the-art ML algorithms, we identified six top ranked miRNA signatures that can clas-
sify early and late stages for patients with ccRCC. These six miRNA signature classified 
early stage and late stage with reasonable good classification performance. Finally, we 
explored the biological roles of the identified risk- and stage-associated miRNA signa-
tures and these signatures involved important biological pathways. Overall, we expect 
that our findings provide promising insight to explore the role of miRNAs in ccRCC 
patients and could help risk and stage classifications.

Methods
Input data

The RNAseq expression profiles and their corresponding clinical data (including TNM 
stage, survival time, sex, age) for ccRCC were retrieved from the Firebrowse database 
(http:// fireb rowse. org/). The clinical information consists of 325 samples (254 tumors 
and 71 normal tissues), and clinical data consists of 131, 28, 48, and 45 samples of stage I, 
stage II, stage III and stage IV respectively. Finally, we considered both early stage (stage 
I and stage II, n = 159) and late stage (stage III and stage IV, n = 93) samples of patients 
for classification purpose.

Preprocessing and identification of differentially expressed miRNAs

Normalization of the miRNA profiles were carried out by using the ’edgeR’ package [19]. 
Differential analysis of miRNAs was conducted by utilizing the ’LIMMA’ package in R 
[19] and miRNAs that satisfy the criterion of the absolute value of log2fold change > 1 
and Benjamin-Hochberg (BH) adjusted P-value < 0.05 were considered as differentially 
expressed miRNAs (DEMs).

Data standardization for ML modeling

In this calculation, z-scaling was used to normalized the count per million  (CPM) of 
miRNA expression values, which is defined by the following equation.

where x is the expression value of miRNA, x is the mean expression values of miRNA 
of the samples and σ is the standard deviation of expression values of miRNA of the 

(1)
x =log2(CPM + 1),

z =x − x

σ
.

http://firebrowse.org/
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samples and  z  represents normalized miRNA expression that follow the normal distri-
bution with zero mean and unit standard deviation.

Identification of miRNA signature associated patient survival and construction of risk 

classification model

Feature selection (FS) is an important process to improve classification performance by 
avoiding irrelevant/noise features. To select survival-associated features (miRNAs), Cox 
model regression model was proposed. Cox regression is defined as:

Here, i denotes for ccRCC patients, and the Xs are the covariates (miR-
NAs). Xiβ = β1xi1 + · · · + βkxik , h0(t) is the baseline hazard function at time t, 
β = (β1,β2, . . . ,βk) is the vector of regression coefficients, and β denotes the k-dimen-
sion regression coefficient vector of covariates. However, when we deal with high-
dimension data such as genomic data, number of penalized Cox models have been 
proposed (including: Lasso, Adaptive lasso and Elastic-net) to solve the overfitting prob-
lem [31–33]. For each model, the estimated β̂ values are obtained by minimizing the 
negative log-likelihood function with different penalty functions as follows:

Here δi is an indicator for the uncensored observation, λ is called penalty and wnj = 
∣

∣

∣
β̂nj

∣

∣

∣

−1
 

is calculated from the initial estimator β̂n.
Lasso Cox and adaptive Lasso Cox were used to identify relevant miRNAs associ-

ated with survival time by the shrinkage of some of the irrelevant miRNAs regression 
coefficients to zero. Adaptive Lasso Cox imposes an adaptive weighted penalty term in 
comparison with the Lasso, model, which further reduce the number of less-relevant 
miRNAs in such a way that the resulting coefficient estimates are sparse. Elastic-net is 
suitable for screening relevant miRNAs when there is a multicollinearity problem in the 
genomic data [34]. We used (ten-fold) cross-validation of Lasso, Adaptive lasso and Elas-
tic-net algorithms to obtain the predicted optimal λ value for each method. The optimal 
λ value that minimize the estimated mean-squared prediction error and this optimal λ 
was used to select candidate miRNAs. All these methods were implemented using the 
‘glmnet’ [35] package in R. Then, to make use of the strength of each method, we pro-
posed a combined feature selection approach in the study of miRNA-disease association. 
The union of candidate miRNAs identified by the three algorithms were used to identify 

(2)h
(

t,Xiβ

)

= h0(t)exp
(

Xiβ

)

(3)β̂Lasso = arg minβ

{

−
n

∑

i=1

δi

(

Xiβ − log

(

n
∑

i=1

exp (Xiβ)

))

+ �

K
∑
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|βi|
}

(4)β̂Ad. lasso = arg minβ

{

−
n

∑
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(
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(

n
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exp (Xiβ)

))
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K
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(5)

β̂Enet = arg minβ
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−
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exp (Xiβ)
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the best miRNAs combination that could predict prognosis of ccRCC patients more 
effectively. More detailed description of selecting the best subset prognostic model is 
described below:

Let l = 1, 2, . . . ., k , where k is the total number of candidate miRNAs identified by 
Lasso, Adaptive lasso and Elastic-net algorithms.

a) Construct all possible combinatorial subset model having l miRNA candidates
b) Compare all possible models with the Akaike information criterion (AIC)
c) Select the best subset prognostic model, having the smallest AIC, with l miRNAs 

using the ‘glmulti’ package [36] in R.

After identifying the best subset prognostic model, we developed risk score (a linear 
combination of best subset miRNA expression and coefficients of miRNAs obtained 
from multivariate analysis) to evaluate risk prediction performance. The risk score (RS) 
computed as follow,

Then, RS was used to classified ccRCC patients into high risk and low risk group using 
median RS as cutoff. The time dependent receiver operating characteristics (ROC) was 
used to estimate the survival time difference between high risk and low risk group using 
the ‘survivalROC’ package in R.

Identification of miRNA signature associated with tumor stages for early and late tumor 

stage classification

To select best subset features (miRNAs) that associated with tumor stages, we pro-
posed to use hybrid feature selection methods. Feature selection methods were con-
ducted based on ten-fold cross-validation. The four popular ML algorithms proposed in 
this study include: LR, RF, SVMR and avNNet, and top ranked miRNAs based on their 
importance as the best features were identified from high-dimensional data. We utilized 
the “caret” package in R that consists of several complex ML algorithms for classification 
and prediction problems.

The processing of feature selection using four ML algorithms are briefly discussed as 
follows.

Ensemble logistic regression (LR) model is a ML model used as a classification 
model in feature selection to identify features that can distinguish binary samples of 
patients. Let x ∈ R

k denotes an observation consists of k feature miRNA values and let 
y ∈ {−1,+1} represents the corresponding binary outcome; such as, early and late stage. 
A LR model is a condition probability distribution (CPD) of the class level  y given the 
feature (miRNAs) vector x is defined by

(6)Risk Score =
k

∑

i=1

xiβi

(7)p
(

y/x
)

= 1

1+ exp
(

−y
(

wTx + v
))
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where w ∈ Rk is the weight vector and v ∈ R are parameters of LR. Ensemble LR for rel-
evant feature selection is stable with respect to variation of the learning samples, since 
it uses t-test to rank features, which does not consider dependence between features. LR 
transfers the strongly correlated features to the LR gradient decent optimization algo-
rithm to increase classification performance [37].

The random forest (RF) algorithm is a  non-linear regression model, which has 
been used in several regression and classification problems in a variety of computa-
tional studies. RF learning is flexible algorithm that minimizes prediction errors and 
screen the most important features related to class level when feature size is large. It 
consists of constructing trees by splitting random sample of r features from a set of n 
features using bootstrapped training data.

where IG denotes impurity of a node n, ki  denotes the features (miRNAs), and j is the 
fraction of each ki  feature (miRNAs) [38].

Support vector machine (SVM) algorithm has been applied in many biological 
problems, such as biomarkers selection and classification problems [16, 39]. SVM 
is non-probabilistic  classifier  which maximize the  margin of the decision bound-
ary to classify two classes using support vectors  to achieve the best  classification. 
The general formulation of the SVM  classifier is defined as

Here, w denotes the normal vector of the hyperplane, ϕ is the classifier parameter, xi are 
the variables and n is the number of vectors in the training dataset.

The    avNNet model is a type of neural network (NN), that learns nearly infinite 
number of mapping functions and works like natural human neurons. The inputs 
(features) connect to class label (staging), the connections are called edges. The 
input feature connects either forward/backward propagation hidden nodes to com-
pute neurons. The number of hidden layers determines the depth of NN. A feedfor-
ward NN having more than one hidden layer is called deep network [40, 41]. The 
NN is commonly applied to the discovery of biomarkers in cancer studies [42].

where βr
j   represents the jth neuron in the rth layer is associated with activation in the 

(r − 1)th layer. The ϑ is a vectorising function parameter. The wr
jk denotes a rth weight 

matrix for each layer r of the jth row and kth column, and αr
j  denotes the j bias for each 

layer r.

(8)IG(n) = 1−
j

∑

i=1

(ki)2

(9)minimize
1

2
w2 + ϕ

n
∑

i=1

xi

(10)βr
j = ϑ

(

∑

K

wr
jkβ

r−1
k + αr

j

)
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Stage classification methods

SVMR, NB, avNNet, KNN and LR were utilized for building predictive and classification 
models. Each model was constructed by ten-fold cross validation to avoid over/under 
fitting. The cost function was optimized [100–1000 iterations with 100 steps per itera-
tion] to attain accurate classification.

Data balancing

The proportion of early stage patients is approximately twice of   late stage patients; this cre-
ates the data imbalance problem which leads to biased prediction. Therefore, we performed 
the data balancing procedure by using the Synthetic Minority Oversampling Technique 
(SMOTE) algorithm [43] (included in the DMwR package). The SMOTE is a common 
method to solve data imbalance problem more effectively, prior to applying  the ML classi-
fier [42]. The dataset was divided randomly into training set (80%) and the remaining 20% 
as independent test set. The training set was employed to train ML algorithms in classifying 
early and late stage of patients based on ten-fold  cross validation. The test set was used as 
independent test set and used to assess the classification performance of five ML methods.

Classification performance evaluation metrics

To evaluate the performance of the classification models, we used the following meas-
ures: specificity, sensitivity, accuracy (ACC), precision, and Matthews correlation coef-
ficient (MCC). The mathematical formulas of the measures are given below:

where TP, TN, FP, and FN denote true positive, true negative, false positive and false 
negative respectively.

Functional enrichment analysis

We assessed the biological relevance of the identified prognostic and diagnostic miRNA 
signatures using the DIANA-mirPath [44].

(11)Sensitivity = TP

TP + FN

(12)Specificity = TN

TN + FP

(13)ACC = TP + TN

TP + TN + FP + FN

(14)Precision = TP

TP + FP

(15)MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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