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Abstract 

Background: MicroRNAs (miRNAs) are small non‑coding RNAs that regulate gene 
expression post‑transcriptionally via base‑pairing with complementary sequences on 
messenger RNAs (mRNAs). Due to the technical challenges involved in the application 
of high‑throughput experimental methods, datasets of direct bona fide miRNA targets 
exist only for a few model organisms. Machine learning (ML)‑based target prediction 
models were successfully trained and tested on some of these datasets. There is a 
need to further apply the trained models to organisms in which experimental training 
data are unavailable. However, it is largely unknown how the features of miRNA–target 
interactions evolve and whether some features have remained fixed during evolution, 
raising questions regarding the general, cross‑species applicability of currently avail‑
able ML methods.

Results: We examined the evolution of miRNA–target interaction rules and used 
data science and ML approaches to investigate whether these rules are transferable 
between species. We analyzed eight datasets of direct miRNA–target interactions in 
four species (human, mouse, worm, cattle). Using ML classifiers, we achieved high 
accuracy for intra‑dataset classification and found that the most influential features 
of all datasets overlap significantly. To explore the relationships between datasets, we 
measured the divergence of their miRNA seed sequences and evaluated the perfor‑
mance of cross‑dataset classification. We found that both measures coincide with the 
evolutionary distance between the compared species.

Conclusions: The transferability of miRNA–targeting rules between species depends 
on several factors, the most associated factors being the composition of seed families 
and evolutionary distance. Furthermore, our feature‑importance results suggest that 
some miRNA–target features have evolved while others remained fixed during the 
evolution of the species. Our findings lay the foundation for the future development 
of target prediction tools that could be applied to “non‑model” organisms for which 
minimal experimental data are available.

Availability and implementation: The code is freely available at https:// github. com/ 
gbenor/ TPVOD.
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Background
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-
transcriptionally. miRNAs are encoded in the genome and are generated in a multi-stage 
process by endogenous protein factors [1]. The mature, functional miRNAs associate 
with Argonaute proteins to form the core of the miRNA-induced silencing complex 
(miRISC). miRISC uses the sequence information in the miRNA as a guide to recog-
nize and bind partially complementary sequences on the 3’ untranslated region (UTR) 
of target mRNAs. miRISC binding typically leads to the translational inhibition and/or 
the degradation of targeted mRNAs [2]. miRNAs are evolutionarily conserved and are 
present in the genomes of animals, plants and viruses [3]. miRNAs have diverse develop-
mental and physiological functions and they have been implicated in numerous human 
diseases [4].

The identification of miRNA target sites on mRNAs is a fundamental step in under-
standing the involvement of miRNAs in cellular processes. Several experimental high-
throughput methods for identifying miRNA targets have been developed in recent years 
[5, 6], of which the most common and straightforward approach is based on measur-
ing changes in mRNA levels following miRNA over-expression or inhibition in tissue-
cultured cells [7]. However, this approach has several major limitations [5, 6]. First, such 
data may contain indirect signals of miRNA regulation from the downstream genes of 
direct miRNA targets. Second, for direct regulation, the exact sequences of binding 
sites are unknown and must be predicted within the relevant mRNA sequence. Third, 
such experimental settings may represent a non-physiological context for miRNA activ-
ity, which does not reflect endogenous targeting rules. Finally, this approach may miss 
signals of translation-efficiency inhibitions, which affect gene expression but are not 
reflected in changes in mRNA levels [8].

Other methods, e.g., HITS-CLIP [9, 10] and PAR-CLIP [11], are based on the 
crosslinking and immunoprecipitation (CLIP) of RNA–protein complexes that are found 
in direct contact. The crosslinked complexes are immunoprecipitated with a specific 
AGO antibody (AGO-CLIP) and the associated miRNAs and mRNA targets are col-
lected for further sequencing analysis. While these methods greatly decrease the target 
search space to precise regions on mRNAs, the identity of the specific miRNA engaged 
in each interaction is unknown and needs to be predicted bioinformatically [12, 13], e.g., 
by identifying which highly expressed miRNAs are associated with individual AGO-
CLIP peaks [14–17].

Recently, more advanced methods, e.g., cross-linking, ligation and sequencing of 
hybrids (CLASH) [18], covalent ligation of endogenous Argonaute-bound RNAs 
(CLEAR)-CLIP [19, 20], and modified iPAR-CLIP [21] have been developed to capture 
miRNAs bound to their respective targets. These methods are derived from AGO-CLIP 
and use an extra step to covalently ligate the 3’ end of a miRNA and the 5’ end of the 
associated target RNA within the miRISC. Subsequent cloning and sequencing of iso-
lated chimeric miRNA–target reads facilitate the identification of direct miRNA–tar-
get interactions. Using these methods, datasets of chimeric miRNA–target interactions 
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were generated from cells originating from human, mouse, the nematode Caenorhabdi-
tis elegans, and the cattle Bos taurus. An additional method, iCLIP [22], was applied to 
C. elegans to recover chimeric sequences without employing the ligation step. Further-
more, a re-analysis of published human and mouse AGO-CLIP data revealed additional 
chimeric miRNA–target interactions in libraries where no ligase was added [21].

The analysis of chimeric miRNA–target interactions from the above-mentioned stud-
ies revealed that many of them display non-canonical seed binding patterns and involve 
nucleotides outside of the seed region. Despite the great contribution that these experi-
mental methods can bring to the field of miRNA, their application is technically chal-
lenging. Therefore, to date, datasets have been generated for only a small number of 
model organisms (Table 1).

The limited number of experimentally identified miRNA–target interactions has pro-
moted the use of computational predictions to expand the miRNA–target repertoires. 
However, computational identification is very challenging because miRNAs are short 
and engage only a partial sequence complementarity to their targets, and the rules that 
govern the miRNA targeting process are not, yet, fully understood. Over the past 15 
years, many computational tools have been developed for miRNA target prediction. The 
first generation of these tools was based on very general rules of thumb, e.g., canonical 
seed pairing, miRNA–target duplex energy, conservation of the target site, and acces-
sibility (e.g., RNAhybrid [23], miRanda [24], TargetScan [25], and PITA [26]). These 
tools suffer from high false positive and false negative prediction rates [27–30] due to 
the limitations of general rules and insufficient knowledge about seedless interactions 
and base-pairing patterns in the non-seed region. In addition, the target prediction out-
puts of various tools only partially overlap, hindering the choice of candidates for further 
experimental validation or more global downstream analysis.

The accumulation of experimentally validated miRNA targets in public databases such 
as miRecords [31] and miRTarBase [32] has led to the development of new machine-
learning (ML) based methods for miRNA target prediction, e.g., SVMicrO [33], SMILE 
[34], mirMark [35], MiRTDL [36], and deepTarget [37]. Recently, a method that is based 
on a recommendation algorithm that focuses on network-based inference, miRTRS [38], 
was developed for miRNA–target prediction.

The availability of new datasets of high-throughput, direct miRNA–target interac-
tions (e.g., [18–21]) has led to the additional development of ML-based methods that 
incorporate, in their training phase, chimeric miRNA–target interactions [39–45]. 
These ML-based methods are designed to capture both canonical sites (based on seed 
complementarity) and non-canonical sites with pairing beyond the seed region. They 
incorporated tens to hundreds of different features in their models to represent e.g., the 
sequence, structure, conservation, and context of the interacting molecules, and they 
were reported to achieve significant improvement in overall predictive performance, as 
compared with earlier tools. Differences in several aspects can be observed among ML-
based methods, including the ML approach and the features used, the choice of data-
sets for training and testing, the inclusion or exclusion of non-canonical interactions 
from the training/testing set, and the approach of generating negative data. We provide 
a summary of some of the above-mentioned methods, focusing on these aspects, in the 
supplementary material (Additional file 1: Section 1 and Table S1). Briefly, the methods 
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chimiRic [39] and miRTarget [44, 45] use support vector machine (SVM) to classify 
miRNA–target interactions; TarPmiR [40] is a random-forest- (RF) based approach that 
provides the probability that a candidate target site is a true target site; and DeepMirTar 
[42], miRAW [41], and mirLSTM [43] apply deep-learning approaches that are based on 
stacked de-noising auto-encoder (SdA), deep artificial neural networks (ANN), and long 
short term memory (LSTM), respectively.

In these methods, the ML models were trained and tested on a dataset of chimeric 
interactions from human cells generated with the CLASH method [18]. In some of the 
studies, the dataset was filtered based on the location of the sites, seed pairing pattern, 
or functional evidence; in others, it was complemented with additional interactions from 
other experiments. For example, DeepMirTar [42] and mirLSTM [43] included only 
canonical and non-canonical sites that are located at the 3’UTRs and added interactions 
that were retrieved from miRecords [31]. chimiRic [39] and miRAW [41] complemented 
this dataset with seed-containing sites from AGO-CLIP data, while miRTarget [44] com-
plemented the dataset with endogenously ligated chimeras from human AGO-CLIP 
experiments. miRAW [41] and miRTarget v4 [45] intersected the CLASH dataset with 
other resources to retain only the interactions with functional evidence.

For additional independent testing, the above-mentioned methods used few other 
datasets that are not necessarily derived from ligation-based experiments. These datasets 
include human PAR-CLIP datasets, mouse HITS-CLIP dataset, chimeric interactions 
from iPAR-CLIP in C. elegans and CLEAR-CLIP in mouse [19], and microarray-based 
datasets following miRNA transfections or knockdowns (Additional file  1: Table  S1). 
Several public databases, such as miRWalk [46], miRNet [47], and miRDB [48], pro-
vide predictions for miRNA–target interactions produced by the mentioned ML-based 
models.

To date, the experimental datasets that are used to train the ML-based tools are lim-
ited to only a few model organisms. Nevertheless, there is a need to apply target pre-
diction tools to other species also, for which experimental data is unavailable. Although 
some of the existing ML methods examined the possibility to predict interactions in spe-
cies that are different from the species on which they were trained (e.g., [39, 40, 45]), in 
all cases the training was performed on human datasets and was applied on only a few 
other species. The ability of ML-based methods to provide predictions in the opposite 
direction (namely, from non-human species to human), or between species other than 
human, was not tested. Moreover, it is largely unknown how the patterns of miRNA–
target interactions evolve across bilaterian species and whether some features remained 
fixed throughout the evolution of the species, raising questions regarding the general, 
cross-species applicability of currently available ML methods.

In this study, we used available datasets of high-throughput direct miRNA–tar-
get interactions to determine whether miRNA–target interaction rules are transfer-
able across species. A flowchart describing the steps taken in this study is depicted in 
Fig. 1. We evaluated eight datasets from four species (human, mouse, worm, and cat-
tle), generated from various tissues and experimental protocols. We developed a pro-
cessing pipeline to transform these datasets into a standard format that enables their 
comparison and integration. We provide a detailed overview of the datasets, focusing on 
their size, miRNA-seed family composition, and interaction patterns, highlighting their 
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resemblance and dissimilarity. For each dataset, we trained and tested six commonly 
used ML classifiers for the prediction of miRNA–target interactions and evaluated the 
importance of the features we used. We then explored the relationships between data-
sets by measuring the divergence of their miRNA seed sequences and by evaluating the 
performance of cross-dataset classification. Our findings indicate that the transferability 
of miRNA-targeting rules between different species depends on several factors, includ-
ing the composition of seed families and the evolutionary distance. Our study provides 
important insights for the future development of target-prediction tools that could be 
applied to species for which experimental data is limited.

Results
Dataset processing

Eight miRNA–target chimera datasets have been previously generated for human, 
mouse, worm (C. elegans), and cattle (B. taurus). The details of each dataset are provided 
in Table 1, including the species, the cell type or developmental stage that was examined, 
and the experimental methods used to obtain the data. We applied a multi-step pipe-
line to process and filter these datasets (see Methods: Data processing). The numbers of 
interactions that passed the pipeline stages are shown in Table 2. Of all the interactions 

Fig. 1 A flowchart depicting the outline of the study. Overall, eight publicly available datasets of chimeric 
miRNA–target interactions were used in this study, including one from cattle (ca) B. taurus, two from the 
worm C. elegans (ce), three from humans (h), and two from mice (m). The study included four main steps. The 
first three steps (processing, characterization and classification) were applied separately on each dataset; in 
the fourth step, the relationships between datasets were examined
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in the datasets, 3’UTR interactions constitute 10–47%; among them, interactions with 
either canonical or non-canonical seed-pairing constitute 53–82%. The pipeline pro-
duced final datasets of various sizes: four small datasets (500–1200), two large datasets 
(2000–5000), and two massive datasets ( ∼18,000 each). As these final datasets were 
later used as input for machine learning (ML) tasks, we complemented them with syn-
thetically generated negative interactions, as described in the Methods: Generation of 
negative interactions. We extracted 490 features from each interaction, representing the 
properties of the interaction duplex and of the interaction site and its flanking region 
within the 3’UTR (see Methods: Features).

Dataset characteristics

In the following subsections, we characterize the interactions of each dataset, based on 
its miRNA distribution and base-pairing patterns. Since the negative interactions are 
generated synthetically, we focus on positive interactions.

miRNA distribution

We counted the appearance of miRNA sequences and miRNA seed families (nt2-7) and 
generated a distribution function for each dataset (Table 3). Our analysis indicates that 
the datasets are not uniformly distributed in terms of miRNA appearances (Fig. 2). Fur-
thermore, 90% of the interactions are dominated by a small subset of miRNA sequences 
(25–50%) or miRNA seed families (18–37%).

Seed types and base‑pairing density

We classified the interactions (i.e., the corresponding duplexes formed by the miRNA 
and the target site) based on two parameters: seed type (canonical or non-canonical, 

Fig. 2 Cumulative sum of miRNA sequence appearances in the examined datasets. Each curve corresponds 
to the cumulative sum of one of the datasets, where the minimum number of unique miRNA sequences 
needed to represent 90% of the interactions within the dataset is indicated by a filled circle. The height 
of each curve represents the size of the dataset and its width represents the number of unique miRNA 
sequences that comprise it
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see Methods) and base-pairing density [number of base-pairs (bp) within the duplex: 
low < 11 bp, medium: 11–16 bp, and high:> 16 bp]. We defined six classes, based on 
combinations of seed type and base-pairing density, and assigned each interaction to 
the appropriate class (Fig. 3). As can be seen in the figure, the datasets are rich, diverse, 
and include all the combinations of seed type and base-pairing density. However, two 
observations stand out: first, in terms of seed type, most interactions (48–70%) are non-
canonical; and second, for both seed type classes, most interactions demonstrate either 
medium or high base-pairing density, while the low base-pairing density interactions 
comprise only a small portion of the datasets. A similar analysis for the negative interac-
tions is shown in Additional file 1: Figure S1.

Intra‑dataset analysis

In this section, we evaluate the performance of ML-based binary classifiers to correctly 
classify positive and negative miRNA–target interactions within the same dataset. We 
first conducted a set of experiments with different types of commonly used ML classi-
fiers, and then we performed an in-depth analysis of the best-performing classifier by 
measuring different performance metrics and by estimating feature importance.

Evaluation of different machine‑learning methods

For each dataset, we generated 20 training-testing splits of the data, using a stratified 
random-split algorithm. This split algorithm ensures that each miRNA appears in both 
the training and the testing sets in the same proportion as in the original dataset. We 
then trained six widely used classifiers on the 20 training sets of each dataset and meas-
ured their performance in the classification of their respective testing sets. We calculated 
the means and standard deviations of the classification accuracy, as shown in Table 4. 
Notably, the XGBoost classifier achieved the best results across all datasets, with accu-
racy scores ranging from 0.82 to 0.94, with the following order of performance from low 
to high: h1, h3, m1, ce1, ce2, m2, h2, and ca1. We did not observe any bias in the order-
ing of the species in the list. We compared our results to previous ML-based approaches 
that were trained and tested on the human CLASH dataset designated as h1 in Table 1. 

Fig. 3 Classification of the miRNA–target duplexes, based on their base‑pairing patterns. Distribution of 
miRNA–target duplexes across six classes according to the seed type (canonical or non‑canonical) and 
the base‑pairing density (low: < 11 bp, medium: 11–16 bp, or high: > 16 bp). The number above each bar 
indicates the total number of interactions in the dataset
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The accuracy achieved by our classifiers for this dataset is comparable to those reported 
in previous studies (Additional file 1: Table S2).

In‑depth analysis of the XGBoost performance

As XGBoost achieved the highest classification accuracy across all datasets, we next 
conducted an in-depth performance analysis for this classifier, calculating five additional 
commonly used performance metrics: sensitivity (true positive rate, TPR), specificity 
(true negative rate, TNR), area under the curve (AUC), the Matthews correlation coef-
ficient (MCC), and the F1 score.

We found that the performance metrics of the XGBoost classifiers were similar and 
relatively high for all datasets (Table  5). As described above, we calculated the means 
and standard deviations of all metrics across 20 training–testing data splits. The average 
scores ranged as follows: AUC: 0.91–0.98, TPR and TNR: 0.82–0.91, MCC: 0.65–0.87, 
and F1 score: 0.82–0.94. In accordance with the accuracy metric calculated above, these 
findings indicate that all eight XGBoost classifiers (corresponding to each dataset) are 
accurate, balanced, and precise.

Top important features of each dataset

Next, of the 490 features that we used to describe the interactions, we sought to identify 
the top important features of each dataset, their relative scores, and the degree of over-
lap of the top features between different datasets. The XGBoost classifier provides a list 
of five feature-importance metrics: weight, gain, cover, total gain, and total cover. We 
extracted these five metrics for all 20 training–testing splits of each dataset and calcu-
lated their means and standard deviations (Additional file 2: Table S8). Of these metrics, 
we chose the gain metric, which reflects the contribution of each feature to the model, 
for further analysis. For each dataset, we sorted the features in descending order, based 
on their mean gain score. The plots of the feature-importance curves for all datasets are 
shown in Fig. 4. These analyses indicate that the gain score decays very fast (Fig. 4a) and 
that the top six features are significantly stronger than the other features (Fig. 4b). There-
fore, we extracted the top six features from each dataset, along with their scaled gain 
score (see Methods), into a unified list. This unified list consisted of 16 features in total 
(out of the maximum length of 48 features), indicating that many features are shared 
among the datasets. Table  6 shows the features ordered by their mean gain across all 
datasets, and the top six features of each dataset are marked with a star. At least 3 fea-
tures are common to each dataset pair, and only a small number of features belong to 
a single dataset, indicating that the features in the unified list may well represent all 
eight datasets. Notably, features related to the seed region (marked with italic font in 
the table) comprise half of the features in the list. This finding emphasizes the role of the 
seed region in the formation of miRNA–mRNA interactions.

Cross‑dataset analysis

In the previous section, we trained, optimized, and evaluated the performance of a dedi-
cated classifier for each dataset. Here, we examine the relationships between datasets. To 
that end, we first used a statistical measure to calculate the distance between the data-
sets and then visualized the datasets based on the unified list of the 16 most important 
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features that were reported above (Table  6). Finally, we evaluated the performance of 
each dataset-specific classifier in properly classifying the interactions in other datasets.

Kullback–Leibler divergence

We hypothesized that a classifier will perform better when it is tested on a dataset whose 
characteristics are similar to those of the training dataset than on a dataset with different 
characteristics. We thus looked for a measure to assess the level of similarity between 
pairs of datasets, which will consider the directionality of the classification task: the clas-
sifier is trained on one dataset (the source) and is applied to classify a second dataset 
(the target). We chose to use Kullback–Leibler (KL) divergence: an asymmetric measure 
of the difference between the probability distributions of the target and the source data-
sets. KL divergence, whose origins are in information theory, is widely used to measure 
information loss and thereby assess the degree to which samples from one distribution 
can be approximated by samples from another distribution (e.g., in cases where a simple 
distribution, such as a uniform or a Gaussian distribution, approximates experimental 
data).

Here, we used the KL divergence to measure the pairwise information loss between 
each of the two datasets that will be used, in the analysis described below, as the train-
ing and testing sets. For each pair, the calculated KL divergence can be interpreted as 
the amount of information lost when the training set represents the testing set. The 
divergence is calculated based on the miRNA seed family distribution of the datasets 
(see Methods: "Calculation of the Kullback–Leibler divergence").

Figure 5 shows the divergence between each pair of datasets. The divergence of a dataset 
with itself is zero and the divergence between datasets within the same species is typically 
lower than the divergence between different species. Notably, the divergence between the C. 
elegans datasets–either as targets  or as sources–and the other datasets is significantly higher 
(range 5–8.1) than the divergence between other pairs (range 1.2–3.8), indicating that seed 
distributions of other species poorly represent the C. elegans datasets, and vice versa. The 
asymmetry of the KL divergence can be observed, for example, in the pair (h1,h3), for which 
KL(target = h3 || source = h1) = 1.6 and KL(h1 || h3) = 2.1. Intuitively, this finding means 

a b

Fig. 4 Dataset feature importance plot based on gain score. The features are sorted in descending order 
of importance, from the highest importance (highest gain) to the lowest. a A full view of the gain plot, 
emphasizing the gain decay. b A zoomed‑in view, focusing on the 20 most important features
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that dataset h1 better approximates dataset h3 and that information loss is smaller than in the 
opposite case.

Dataset visualization

Visualization is an important step in the analysis of high-throughput biological data 
and can assist in revealing hidden phenomena. However, visualization is challenging 
when the data are represented by a large number of features. A dimensionality reduc-
tion algorithm enables the representation of the data in a 2-dimensional scatter-plot and 
facilitates the visual inspection of the data. To visualize the datasets in two dimensions, 
we focused on the experimental interactions of each dataset (the positive data). For 
each interaction, we selected the top 16 features from the unified list described above 
(Table  6) and performed a dimensionality reduction using the principal component 
analysis (PCA) technique. The results are shown in Fig. 6.

Figure 6 reiterates the fact that there are big differences in the sizes of the datasets, 
reflected in the density of the graphs. For example, the size of the human dataset h1 
is more than twice the size of the datasets h2 and h3, and, indeed, its graph is denser. 
In addition, notable differences can be observed in the 2-dimensional space spanned by 
each dataset: while the datasets ca1, h1, h3, and m2 are spread throughout the entire 
area, the C. elegans datasets (ce1, ce2) and the datasets composed of endogenously 
ligated chimeras from a mixture of experiments (h2, m1) are concentrated in a narrower 
part of the area.

Classification performance differences between datasets

We evaluated the performance of cross- dataset miRNA–target predictions, i.e., the 
performance of a classifier when applied to interactions from datasets different from 

Fig. 5 Kullback–Leibler (KL) divergence of all dataset pairs. Each cell (i,j) represents the divergence from 
a source dataset i to a target dataset j (KL(j || i)), based on their miRNA seed family distributions. The black 
frames indicate the results of dataset pairs originating from the same species
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the one it was trained on. We examined all 56 possible combinations, considering each 
dataset both as a training set and as a testing set. For each dataset, we loaded the 20 
XGBoost classifiers that we trained as described in "Intra-dataset analysis" section and 

Fig. 6 Two‑dimensional visualization of the datasets. Each point represents a single positive interaction 
after a dimensional reduction of its features’ space using PCA. The X and Y axes are the first and the second 
components of the PCA, respectively

Fig. 7 Cross‑dataset classification results. Each cell (i,j) represents the mean accuracy of the 20 XGBoost 
classifiers that were trained on dataset i (in "Evaluation of different machine‑learning methods" section) and 
tested on dataset j (ACC(i, j)). The black frames indicate the results of dataset pairs originating from the same 
species. The accuracy results for pairs (i,i) were taken from "Intra‑dataset analysis" section. Note that, for the 
ease of the interpretation of the results, the color scale is inverse to the scale used for the KL‑divergence plot 
in Fig. 5
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used them to classify the seven remaining datasets. Figure 7 shows, for each pair of data-
sets, the mean classification accuracy over the 20 tests; the standard deviation values 
and the results of other ML methods can be found in Additional file 1: Table S6, and 
Figures S3–S7.

Inspection of the results (excluding the diagonal) reveals variability in the classifica-
tion performance between the pairs, ranging from random, slightly above 0.5, to 0.91. 
The accuracy matrix is asymmetric, i.e., a pair in which a dataset i serves as a train-
ing set and a dataset j serves as a testing set achieves a different performance than a 
swapped pair. Pairs of datasets originating from the same species (indicated by black 
boxes in Fig.  7) generally achieved higher accuracy than pairs from different spe-
cies. Intriguingly, the human pairs (h2,h1), (h2,h3), and (h3,h1) achieved a relatively 
low accuracy score, which can potentially be explained by the differences in the diver-
sity of the datasets. In particular, the dataset h2 is smaller and less diverse than data-
sets h1 and h3 (Fig. 6), and thus a model that uses h2 as the training set achieves lower 
performance. In most cases, the KL divergence results coincide with the accuracy 

Table 1 Dataset information

Name Species and cell type/Developmental stage Experimental method References

ca1 B. taurus, Madin–Darby bovine kidney (MDBK) cells CLEAR‑CLIP [20]

ce1 C. elegans, L3 staged worms Modified iPAR‑CLIP [21]

ce2 C. elegans, Mid‑L4 WT (N2) worms ALG‑1 iCLIP endogenous ligation [22]

h1 Human embryonic kidney293 cells (HEK293) CLASH [18]

h2 Human, a mix of 6 datasets AGO‑CLIP endogenous ligation [21]

h3 Human hepatoma cells (Huh‑7.5) CLEAR‑CLIP [19]

m1 Mouse, a mix of 3 datasets AGO‑CLIP endogenous ligation [21]

m2 Mouse neuroblastoma N2A cells (ATCC) CLEAR‑CLIP [19]

Table 2 Summary of the data processing pipeline

a As provided by the original publications

Dataset ca1 ce1 ce2 h1 h2 h3 m1 m2

No. of  interactionsa 296,297 3627 4920 18,514 10,567 32,712 1986 130,094

No. of interactions in 3’UTRs 30,534 1704 1206 8507 2039 4634 902 33,100

Final dataset (canonical and 
non‑canonical interactions)

18,204 1176 992 5137 1150 2846 537 17,574

Table 3 Composition of miRNA sequences and miRNA seed families within datasets

Dataset ca1 ce1 ce2 h1 h2 h3 m1 m2

No. of interactions 18,204 1176 992 5137 1150 2846 537 17,574

No. of miRNA sequences 165 68 56 287 140 203 98 417

90% point [miRNA sequences] 49 26 24 99 58 68 49 111

(29%) (38%) (42%) (34%) (41%) (33%) (50%) (26%)

No. of seed families 119 46 35 254 133 191 88 343

90% point [seed families] 21 14 13 62 35 42 30 63

(18%) (30%) (37%) (24%) (26%) (22%) (34%) (18%)
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results. For example, for the pair (h1,h3), the KL(h3||h1) = 1.6 < KL(h1||h3) = 2.1 , 
while ACC(train = h1, test = h3) = 0.79 > ACC(h3, h1) = 0.69 , demonstrating that 
the dataset h1 better represents the dataset h3 and, as such, achieved better accuracy 

Table 4 Intra‑dataset classification accuracy of different machine learning methods

The cells contain the means and standard deviations (in brackets) of the accuracy results acquired from 20 models that were 
trained and evaluated on different training‑testing dataset splits

Dataset XGBoost RF KNN SGD SVM LR

ca1 0.937 0.885 0.828 0.797 0.895 0.836

(0.002) (0.004) (0.003) (0.033) (0.003) (0.004)

ce1 0.889 0.833 0.768 0.798 0.841 0.843

(0.014) (0.019) (0.019) (0.045) (0.015) (0.014)

ce2 0.891 0.858 0.768 0.819 0.862 0.847

(0.016) (0.018) (0.019) (0.034) (0.012) (0.016)

h1 0.824 0.769 0.731 0.746 0.795 0.770

(0.007) (0.008) (0.007) (0.011) (0.007) (0.007)

h2 0.904 0.869 0.857 0.860 0.879 0.892

(0.007) (0.011) (0.009) (0.03) (0.009) (0.009)

h3 0.835 0.769 0.744 0.752 0.805 0.795

(0.007) (0.009) (0.009) (0.034) (0.007) (0.010)

m1 0.847 0.795 0.758 0.760 0.819 0.800

(0.015) (0.016) (0.022) (0.038) (0.019) (0.019)

m2 0.900 0.826 0.797 0.798 0.873 0.833

(0.004) (0.004) (0.004) (0.017) (0.004) (0.004)

Table 5 XGBoost performance measurements

The cells contain the means and standard deviations (in brackets) acquired from 20 models that were trained and evaluated 
on different training‑testing dataset splits
a Area under the receiver operating characteristic curve
b Overall accuracy
c True Positive Rate (Sensitivity)
d True Negative Rate (Specificity)
e Matthews correlation coefficient

Dataset AUC a ACC b TPR c TNRd MCC e F1 score

ca1 0.983 0.937 0.932 0.943 0.874 0.937

(0.001) (0.002) (0.004) (0.004) (0.004) (0.002)

ce1 0.955 0.889 0.89 0.889 0.779 0.89

(0.009) (0.014) (0.018) (0.014) (0.028) (0.014)

ce2 0.958 0.891 0.884 0.899 0.783 0.89

(0.012) (0.016) (0.02) (0.019) (0.032) (0.017)

h1 0.908 0.824 0.816 0.833 0.649 0.822

(0.006) (0.007) (0.008) (0.008) (0.014) (0.007)

h2 0.972 0.904 0.886 0.924 0.809 0.902

(0.003) (0.007) (0.012) (0.011) (0.014) (0.007)

h3 0.914 0.835 0.823 0.849 0.671 0.832

(0.004) (0.007) (0.011) (0.009) (0.014) (0.008)

m1 0.914 0.847 0.834 0.862 0.695 0.844

(0.007) (0.015) (0.014) (0.024) (0.031) (0.014)

m2 0.963 0.9 0.891 0.909 0.8 0.899

(0.002) (0.004) (0.003) (0.005) (0.008) (0.004)



Page 14 of 27Ben Or and Veksler‑Lublinsky  BMC Bioinformatics          (2021) 22:264 

results than vice versa. Notably, the KL(h2||h1) = 2.7 ≈ KL(h1||h2) = 2.5 , but the 
ACC(h1, h2) = 0.86 > ACC(h2, h1) = 0.58 . This finding indicates that additional fac-
tors—e.g., the patterns of interactions—affect the ability to accurately classify miRNA–
target interactions.

Pairs of datasets originating from different species and that included C. elegans as 
either the training or the testing set achieved poor performance, ranging from 0.56 to 
0.78. As described above, the divergence scores of these pairs are between two and four 
times higher (ranging from 5 to 8.1) than the scores of the other pairs. This finding may 
indicate that the seed distributions of human, mouse, and cattle datasets are not well 
represented by the seed distributions of the C. elegans datasets, and vice versa. Other 
pairs of two species achieve a much higher accuracy, up to 0.91. The lowest accuracy in 
these mixed pairs was observed for pairs that contained h1 as the testing set. Notably, 
this dataset was used by previously developed methods (reviewed in Additional file 1: 
Table S1) for training/testing purposes only, and it has never been evaluated as an inde-
pendent testing set. Additional factors that could influence the classification accuracy 
are further discussed below.

Discussion
While the identification of bona fide miRNA targets is crucial for elucidating the func-
tional roles of miRNAs, it remains a major challenge in the field. Novel experimental pro-
tocols, which can produce high-throughput, unambiguous interacting miRNA–target 

Table 6 Feature importance

The table shows 16 features representing the union of the top 6 features of each dataset, along with their gain values which 
were computed by XGBoost. The features are ordered by their mean gain, scaled to the range of (0, 100), across all datasets. 
For the unscaled version of the table, see Additional file 1: Table S5

*Belongs to the top 6 features of the dataset
bBoolean feature
nNumeric feature

Feature/Dataset ca1 ce1 ce2 h1 h2 h3 m1 m2 Mean

Number of GU bp within the seedn 100* 87* 95* 29* 40* 100* 28 100* 72

bp in the 1st nt of the seedb 63* 79 34* 70* 25* 30* 27 85* 52

Number of GU bp within the siten 42* 71* 32* 100* 19 53* 35* 28* 48

Proportion of G in mRNA at the site regionn 12 74* 12 12 36* 33* 100* 37* 39

Duplex minimum free energyn 13* 45 11 10 100* 19 35* 52* 36

Number of bp at location 2–7n 42* 33 100* 12 18 36* 13 18 34

Proportion of GG in mRNA at the site regionn 30* 21 10 12 7 30* 79* 26* 27

bp in the 4th nt of the seed b 8 100* 21 10 11 16 2 12 22

Number of bulges outside the seedn 3 60* 6 25* 32* 9 9 8 19

bp in the 2nd nt of the seed  b 8 42 37* 7 11 13 15 6 17

bp in the 5th nt of the seed b 12 27 14 14 6 15 29* 12 16

Number of GC bp within the seed n 7 22 24* 18* 12 13 11 12 15

Number of GC bp outside the seedn 4 27 11 10 27* 8 6 5 12

Accessibility (nt = 21, len = 10)n 9 19 7 6 25 7 12 7 11

minimum free energy of the target site + 
50nt flanking regionsn

8 11 6 7 8 11 36* 6 11

Number of mismatches inside the seed n 4 3 15 19* 0 13 2 9 8
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datasets, have indeed pushed the field forward in recent years; however, due to technical 
challenges involved in the application of these methods, there is a constantly increas-
ing interest in using computational approaches for miRNA target prediction, and espe-
cially for approaches that are based on advanced ML models. Several studies successfully 
trained and applied classic ML [39, 40, 44, 45] and deep-learning [41–43] methods to 
some of the experimental miRNA–target datasets from a few model organisms. How-
ever, our limited understating of the evolution of miRNA–target interactions raises 
questions regarding the applicability of these tools to species for which experimental 
training data is unavailable.

The ultimate goals of this study were to evaluate the transferability of miRNA–target 
rules between the examined species and to identify and compare their most influential 
interaction features. To this end, we systematically characterized the available miRNA–
target chimeric datasets and conducted intra- and cross- dataset classification analyses 
using ML approaches.

Available data

The availability of large and high-quality datasets is crucial for ML-based research. In 
the field of experimental miRNA–target identification, several approaches are available 
for generating high-throughput datasets, each with its own advantages and limitations 
[5, 6]. In our analysis, we focused on chimeric miRNA–target datasets generated by 
experimental or endogenous ligation (by, e.g., CLASH [18] or PAR-CLIP [21]), as these 
datasets provide direct evidence for interactions between a miRNA and a specific tar-
get site. Furthermore, these datasets contain many non-canonical interactions, which 
enrich the repertoire of miRNA–target interactions. On the other hand, the main limi-
tation of ligation-based methods is the low yield of chimeric reads that are recovered 
( ∼ 2%), suggesting that many miRNA–target interactions remain uncaptured. In this 
work, we assume that the captured interactions represent an unbiased sampling of all 
the interactions in the examined cells. Additional advances in the efficiency of ligation-
based methods and deeper sequencing will provide richer datasets, which could be eas-
ily incorporated into our analysis for further research.

We utilized eight available chimeric datasets, from four species, which were generated 
by different experimental protocols. We developed a processing pipeline to transform 
and unify the different data formats that we encountered during the collection of the 
datasets. This pipeline is a powerful infrastructure that will enable us, with relatively 
low effort, to add more data sources to the analysis in the future, when these become 
available.

A thorough analysis of the datasets

We characterized the datasets based on their miRNA content and base-pairing patterns. 
Our analysis of the frequencies of miRNA sequences revealed that there are differences 
in miRNA sequence distributions between datasets, even if they originated from the 
same species. In addition, each dataset is dominated by a small set of miRNAs (30–50% 
of the most frequent miRNAs comprise 90% of all interactions). These distributions 
mirror the in vivo distributions, as miRNA frequency in miRNA–target chimeras was 
reported to correlate with total miRNA abundance [19].
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We continued categorizing the interactions based on their seed-pairing type (canoni-
cal and non-canonical) and base-pairing density. Perfect seed complementarity (referred 
to as canonical seed pairing) between target sites and miRNA seed sequences (positions 
2–7 or 2–8) has long been recognized as a critical dominant feature that determines 
miRNA targeting efficiency [25, 49, 50]. Nevertheless, in recent years, several exam-
ples of functional miRNA–target interactions without perfect seed pairing have been 
reported, featuring GU pairs, mismatches, and bulges in the seed region (referred to as 
non-canonical seed pairing). Examples include the well-established let-7 targeting of lin-
41 in C. elegans [51, 52], with one site containing a one-nucleotide bulge in the target 
and the other site containing a GU pair. Moreover, non-canonical miRNA–target sites 
known as “nucleation bulges”, in which the target sites contain a bulged-out G in the 
seed, were identified for miR-124 when analyzing AGO HITS-CLIP data from the brain 
of mice [53]. The functionality of non-canonical sites is still a matter of debate. While 
studies that generated miRNA–target chimeras provided evidence for the functionality 
of the recovered non-canonical interactions [18, 21], a recent analysis of non-canonical 
target sites revealed that, although these sites are bound by the miRNA complex, they do 
not appear to be broadly involved in the regulation of gene expression [54]. Future work 
will need to focus on generating miRNA functional high-throughput datasets [55] across 
species, which could be combined with datasets of chimeric interactions, to provide a 
more robust starting point for similar types of studies.

We showed that the majority (48–70%) of the interactions in most datasets are non-
canonical. Furthermore, in both canonical and non-canonical groups, a large fraction 
of the interactions is characterized by either a medium or a high density of base-pairing 
(11–16, and >16 base-pairs, respectively), predicting the existence of additional pairing 
beyond the seed region. These auxiliary non-seed interactions were suggested to com-
pensate for imperfect seed matches [56, 57]. Moreover, non-seed interactions were also 
shown to contribute to target specificity among miRNA seed family members (same 
seed, divergent non-seed sequence), both in the case of canonical and of non-canonical 
seed pairings [19, 22].

Features and their significance

In this work, we partially adopted the pipeline from DeepMirTar [42], where the inter-
actions are represented by 750 features. These features include high-level and low-level 
expert-designed features that represent the interacting duplex, sequence composition, 
free energy, and site accessibility and conservation. Additional raw-data-level features 
encode the sequences of the miRNA and the target site. We adopted some of the expert-
designed features in our study and used a total of 490 different features to describe the 
interactions, enabling the model to identify and learn different interaction patterns. 
However, we did not include, the raw-data-level features so as to avoid potential infor-
mation-leakage from the training set to the testing set for two main reasons. First, we 
noticed that the miRNA seed families are not uniformly distributed. Second, in our 
study, the negative sequences were synthetically generated, such that the seed region 
does not match any annotated miRNA. Accordingly, including raw-data-level features 
could have led the ML model to learn to distinguish between real and mock miRNA 
seeds. Moreover, in such a case, the model may be over-fitted and fail to generalize the 
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rules of interactions. Indeed, and perhaps not surprisingly, we achieved higher classifi-
cation performance by including the raw-data-level features in our models (Additional 
file 1: Table S4). Another study [41], which used raw sequence features, addressed this 
issue by generating a negative dataset based on experimentally verified data, instead of 
using mock miRNAs. A comparison between different methods for the generation of 
negative datasets is an interesting direction for future research. In particular, the eval-
uation of how the combination of these methods and different feature sets affects the 
performance of miRNA–target prediction classifiers would help to generate standard 
approaches for future studies.

The feature-importance analysis revealed the existence of a small group of significantly 
dominant features in all datasets. Although the analysis identified the features for each 
dataset independently, we found a significant overlap between the groups and that the 
unified group contains only 16 features. Importantly, half of these features are seed-
related, reiterating the significance of this region in miRNA–target interactions [54].

Ideally, in ML, we want the ratio between samples and features to be sufficiently high 
to result in a robust model and to avoid over-fitting. Some of the datasets in our collec-
tion are relatively small, with a low ratio of interactions to features; the ratio is ∼ 4 for 
ce1, ce2, h2, and ∼ 2 for m1. A low ratio can produce models with high bias and high 
variance. In general, a reduction in the number of features, when possible, was shown to 
be a successful practice [58]. In the current study, some of the features are highly corre-
lated and, therefore, can be combined. Several methods for feature selection and dimen-
sionality reduction may be evaluated in the future. As a preview, we used a basic method 
for feature selection, based on the XGBoost feature importance data. We used the 16 
features taken from Table  6 and repeated the classification analysis (Additional file  1: 
Table S7, Figure S2). The results were similar to the results obtained when all features 
were included, indicating that future research that will evaluate different dimensionality 
reduction methods should be considered to optimize the classification models.

Training and testing dataset split

The procedure of splitting the data into a training and a testing set has a crucial role 
in the evaluation of ML models. In the miRNA–target prediction task, there is no pre-
defined split to training and testing sets, as is common in other fields, such as in com-
puter vision (e.g., MNIST [59]). Therefore, we used three strategies to reduce the effect 
of the split on our results: (1) using a stratified training–testing split, which ensures the 
same distribution of miRNA sequences in both the training and testing sets; (2) gener-
ating control sets by using a pure-random split algorithm (Additional file  1: Text and 
Table  S3); and (3) generating several training–testing sets by using different random 
states for the split approaches (1) and (2), and reporting the means and the standard 
deviations of the results. Indeed, we obtained similar results and very low standard devi-
ation values with both splitting methods, confirming that the split strategies did not bias 
our results. It should be noted that, in a cross-dataset evaluation, the testing set is taken 
as a whole, without any split. Thus, the cross-data result is affected only by the quality of 
the classifier, without any effect of the splitting procedure.
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Using a tree‑based classifier

For our thorough analysis, we used XGboost [60], which is one of the leading gradi-
ent boosting tree-based tools for classification [61]. As compared with deep-learning, 
XGboost is less computationally expensive and usually does not require a GPU for train-
ing, and it can work with either small or large datasets. Additionally, XGboost provides 
the ability to evaluate and explain the classification rules and rank the features by their 
importance. We show that XGboost achieved the best performance as compared with 
the statistical ML algorithms (e.g., SVM and LR) in both the intra- and cross-dataset 
analyses (Table 4, Fig. 7 and Additional file 1: Figures S3–S7). Furthermore, the results 
of XGboost were comparable to those of deep-learning algorithms that were previously 
applied on the human dataset h1 [37, 42].

Cross‑dataset analysis

Most previous works trained and tested their predictive models based on a single chi-
meric miRNA–target dataset (usually h1), sometimes complemented by additional 
experimental data from databases (e.g., [31, 32]) or AGO-CLIP data [39–43]. These 
models were then evaluated on portions of the data that were excluded from the train-
ing set and, in some cases, on a few independent datasets from either the same or other 
species (Additional file  1: Table  S1). The contribution of our work is in providing the 
first thorough analysis of all available miRNA–target chimeric datasets, outlining their 
similarities and dissimilarities. Additionally, we explored the ability to learn classifica-
tion rules from one dataset and apply them to another dataset, considering all possible 
combinations of dataset pairs. The accuracy results of cross-dataset classification ranged 
between 0.56 and 0.91. To explain these results, we examined several factors:

(1) Evolutionary distance: We estimated the distance for each pair of species (i.e., the 
time since the species diverged from their common ancestor; Table 7). Of the four exam-
ined species, the mouse and human are the closest to each other, with cattle equally and 
relatively close to them, while C. elegans is the most distant from all. Indeed, the highest 
accuracy was obtained when we trained and tested datasets from the same species, while 
the lowest accuracy was obtained when we trained and tested combinations of the C. 
elegans datasets and the datasets from the other species.

(2) Kullback-Leibler (KL) divergence scores: We measured the divergence for each pair 
of datasets based on their miRNA seed family distribution. Previous analyses of chimeric 
datasets showed that individual miRNAs are enriched for specific classes of base-pairing 
patterns [18, 22], suggesting that they may follow different targeting rules. Therefore, dif-
ferences in the distributions of miRNA sequences in the training sets may lead to biases 
in the rules learned by an ML model, which could partially explain the high correlation 

Table 7 Estimated divergence time [MYA] between species in our study

Each cell represents the time since the pair of species from the corresponding row and column diverged from their common 
ancestor (Source: [74])

Mouse Cattle C. elegans

Human 90 96 797

Mouse 96 797

Cattle 797
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that we found between KL-divergence and classification performance. Interestingly, 
and perhaps not surprisingly, the KL divergence results coincide with the evolutionary 
distance between the species, where the C.elegans datasets exhibit the highest distance 
from the datasets of other species. The divergence within the same species is, on average, 
lower than the divergence between different species. This divergence probably associates 
with the differences in miRNA distributions among the different cell types or develop-
mental stages from which the datasets were generated.

(3) Area covered by a 2-dimensional feature space: We visualized the datasets by their 
features in two dimensions using PCA, which highlighted datasets with a lower spread. 
In particular, the C. elegans datasets are exceptionally concentrated in a narrower area. 
In addition, the datasets m1 and h2, which represent endogenously ligated chimeras 
from a mixture of AGO-CLIP experiments, are smaller and less spread than other data-
sets from the same species. The latter may explain the lower accuracy obtained in cross-
datasets experiments that employed these datasets as the training sets.

Conclusions
The accuracy results obtained in our cross-datasets experiments are relatively high when 
the species are within a certain evolutionary distance, reflecting the ability of the ML 
model to generalize interaction rules, learned from a specific dataset, into more univer-
sal interaction rules. Taken together our findings suggest that target-prediction mod-
els could also be applied to species for which experimental training data is limited or 
unavailable, as long as they are sufficiently close to the species whose data is used for 
training.

As more miRNA–mRNA interaction datasets become available, they could be pro-
cessed with our pipeline and incorporated into the cross-dataset analysis. In the future, 
the expansion of such analyses to other datasets may also provide insights about the evo-
lution of miRNA-targeting and identify both universal and species-specific features.

We speculate that deep learning models may boost classification performance. Several 
future research directions that are based on deep learning techniques would be impor-
tant to follow. The first technique is Transfer Learning, which combines the information 
from several datasets, and could be used to examine the prediction accuracy in close 
and in more distant species. The second technique is Multitask Learning (MTL), which 
jointly learns multiple classification tasks, and can benefit from the observation that all 
the datasets are represented by the same features. MTL is effective when data are limited 
and high-dimensional, thereby directing the model to focus on the most relevant fea-
tures, based on the information provided by other jointly learned tasks.

Methods
Software packages and tools

The code developed during this research was implemented as a Python package run-
ning on a Linux platform and employs bioinformatics, data analysis, and ML packages. 
Specifically, the bioinformatics packages include ViennaRNA (v2.4.13) [62], Biopython 
(v1.72) [63], and NCBI Blast [64]; the data analysis packages include pandas (v0.23.4) 
[65] and numpy (v1.15.4) [66]; and the ML packages include scikit-learn (v0.20.1) [67] 
and XGBoost (v0.81) [60].
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Data processing

We acquired eight high-throughput chimeric miRNA–target datasets from four dif-
ferent species: human, mouse, cattle (Bos taurus), and worm (Caenorhabditis elegans) 
(Table 1). The details of each dataset are provided in Table 1, including the cell type or 
developmental stage that were examined and the experimental methods to obtain the 
data. Five of the datasets (ca1, ce1, h1, h3, m2) were generated by AGO-CLIP with an 
extra step to covalently ligate the miRNA and the target RNA. An additional C. elegans 
dataset (ce2) contains chimeras recovered from an iCLIP experiment that did not apply 
an additional ligation step. Two datasets (h2, m1) were generated by a re-analysis of pub-
lished mammalian AGO-CLIP data, which also recovered miRNA–target chimeras in 
libraries in which no ligase was added [21]. The h2 and m1 datasets contain chimeras 
from a mixture of six and three independent experiments, respectively.

We downloaded the datasets’ files from the journals’ websites [18–22]. In addition, 
we downloaded miRNA sequences from miRBase (releases 17–22) [3], and 3’UTR 
sequences from the Ensembl Biomart database [68]. We downloaded genomic sequences 
for C. elegans from wormBase [69], and for human and mouse from the UCSC Genome 
Browser [70]. The datasets are provided in different formats, containing different lev-
els of information about the interactions. Therefore, we developed a processing pipe-
line to transform the datasets into a standard format and to include the following fields: 
metadata (interaction ID, interaction source), miRNA name and sequence, target site 
sequence (the site where the interaction occurred), and, for sites located at the 3’UTRs, 
the corresponding 3’UTR sequence and the coordinates of the site within it.

We started the pipeline by retrieving the missing miRNA sequences by their name 
from miRBase (for datasets ca1, ce2, h3, m2). Then, we extracted the target sequences 
(for datasets ce2, h3, m2) based on the genomic coordinates. The target sequences 
are located in various mRNA regions, such as the 5’UTR, the coding sequence, or the 
3’UTR. miRNA target sites located at the 3’UTRs of mRNA sequences are considered 
to be the most functional sites [35, 71]. Therefore, in our analyses, we discarded sites 
that fall outside the 3’UTRs. Since most datasets do not provide the regions contain-
ing the interactions, our next step was to obtain that information. We used Blast [64] to 
match the target mRNA sequences against the 3’UTRs downloaded from the Ensembl 
Biomart database. We considered only full-match results. In cases where multiple UTRs 
exist per gene, we considered the longest UTR. The full 3’UTR sequences were kept for 
the extraction of flanking site features, as described below. Finally, we took the list of 
miRNA–target pairs and examined the hybrid structure of the interacting sequences. 
We applied the ViennaRNA suite (RNAduplex) [62] to calculate the interaction duplex, 
using the miRNA and the target site sequences. We then classified the duplexes based on 
their seed type: canonical seed, non-canonical seed, and “other”. Canonical seed interac-
tions are defined as interactions with exact Watson–Crick pairing in positions 2–7 or 
3–8 of the miRNA, while non-canonical seed interactions may contain GU base-pairs 
and up to one bulged or mismatched nucleotide at these positions [18]. We  kept only 
canonical and non-canonical seed interactions, and discarded all other interactions 
from the analysis. Interactions that passed all pipeline stages were designated as positive 
interactions and were considered for further analysis (Table 8).



Page 21 of 27Ben Or and Veksler‑Lublinsky  BMC Bioinformatics          (2021) 22:264  

Generation of negative interactions

To generate the negative interactions, we used a synthetic method similar to that 
described in [35, 72, 73]. For each positive interaction appearing in the dataset, we gen-
erated a negative interaction as follows: First, we generated a mock miRNA sequence 
by randomly shuffling the original sequence until there was, at most, one match in the 
regions 2–7 and 3–8 between the mock miRNA and any real miRNA of the examined 
species (according to miRBase). Next, we provided the mock miRNA and the full 3’UTR 
sequence as inputs to RNAduplex, which is optimized for computing the hybrid struc-
ture between a short probe sequence and a long target sequence. We repeated these two 
steps until the output duplex had either a canonical seed or a non-canonical seed. We 
managed to generate a negative interaction for each positive interaction, such that, at the 
end of this process, the datasets were balanced.

Calculation of miRNA distribution

We counted the occurrence of each miRNA sequence within a dataset and used this 
information to generate the cumulative distribution function (CDF), shown in Fig.  2. 
We used the argmax function to find the 90% value, which returns the first point in the 
CDF that is higher than 90%. The seed distribution was calculated by first clustering the 
miRNA sequences based on their seed sequence (position 2–7), and then following the 
same steps described above.

Table 8 Data processing pipeline

The table describes the set of actions required to transform the datasets into a uniform format to serve as input for further 
data analysis and machine learning experiments. The check‑mark sign ( � ) represents a piece of information taken directly 
from the paper without additional calculations

Source [18] [21] [20] [22] [19]

Datasets h1 ce1, h2, m1 ca1 ce2 h3, m2

miRNA sequence � � miRBASE miRBASE miRBASE

Target sequence � � � Wormbase UCSC 
genome 
browser

Site region Ensembl Biomart + Blast

Duplex structure Vienna RNAduplex

Seed filter Canonical and non‑canonical seeds only

Table 9 Feature categories that are used to represent miRNA–target interactions

Category No. of features Description Group

Seed features 13 Seed composition and properties High‑level

Free energy 7 Free energy of the duplex and the mRNA at different regions High‑level

mRNA composition 62 mRNA composition in the site and flanking regions High‑level

miRNA pairing 38 Binding information at each miRNA position and across the 
miRNA–target duplex

Low‑level

Site accessibility 370 Unpaired probabilities of each base Low‑level

Total 490
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Features

To represent miRNA–target interactions, we used 490 expert-designed features, 
which are classified into two categories (high level and low level) and five subcatego-
ries (Table 9). Four of the subcategories (free energy, mRNA composition, miRNA pair-
ing, and site accessibility) were adopted from [42], while the seed features group was 
designed during this work. For a full description of the features, see Additional file 4: 
Table S9.

The free energy category includes seven features representing the minimum free energy 
of the miRNA–mRNA duplex and the mRNA sequence at different regions, including 
seed, non-seed, site, and flanking regions.

The mRNA composition category consists of 62 features that provide information 
regarding the target mRNA, namely, the distance of the site from the edges of the 3’UTR 
(two features), 1- and 2-mer sequence composition within the site region (20 features), 
and 1- and 2-mer sequence composition of the up and down 70nt flanking region (20 
features each).

The miRNA pairing category consists of 38 features that describe the duplex itself, 
including information about base-pairs in each location of the miRNA (20 features) and 
a total count of base-pairs, mismatches, and gaps in the site region (18 features).

The site accessibility features were calculated for each 3’UTR sequence containing the 
seed site, using RNAplfold in the ViennaRNA package [62] with the following param-
eters: winsize = 80, span = 40, and ulength = 10, as was suggested by previous works 
[35, 42]. The output of RNAplfold provided, for each nucleotide, the mean probability 
that regions of lengths 1–10 (ulength), ending at this nucleotide, are unpaired. Of these 
calculations, we considered only the region that corresponds to the seed region on the 
target mRNA (p2–p8) with 15 flanking bases to either side (37 bases in total), resulting 
in 37× 10 = 370 features.

In addition to the above-mentioned features, we designed a new representation for the 
seed features, which describes the base-pairing characteristics of the seed region (posi-
tions 1–8 on the miRNA). This new representation includes 13 features: three features 
describe the number of interactions in [nt1–8, nt2–7, and nt3–8]; three features describe 
the number of GUs in [nt1–8, nt2–7, and nt3–8]; three features provide information 
about the number of mismatches (before the first match, inside the seed, and after the 
last match in the seed region); two features describe the number of bulges (miRNA side 
and target side); and two features address additional properties (starts with A and index 
of the first base-pair).

Splitting of the data into training and testing sets

The appropriate determination of the training and testing sets is crucial for obtaining 
reliable results. Specifically, the testing set must be sufficiently large, cannot contain 
samples from the training set, and it needs to be representative of the entire dataset. 
Accordingly, we implemented a stratified random split algorithm. The algorithm ensures 
that each miRNA appears in both the training and testing sets at the same proportion as 
in the original dataset. For example, if a specific miRNA constitutes 10% of the interac-
tions in the original dataset, the algorithm ensures that its proportion in both the train-
ing and testing sets is 10%. Within the stratified split, the assignment of the interactions 
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to training (80%) and testing (20%) sets was done randomly according to a random state. 
The interactions of miRNAs that appeared only once in the dataset were assigned to the 
testing set. We repeated this process 20 times with different random states, yielding 20 
training sets and their corresponding 20 testing sets for each dataset. In addition, for 
each dataset, we generated five control sets by a fully random algorithm, which does 
not take into account miRNA distributions. We used these sets as a reference baseline, 
to assess the influence of the stratified split algorithm on the results (Additional file 1: 
Section 2).

Evaluation of different machine‑learning methods

To classify miRNA–target interactions, we chose six ML methods that are widely used in 
the field of computational biology: XGBoost [60], Random Forest (RF), K-nearest neigh-
bors vote (KNN), regularized linear models with Stochastic Gradient Descent (SGD), 
Support Vector Machine (SVM), and Logistic Regression (LR). We performed the fol-
lowing optimization and learning steps for every combination of (dataset, classifier, data 
split), altogether yielding 1200 computationally intensive tasks (Eq. 1):

First, we searched for the classifiers’ optimal hyper-parameters. We performed an 
exhaustive search using sklearn GridSearchCV with a 4-fold cross validation, optimized 
for accuracy performance. Then, we explored the exhaustive search results and identi-
fied the set of parameters that achieved the best accuracy results. We saved the classifier 
corresponding to this set of parameters and used it to evaluate the accuracy of classifica-
tion on the testing set. We provide the values of the parameters for the hyper-parameter 
optimization in Additional file 3 and the mean and standard deviations of the accuracy 
results (for the 20 stratified splits and the 5 control splits) in the "Results" section and in 
Additional file 1, respectively.

We continued with the XGBoost classifier to calculate the detailed performance meas-
urements and analyze feature importance. We calculated six widely used performance 
metrics, including accuracy (ACC), sensitivity (true positive rate, TPR), and specificity 
(true negative rate, TNR). In addition, we calculated metrics that are widely used for 
model comparisons, such as the Area Under the Receiver Operating Characteristic 
Curve (ROC AUC), the Matthews Correlation Coefficient (MCC), and the F1 score (also 
known as the balanced F-score or F-measure). The description of these metrics and the 
equations for their calculation are provided in Additional file 1: Section 3 and Equations 
S1–S5. The means and standard deviations for each measure were calculated on the 20 
stratified training–testing splits (Table 5).

Identification of the top important features

First, we extracted the top important features for each dataset by using the gain metric 
provided by XGBoost, calculating the mean gain of each feature across the 20 different 
stratified splits, and sorting the list of features according to the mean gain. We found 

(1)

optimization tasks = #classifiers × #datasets ×
(

stratified splits + control splits
)

= 6× 8× (20+ 5)

= 1200
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that the top six features are the most dominant ones (for all datasets) and that the gain 
score of the other features is lower by an order of magnitude. Therefore, we kept only 
the top six features of each dataset. Second, to enable comparisons between datasets, 
we scaled the mean gain scores of each dataset to a range of 0–100 by dividing it by the 
maximum value and multiplying by 100. Third, we composed a unified list of the top 
features from all datasets and generated a table that includes the scaled mean gain values 
for each feature (row) in each dataset (column). Finally, we calculated the mean score for 
each feature across all datasets (last column in the table) and sorted the table in descend-
ing order (see Table 6).

Calculation of the Kullback–Leibler divergence

The KL divergence is calculated on two probability distribution functions and measures 
the difference and the distance between them, according to Eq. (2).

We used the KL divergence to measure the pairwise information loss between each two 
datasets. P(x) and Q(x) are the miRNA seed distribution functions, as explained in the 
"Calculation of miRNA distribution" section, above. Q(x) is the approximation distribu-
tion (calculated from the training set) and P(x) is the true distribution (calculated from 
the testing set). χ is the union of all the miRNA seeds that appear in both datasets.

Dimensionality reduction using PCA

The dimensionality reduction algorithm enables the representation of the data in 
a 2-dimensional scatter plot and facilitates the visual inspection of the data. We per-
formed a dimensional reduction using the PCA algorithm to transform the datasets into 
2-dimensional representations. We used the same transformer for all datasets, so as to 
enable their comparison. We extracted the columns corresponding to the top 16 features 
that were found as described in "Identification of the top important features" section; we 
refer to these features as the selected features. Since the datasets are of different sizes, we 
first oversampled the datasets by a random sampler to bring them to the size of the larg-
est dataset. Then, we concatenated the oversampled datasets together. Next, we stand-
ardized the selected features by subtracting the mean and scaling to the unit variance 
for each feature independently. Finally, we fitted a PCA transformer and applied it to the 
original datasets (without oversampling), yielding the two-dimensional representation of 
the datasets on the same vector space. The dimensionality reduction was conducted on 
the positive experimental interactions only.

Evaluation of the classification performance between datasets

We evaluated the performance of XGBoost in the classification of interactions derived 
from a dataset that is different from the dataset it was trained on. We enumerated over 
all the 56 possible pairs of training and testing datasets: ( traini, testj ). For each pair, we 
loaded 20 XGBoost classifiers (corresponding to 20 splits) generated for dataset i (as 

(2)DKL(P||Q) =
∑

x∈χ

P(x)log

(

P(x)

Q(x)

)
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described in "Evaluation of different machine-learning methods" section) and evaluated 
their performance on the entire dataset j (without splitting it). Then, we calculated the 
mean and the standard deviation of the accuracy results of the 20 tests. A similar analy-
sis was also performed with other examined ML methods.

Abbreviations
ACC : Accuracy; AUC : Area under the curve; BP: Base‑pair; CLASH: Cross‑linking, ligation and sequencing of hybrids; CLIP: 
Cross‑linking immunoprecipitation; KL: Kullback–Leibler; LR: Logistic Regression; MCC: Matthews correlation coefficient; 
miRISC: miRNA‑induced silencing complex; ML: Machine learning; PCA: Principal component analysis; RF: Random Forest 
(RF); SGD: Stochastic Gradient Descent; SVM: Support vector machine; TNR: True Negative Rate; TPR: True Positive Rate; 
UTR : Untranslated region.

Supplementary Information
The online version supplementary material available at https:// doi. org/ 10. 1186/ s12859‑ 021‑ 04164‑x.

Additional file 1. 1. Review of Machine‑Learning (ML) based methods; 2. Training and testing random dataset split; 
3. Description of the classification performance metrics;  Supplemental Figure S1 to S7;  Supplemental Tables S1 to 
S7; Equations S1 to S5.

Additional file 2. Table S8. Feature importance.

Additional file 3. Grid search params.yaml.

Additional file 4. Table S9. Features and their definition.

Acknowledgements
We would like to thank DeepMirTar team for providing us the code of their pipeline, which we partially adapted for use 
in this project.

Authors’ contributions
IVL envisioned the project and supervised the work. GBO designed and implemented the processing pipeline and the 
machine learning system. GBO and IVL planned the evaluation tasks and performed the analysis. GBO and IVL wrote the 
manuscript. Both authors read and approved the final manuscript.

Funding
This research was supported by the ISRAEL SCIENCE FOUNDATION (Grant No. 520/20) to IVL. The funding agency pro‑
vided funds for the article processing fees, but had no role in study design, in data collection, analysis and interpretation, 
or in manuscript preparation.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author upon reason‑
able request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 5 October 2020   Accepted: 4 May 2021

References
 1. Finnegan EF, Pasquinelli AE. Microrna biogenesis: regulating the regulators. Crit Rev Biochem Mol Biol. 

2013;48(1):51–68.
 2. Huntzinger E, Izaurralde E. Gene silencing by microRNAS: contributions of translational repression and MRNA decay. 

Nat Rev Genet. 2011;12(2):99–110.
 3. Kozomara A, Griffiths‑Jones S. miRBASE: annotating high confidence microRNAS using deep sequencing data. 

Nucleic Acids Res. 2013;42(D1):68–73.

https://doi.org/10.1186/s12859-021-04164-x


Page 26 of 27Ben Or and Veksler‑Lublinsky  BMC Bioinformatics          (2021) 22:264 

 4. Rupaimoole R, Slack FJ. Microrna therapeutics: towards a new era for the management of cancer and other diseases. 
Nat Rev Drug Discov. 2017;16(3):203.

 5. Li J, Zhang Y. Current experimental strategies for intracellular target identification of microrna. ExRNA. 2019;1(1):6.
 6. Martinez‑Sanchez A, Murphy CL. Microrna target identification–experimental approaches. Biology. 

2013;2(1):189–205.
 7. Thomas M, Lieberman J, Lal A. Desperately seeking microRNA targets. Nat Struct Mol Biol. 2010;17(10):1169.
 8. Fabian MR, Sonenberg N, Filipowicz W. Regulation of MRNA translation and stability by microRNAS. Annu Rev 

Biochem. 2010;79:351–79.
 9. Chi SW, Zang JB, Mele A, Darnell RB. Argonaute hits‑clip decodes microRNA–MRNA interaction maps. Nature. 

2009;460(7254):479–86.
 10. Zisoulis DG, Lovci MT, Wilbert ML, Hutt KR, Liang TY, Pasquinelli AE, Yeo GW. Comprehensive discovery of endog‑

enous argonaute binding sites in Caenorhabditis elegans. Nat Struct Mol Biol. 2010;17(2):173.
 11. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp A‑C, 

Munschauer M, et al. Transcriptome‑wide identification of rna‑binding protein and microrna target sites by par‑clip. 
Cell. 2010;141(1):129–41.

 12. Wang T, Xiao G, Chu Y, Zhang MQ, Corey DR, Xie Y. Design and bioinformatics analysis of genome‑wide clip experi‑
ments. Nucleic Acids Res. 2015;43(11):5263–74.

 13. Uhl M, Houwaart T, Corrado G, Wright PR, Backofen R. Computational analysis of CLIP‑seq data. Methods. 
2017;118:60–72.

 14. Majoros WH, Lekprasert P, Mukherjee N, Skalsky RL, Corcoran DL, Cullen BR, Ohler U. Microrna target site identifica‑
tion by integrating sequence and binding information. Nat Methods. 2013;10(7):630.

 15. Reczko M, Maragkakis M, Alexiou P, Grosse I, Hatzigeorgiou AG. Functional microRNA targets in protein coding 
sequences. Bioinformatics. 2012;28(6):771–6.

 16. Liu C, Mallick B, Long D, Rennie WA, Wolenc A, Carmack CS, Ding Y. Clip‑based prediction of mammalian microrna 
binding sites. Nucleic Acids Res. 2013;41(14):138–138.

 17. Khorshid M, Hausser J, Zavolan M, Van Nimwegen E. A biophysical miRNA–mRNA interaction model infers canonical 
and noncanonical targets. Nat Methods. 2013;10(3):253.

 18. Helwak A, Kudla G, Dudnakova T, Tollervey D. Mapping the human miRNA interactome by clash reveals frequent 
noncanonical binding. Cell. 2013;153(3):654–65.

 19. Moore MJ, Scheel TK, Luna JM, Park CY, Fak JJ, Nishiuchi E, Rice CM, Darnell RB. miRNA‑target chimeras reveal miRNA 
3’‑end pairing as a major determinant of argonaute target specificity. Nat Commun. 2015;6:8864.

 20. Scheel TK, Moore MJ, Luna JM, Nishiuchi E, Fak J, Darnell RB, Rice CM. Global mapping of miRNA‑target interactions 
in cattle (Bos taurus). Sci Rep. 2017;7(1):8190.

 21. Grosswendt S, Filipchyk A, Manzano M, Klironomos F, Schilling M, Herzog M, Gottwein E, Rajewsky N. Unambiguous 
identification of miRNA: target site interactions by different types of ligation reactions. Mol Cell. 2014;54(6):1042–54.

 22. Broughton JP, Lovci MT, Huang JL, Yeo GW, Pasquinelli AE. Pairing beyond the seed supports microRNA targeting 
specificity. Mol Cell. 2016;64(2):320–33.

 23. Krüger J, Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 
2006;34(suppl 2):451–4.

 24. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. Microrna targets in drosophila. Genome Biol. 2003;5(1):1.
 25. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of 

human genes are microRNA targets. Cell. 2005;120(1):15–20.
 26. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat 

Genet. 2007;39(10):1278–84.
 27. Pinzón N, Li B, Martinez L, Sergeeva A, Presumey J, Apparailly F, Seitz H. microRNA target prediction programs pre‑

dict many false positives. Genome Res. 2017;27(2):234–45.
 28. Oliveira AC, Bovolenta LA, Nachtigall PG, Herkenhoff ME, Lemke N, Pinhal D. Combining results from distinct micro‑

RNA target prediction tools enhances the performance of analyses. Front Genet. 2017;8:59.
 29. Fridrich A, Hazan Y, Moran Y. Too many false targets for microRNAS: challenges and pitfalls in prediction of miRNA 

targets and their gene ontology in model and non‑model organisms. BioEssays. 2019;41(4):1800169.
 30. Min H, Yoon S. Got target? Computational methods for microRNA target prediction and their extension. Exp Mol 

Med. 2010;42(4):233–44.
 31. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. miRecords: an integrated resource for microRNA‑target interactions. Nucleic 

Acids Res. 2009;37(suppl 1):105–10.
 32. Chou C‑H, Chang N‑W, Shrestha S, Hsu S‑D, Lin Y‑L, Lee W‑H, Yang C‑D, Hong H‑C, Wei T‑Y, Tu S‑J, et al. miRTar‑

Base 2016: updates to the experimentally validated miRNA–target interactions database. Nucleic Acids Res. 
2016;44(D1):239–47.

 33. Liu H, Yue D, Chen Y, Gao S‑J, Huang Y. Improving performance of mammalian microRNA target prediction. BMC 
Bioinform. 2010;11(1):1–15.

 34. Yu S, Kim J, Min H, Yoon S. Ensemble learning can significantly improve human microRNA target prediction. Meth‑
ods. 2014;69(3):220–9.

 35. Menor M, Ching T, Zhu X, Garmire D, Garmire LX. mirMark: a site‑level and UTR‑level classifier for miRNA target 
prediction. Genome Biol. 2014;15(10):500.

 36. Cheng S, Guo M, Wang C, Liu X, Liu Y, Wu X. MiRTDL: a deep learning approach for miRNA target prediction. IEEE/
ACM Trans Comput Biol Bioinf. 2015;13(6):1161–9.

 37. Lee B, Baek J, Park S, Yoon S. deepTarget: end‑to‑end learning framework for microRNA target prediction using deep 
recurrent neural networks. In: Proceedings of the 7th ACM international conference on bioinformatics, computa‑
tional biology, and health informatics. 2016. p. 434–42.

 38. Jiang H, Wang J, Li M, Lan W, Wu F‑X, Pan Y. miRTRS: a recommendation algorithm for predicting miRNA targets. 
IEEE/ACM Trans Comput Biol Bioinf. 2018;17(3):1032–41.



Page 27 of 27Ben Or and Veksler‑Lublinsky  BMC Bioinformatics          (2021) 22:264  

 39. Lu Y, Leslie CS. Learning to predict miRNA–mRNA interactions from AGO CLIP sequencing and clash data. PLoS Comput 
Biol. 2016;12(7):e1005026.

 40. Ding J, Li X, Hu H. TarPmiR: a new approach for microRNA target site prediction. Bioinformatics. 2016;32(18):2768–75.
 41. Pla A, Zhong X, Rayner S. miRAW: a deep learning‑based approach to predict microRNA targets by analyzing whole 

microRNA transcripts. PLoS Comput Biol. 2018;14(7):1006185.
 42. Wen M, Cong P, Zhang Z, Lu H, Li T. DeepMirTar: a deep‑learning approach for predicting human miRNA targets. Bioinfor‑

matics. 2018;34(22):3781–7.
 43. Paker A, Oğul H. mirLSTM: a deep sequential approach to microRNA target binding site prediction. In: International confer‑

ence on database and expert systems applications. Springer; 2019. p. 38–44.
 44. Wang X. Improving microRNA target prediction by modeling with unambiguously identified microRNA‑target pairs from 

clip‑ligation studies. Bioinformatics. 2016;32(9):1316–22.
 45. Liu W, Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target 

expression data. Genome Biol. 2019;20(1):1–10.
 46. Dweep H, Gretz N. miRWALK 2.0: a comprehensive atlas of microRNA–target interactions. Nat Methods. 2015;12(8):697.
 47. Chang L, Zhou G, Soufan O, Xia J. miRNet 2.0: network‑based visual analytics for miRNA functional analysis and systems 

biology. Nucleic Acids Res. 2020;48(W1):244–51.
 48. Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 

2020;48(D1):127–31.
 49. Bartel DP. microRNAS: target recognition and regulatory functions. Cell. 2009;136(2):215–33.
 50. Schirle NT, Sheu‑Gruttadauria J, MacRae IJ. Structural basis for microRNA targeting. Science. 2014;346(6209):608–13.
 51. Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G. The lin‑41 RBCC gene acts in the C. elegans heterochronic path‑

way between the let‑7 regulatory RNA and the LIN‑29 transcription factor. Mol Cell. 2000;5(4):659–69.
 52. Vella MC, Choi E‑Y, Lin S‑Y, Reinert K, Slack FJ. The C. elegans microRNA let‑7 binds to imperfect let‑7 complementary sites 

from the lin‑41 3’ utr. Genes Dev. 2004;18(2):132–7.
 53. Chi SW, Hannon GJ, Darnell RB. An alternative mode of microRNA target recognition. Nat Struct Mol Biol. 2012;19(3):321.
 54. Agarwal V, Bell GW, Nam J‑W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 

2015;4:5005.
 55. Soriano A, Masanas M, Boloix A, Masiá N, París‑Coderch L, Piskareva O, Jiménez C, Henrich K‑O, Roma J, Westermann F, et al. 

Functional high‑throughput screening reveals miR‑323a‑5p and miR‑342‑5p as new tumor‑suppressive microRNA for 
neuroblastoma. Cell Mol Life Sci. 2019;76(11):2231–43.

 56. Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA–target recognition. PLoS Biol. 2005;3(3):e85.
 57. Grimson A, Farh KK‑H, Johnston WK, Garrett‑Engele P, Lim LP, Bartel DP. microRNA targeting specificity in mammals: deter‑

minants beyond seed pairing. Mol Cell. 2007;27(1):91–105.
 58. Blum AL, Langley P. Selection of relevant features and examples in machine learning. Artif Intell. 1997;97(1–2):245–71.
 59. Lecun Y. The mnist database of handwritten digits. http:// yann. lecun. com/ exdb/ mnist/
 60. Chen T, Guestrin C. XGBoost: a scalable tree boosting system, p. 785–794 (2016). https:// doi. org/ 10. 1145/ 29396 72. 29397 

85.
 61. Nielsen D. Tree boosting with xgboost‑why does xgboost win“every” machine learning competition? Master’s thesis, 

NTNU; 2016.
 62. Lorenz R, Bernhart SH, Zu Siederdissen CH, Tafer H, Flamm C, Stadler PF, Hofacker IL. Viennarna package 2.0. Algorithms 

Mol Biol. 2011;6(1):26.
 63. Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, et al. Biopython: 

freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25(11):1422–3.
 64. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
 65. McKinney W,et al. Data structures for statistical computing in Python. In: Proceedings of the 9th Python in science confer‑

ence, Austin, TX, vol. 445, 2010; p. 51–56.
 66. Oliphant TE. A guide to NumPy, vol. 1. Trelgol Publishing; 2006.
 67. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. 

Scikit‑learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.
 68. Smedley D, Haider S, Durinck S, Pandini L, Provero P, Allen J, Arnaiz O, Awedh MH, Baldock R, Barbiera G, et al. The BioMart 

community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res. 2015;43(W1):589–98.
 69. Lee RYN, Howe KL, Harris TW, Arnaboldi V, Cain S, Chan J, Chen WJ, Davis P, Gao S, Grove C, et al. Wormbase 2017: molting 

into a new stage. Nucleic Acids Res. 2017;46(D1):869–74.
 70. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, Kent WJ. The UCSC Table Browser data retrieval tool. 

Nucleic Acids Res. 2004;32(suppl 1):493–6.
 71. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAS on protein output. Nature. 

2008;455(7209):64–71.
 72. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human microRNA targets. PLoS Biol. 2004;2(11):363.
 73. Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis 

K, Simossis VA, et al. Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinform. 
2009;10(1):295.

 74. Kumar S, Stecher G, Suleski M, Hedges SB. TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol 
Evol. 2017;34(7):1812–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785

	Comprehensive machine-learning-based analysis of microRNA–target interactions reveals variable transferability of interaction rules across species
	Abstract 
	Background: 
	Results: 
	Conclusions: 
	Availability and implementation: 

	Background
	Results
	Dataset processing
	Dataset characteristics
	miRNA distribution
	Seed types and base-pairing density

	Intra-dataset analysis
	Evaluation of different machine-learning methods
	In-depth analysis of the XGBoost performance
	Top important features of each dataset

	Cross-dataset analysis
	Kullback–Leibler divergence
	Dataset visualization
	Classification performance differences between datasets


	Discussion
	Available data
	A thorough analysis of the datasets
	Features and their significance
	Training and testing dataset split
	Using a tree-based classifier
	Cross-dataset analysis

	Conclusions
	Methods
	Software packages and tools
	Data processing
	Generation of negative interactions
	Calculation of miRNA distribution
	Features
	Splitting of the data into training and testing sets
	Evaluation of different machine-learning methods
	Identification of the top important features
	Calculation of the Kullback–Leibler divergence
	Dimensionality reduction using PCA
	Evaluation of the classification performance between datasets

	Acknowledgements
	References


