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Abstract 

Background: The state‑of‑the‑art deep learning based cancer type prediction can 
only predict cancer types whose samples are available during the training where the 
sample size is commonly large. In this paper, we consider how to utilize the existing 
training samples to predict cancer types unseen during the training. We hypothesize 
the existence of a set of type‑agnostic expression representations that define the simi‑
larity/dissimilarity between samples of the same/different types and propose a novel 
one‑shot learning model called CancerSiamese to learn this common representation. 
CancerSiamese accepts a pair of query and support samples (gene expression profiles) 
and learns the representation of similar or dissimilar cancer types through two parallel 
convolutional neural networks joined by a similarity function.

Results: We trained CancerSiamese for cancer type prediction for primary and 
metastatic tumors using samples from the Cancer Genome Atlas (TCGA) and MET500. 
Network transfer learning was utilized to facilitate the training of the CancerSiamese 
models. CancerSiamese was tested for different N‑way predictions and yielded an 
average accuracy improvement of 8% and 4% over the benchmark 1‑Nearest Neighbor 
(1‑NN) classifier for primary and metastatic tumors, respectively. Moreover, we applied 
the guided gradient saliency map and feature selection to CancerSiamese to examine 
100 and 200 top marker‑gene candidates for the prediction of primary and metastatic 
cancers, respectively. Functional analysis of these marker genes revealed several cancer 
related functions between primary and metastatic tumors.

Conclusion: This work demonstrated, for the first time, the feasibility of predicting 
unseen cancer types whose samples are limited. Thus, it could inspire new and ingen‑
ious applications of one‑shot and few‑shot learning solutions for improving cancer 
diagnosis, prognostic, and our understanding of cancer.
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Background
Cancer is a condition of abnormal cell growth. Cancer that is found in the original tissue 
where it is formed is called primary cancer. When cancer cells spread to nearby normal 
tissues, or invade distant parts of the body, they develop metastatic cancer, which is the 
ultimate cause of death in cancer patients [1]. Cancer is an extremely complex and het-
erogeneous disease, manifested in individual tumors’ unique genetic makeup [2]. More 
than 100 different cancer types are discovered to originate from various organs and sub-
tissues. Yet, the same cancer type’s molecular signatures can vary with its location, stage, 
and ultimately patients. To gain insights into the genetic markers and molecular mecha-
nisms of different cancers, comprehensive genomic studies such as the Cancer Genome 
Atlas (TCGA) [3, 4] have generated and interrogated the genetic and omics (epigenomic, 
transcriptomic, and proteomic) profiles from large cohorts of cancer patients with some 
of the most common cancer types. It becomes increasingly clear now that as much as 
molecular profiles can accurately predict current cancer types, the spectrum of cancer 
transcends existing tumor lineages, underscoring the need for a molecular-based clas-
sification of individual tumors. This emergent perspective of cancer also fosters a more 
effective “precision cancer therapy," which advocates specialized diagnosis and treat-
ments based on individual patients’ molecular makeup [5].

This paper considers cancer classification based on gene expression data using 
machine learning (ML). Thanks to efforts like TCGA, the prevailing strategy nowadays 
is to train a classifier using tumor samples with annotated cancer types. Earlier efforts 
simply classified cancer from normal samples using neural networks [6]. Although they 
reported good classification accuracy, the model was not designed to classify precise 
cancer types. Several recent studies have applied deep learning (DL) models to classify 
tumor samples into correct cancer types. To take advantage of image-based convolu-
tional neural networks (CNNs), approaches proposed in[7, 8] converted 1-dimensional 
(1-D) gene expression of cancer samples in TCGA into 2-dimensional (2-D) image-like 
inputs and applied CNN to classify 33 cancer types. Following a similar idea, DeepIn-
sight, iSOM-GSN, and REFINED [9–11] have also attempted to incorporate gene cor-
relations into the converted 2-D image to improve further the cancer type classification 
accuracy of CNN. In [12], a 1D-CNN model applied directly to the 1-D gene expres-
sion data was also proposed to classify 33 TCGA cancer types plus an additional normal 
tissue type. It showed that the 1D-CNN could achieve comparable performance with 
CNNs using 2D-converted gene expression but had 100 times fewer parameters than the 
CNN proposed in [8]. As the training sample size is commonly small for cancer classifi-
cation, this simpler 1D-CNN is favored because it has less tendency to overfit the train-
ing data and is more robust with a better ability to generalize.

Impressive performance notwithstanding, these strategies have limitations, restrict-
ing their adoption for personalized cancer classification in the era of precision oncology 
[13]. First, the high classification accuracy is predicated on the availability of large-scale 
well-annotated tumor datasets like TCGA. With the TCGA project’s conclusion, it 
would be infeasible to duplicate TCGA’s effort for additional cancer types. Second, for 
rare tumors, one could never expect to collect sufficient samples necessary for training 
an ML model with satisfactory performance. Above all, as cancer classification quickly 
shifts to more refined, molecular-based characterizations, we expect to see a much 
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larger number of cancer types. The current strategy is inept with this multitude because 
whenever new cancer types emerge and genome-profiling technologies are updated, the 
classifier needs to be completely re-trained before it can be applied again.

Recognizing these limitations of the current strategy, we consider the problem of 
utilizing samples from cancer types of existing collections such as TCGA to build and 
train a model to predict new cancer types unseen during the training but with limited 
samples. To this end, we propose a novel one-shot learning strategy, where we only 
require a single “support” sample to be collected from each new cancer type, a drasti-
cally reduced requirement from typical TCGA collection with ~ 500 samples per cancer 
type. Cancer classification of a query sample is carried out by comparing it against a set 
of support samples, one for each cancer type, a classic one-shot learning task (Fig. 1). 
One-shot learning was first proposed in computer vision for tackling data scarcity in 
applications such as personal identification [14, 15]. A particular class of one-shot learn-
ing models known as Siamese convolutional neural networks (SCNNs) has been shown 
to be a powerful similarity metric learning model and has been applied for addressing a 
variety of bioinformatics and medical imaging problems including drug response simi-
larity prediction by ReSimNet [16], sequence embedding and alignment by SENSE [17], 
cell types identifications by MapCell [18],  protein–protein interaction prediction [19], 
representation learning of proteins by TriplotProt [20], and representation learning of 
medical images [21]. With these studies’ successes, we hypothesize that there is a set of 
type-agnostic marker genes whose expression profiles define the similarity/dissimilarity 
between samples of the same/different cancer  types. Therefore, we shift our attention 
from predicting the cancer type of the query sample to predicting similarity vs. dissimi-
larity between a pair of query and support samples. This new perspective enables us to 
train an SCNN model with paired samples from the same or different cancer  types as 
replicates for label “similar” or “dissimilar”, respectively, thus significantly reducing the 
need for collecting large samples for each cancer type. This new strategy advocates sam-
pling more types as opposed to sampling more tumors of the same type, a new practice 
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Fig. 1 Illustration of a 6‑way one‑shot prediction of cancer types for a query tumor sample. A query sample 
is compared with each sample in a support set, which includes 6 samples, each from a cancer type. A 
machine learning algorithm computes the probability of similarity between the query and every support 
sample. The final predicted type (HCC) is the sample type in the support set that has the highest probability 
of being similar to the query sample
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in line with the nature of precision oncology. Lastly, because the maker genes general-
ize across cancer types, the trained model can be directly applied to classify new cancer 
types that the model has not seen in the training data.

To test this hypothesis, we developed the CancerSiamese, an SCNN model that con-
tains two identical 1D-CNNs, which learn cancer type representations of query and sup-
port samples, followed by a metric-learning layer to predict if the representations from 
the query and support sample are similar or not. We trained and tested CancerSiamese 
on samples from 29 primary and 20 metastatic cancer types to predict unseen primary 
and/or metastatic tumor types and conducted comprehensive investigations of the 
marker genes learned by CancerSiamese. Our work is noticeably different from Affini-
tyNet [22], a recently developed kNN-based graph attention few-shot learning model, 
which aimed to address data scarcity and was also applied for cancer type prediction. 
AffinityNet is not a one-shot learning model and thus needs more than a single sample 
for prediction. Also, AffinityNet is very limited in its scope for cancer type predictions. 
First, it was trained for only two primary cancer types. Second, similar to all other exist-
ing cancer classification approaches, it was trained to predict only the cancer types in 
training, so it could not predict novel cancer types. Finally, AffinityNet did not attempt 
to interpret its predictions and thus did not inform markers and functions underlying 
the prediction.

The organization of the rest of the paper is as follows. In Methods, we describe the 
datasets and preprocessing steps necessary for one-shot learning training. The architec-
ture of CancerSiamese network and network-transfer learning, and the gradient-based 
interpretation method that we have adopted to extract the marker genes of CancerSi-
amese were discussed in  this section. In Results, the performances of CancerSiamese 
in predicting unseen primary and metastatic tumors were examined. The model inter-
pretation was performed to uncover marker genes that potentially explain cancer types 
learned by CancerSiamese.

Results
Model training

CancerSiamese takes gene expressions from a query sample and a support sample 
as input and outputs the probability that the query is from the same cancer type as 
the support. Its architecture is inspired by the Siamese network [23] (Fig. 2a; see the 
Methods section for architectural details). CancerSiamese networks were trained on 
TCGA and MET500 (refer to the Methods section for details) training datasets sepa-
rately with Keras DL platform with the Tensorflow backend [24]. To assess the rela-
tionship between the number of training cancer types and prediction performance, 
three CancerSiamese networks for primary cancer prediction were trained using 
three different sets of primary cancer types, where the total number of cancer types 
was 9, 14, or 19, respectively (refer to the Methods section). In contrast, only one Can-
cerSiamese network was trained for metastatic tumor prediction, using samples from 
10 metastatic cancer types. Network transfer learning was conducted from the train-
ing of each CancerSiamese model, where the initial weights of the 1D-CNN feature 
extractors (Fig. 2a) were set as those in the 1D-CNN for classification of cancer types 
pretrained on the same training set (Fig. 2b). For example, the CancerSiamese model 
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trained with 19 primary cancer types took the weights of the 1D-CNN classifier for 
classifying the same 19 primary cancer classes (Fig.  2b). The weights for the rest of 
the layers (i.e. FC and sigmoid) were initialized by Xavier Initialization as suggested 
by [23]. Each CancerSiamese network was optimized with a binary cross-entropy loss 
and trained with 20,000 training iterations, where each iteration includes a batch of 
128 pairs with an equal number of matched and mismatched pairs, all chosen ran-
domly from the corresponding training dataset (Table  1). The network parameters 
were optimized by Adam optimizer and all of the hyperparameters were tuned manu-
ally and summarized in Additional file 1: Table S1 and Table S2.
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Fig. 2 Architecture and network transfer training scheme for CancerSiamese. a CancerSiamese model 
architecture. b The architecture of 1D‑CNN, which is pre‑trained for cancer classification to initialize the 
feature extraction part of CancerSiamese

Table 1 Number of samples for different training and test datasets

# of training cancer classes # of training samples Total # of test samples 
for 20,000 one-shot task

TCGA 9 1990 1895

14 6180

19 8445

MET 10 516 249
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The trained CancerSiamese networks were tested for different N-way predictions 
(N = 6, 8, and 10). For an N-way prediction, CancerSiamese compared a query sample 
with a support set of N samples, each from a different cancer type. The type of the query 
sample was predicted as the type of the paired support sample if the pair received the 
highest probability by CancerSiamese out of the N pairs. The prediction was counted as 
correct if the predicted type was the same as the true type of the query sample. For every 
N-way prediction, we tested CancerSiamese on 20,000 randomly selected query samples 
and the corresponding support set from the test dataset and each support set contained 
N randomly selected samples, each from a different cancer type but one of them com-
ing from the same cancer type as the query sample. For example, Fig. 1 depicts a 6-way 
prediction task, where six random cancer types are selected from the test set as the sup-
port set and a random sample (HCC in Fig. 1) from one of six cancer types is chosen as 
the query. The accuracy performance of 6-way prediction is calculated as the number of 
correct predictions out of 20,000 6-way predictions. The total number of samples and 
classes for each training and test datasets are presented in Table 1. All of the codes can 
be found at https:// github. com/ MMost avi/ Cance rSiam ese.

Predicting types of unseen primary and metastatic tumors with a single support sample 

from each class

We evaluated CancerSiamese networks’ performance for predicting the type of a query 
sample from certain primary and metastatic cancer types that were unseen during train-
ing. We investigated the impact of training sets with different types and numbers of N-
way predictions (N = 6, 8, and 10) on the prediction performance. For each performance, 
we computed the prediction accuracy based on 20,000 testing trials. The 1-NN classi-
fier’s accuracy was also computed as the baseline performance; 1-NN is widely used as a 
benchmark model for comparing the performance of few-shot learning models. For an 
N-way prediction, 1-NN calculates the Euclidean distance between the query and a sup-
port samples’ gene expression and selects the label that has the minimum distance to the 
query sample as the predicted type.

As seen in Fig.  3a, for all three different numbers of primary training cancer types, 
CancerSiamese outperformed 1-NN for all three different N-way predictions. Particu-
larly, the model trained with 19 types achieved the highest performance with 89.67%, 
87.32%, and 84.59% accuracy for 6, 8, and 10-way predictions in test samples, respec-
tively. They also represent 7–8% improvement margin over 1-NN. Since the training and 
testing sets contain disjoint cancer types, these high accuracies suggest that there are 
discriminative gene expression markers shared among all cancer types that CancerSia-
mese models have successfully learned from training data and predicting testing samples 
using these markers. Besides, we also observed that increasing the number of training 
types from 9 to 19 increased prediction accuracy. This suggests that by adding more can-
cer types to the CancerSiamese training, CancerSiamese improved the learned repre-
sentation of similar and dissimilar cancer types. Therefore, the richer representation of 
19 primary cancer types could help improve the model’s generalization to have a better 
prediction on unseen cancer types. In other words, the diversity of the training samples 
leads to improved accuracy.

https://github.com/MMostavi/CancerSiamese
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CancerSiamese was further trained on the 10 cancer types of metastatic train-
ing samples (MET500). The accuracies for different N-way predictions of metastatic 
tumors (MET500 testing samples) are shown in Fig.  3b. The model’s accuracy was 
compared to the model trained with 19 cancer types from TCGA samples (orange 
color bars) and 1-NN (gray color bars). We observe that CancerSimaese with 10 
metastatic types achieved the best performance with approximately 4—5% accuracy 
improvement in all different N-way predictions compared with 1-NN. However, the 
accuracies are in the low 60% indicating that expression signatures that define similar/
dissimilar metastatic types learned from 10 training classes may not yet be fully gen-
eralized well to discriminate the signatures in testing samples. This could be partially 
due to the smaller metastatic training samples and also potentially higher expression 
heterogeneity in metastatic tumors, or lower sample diversity in training.

Interestingly, the accuracies of CancerSiamese trained with 19 primary tumor types 
alone (65.75%) are about 2% accuracy reduction of those by CancerSiamese trained 
with metastatic cancer samples (63.46%), suggesting that the marker expression sig-
natures learned from the 19 primary cancer types share significant similarity with 
those learned from the 10 metastatic cancer types. In fact, the 10 metastatic cancer 
types overlap with 10 of the 19 primary cancer types. To further verify if the 10 over-
lapping primary and metastatic cancer types have shared expression signatures, we 
trained a 1D-CNN using the training samples from these 10 primary cancer types 
and tested it on the training samples of the 10 metastatic cancer types. As expected, 
this 1D-CNN model could predict the metastatic tumors in MET500 with an accu-
racy of 83.33% (Fig.  3c). The confusion matrix of this experiment (Fig.  3c) further 
delineates the shared gene expression signatures between primary and metastatic 
tumors, agreed with earlier studies that have also shown majority genes’ expression 
of primary and metastasized tumors resemble each other [25–27]. Finally, Cancer-
Siamese trained with either 19 types of primary tumors or metastatic tumor samples 

21 0 1 0 0 8 0 0 0 0

3 150 0 0 2 2 2 0 0 0

1 0 18 0 0 1 0 0 0 0

4 1 0 21 0 19 0 0 0 0

0 0 0 0 12 0 0 0 0 0

0 0 0 0 2 38 2 0 0 0

0 0 0 0 2 1 21 0 0 0

6 2 4 0 0 15 0 124 4 0

0 1 0 0 0 0 0 0 23 0

0 0 0 0 2 1 0 0 0 2

Confusion matrix of 1D-CNN trained on primary 
and tested on metastatic tumors, ACC = 83.33%

0

40

20

60

80

120

100

140

89.67
87.32

84.5986.16
83.88

80.67
83.95

80.75
78.76

82.47
79.44

76.87

70

75

80

85

90

95

6 8 10

Ac
cu

ra
cy

N-ways

One shot primary tumor predic on

Class-19 Class-14 Class-9 1-NN

65.75
62.85

59.93

63.46
60.72

58.51
61.26

58
55.84

50

55

60

65

70

6 8 10

Ac
cu

ra
cy

N-ways

One shot metastatic tumor predic on

MET500-Class-10 TCGA-Class-19 1-NN

a

b

c

Fig. 3 Performance of CancerSiamese for predicting unseen primary and metastatic cancer types. a 
Accuracies for predicting primary tumor types. b Accuracies for predicting metastatic tumor types. c 
Confusion matrix of 1D‑CNN for cancer type classification trained on 10 primary cancer types and tested on 
corresponding 10 metastatic tumors in the training set



Page 8 of 17Mostavi et al. BMC Bioinformatics          (2021) 22:244 

outperformed 1-NN (Fig. 3b), demonstrating once again the ability of CancerSiamese 
in learning similarity/dissimilarity between cancer types.

Identification and analysis of marker genes for the primary cancers learned 

by CancerSiamese

In the previous section, we pointed out that the good performance in predicting pri-
mary samples of unseen classes implies that CancerSiamese learned unique expression 
markers, which are shared among all cancer types between disjoint training and testing 
sets. Because the CancerSiamese model trained on 19 primary cancer types had the best 
accuracy, we first selected it to investigate how CancerSiamese makes the prediction and 
uncover the marker genes learned by CancerSiamese. To this end, we randomly selected 
up to 3000 unique pairs of expressions from the same type for each of the 19 primary 
cancer types and used GBSM to calculate w (See Methods), whose elements represent 
the corresponding genes’ score to be marker genes (the ranked list of genes and scores 
can be found in Additional file 2). To determine the marker gene set, we performed a 
stepwise greedy forward selection [28], a popular feature selection method. Specifically, 
we ranked the genes in decreasing order based on their corresponding score. Next, we 
performed 1-NN for 6-way prediction on the test samples using multiple of 10 genes in 
the ranked list from the top (Table 2). The best accuracy was achieved with the top 100 
genes, where the accuracy (82.38%) is virtually the same as that obtained from using all 
genes (82.47%, Fig.  3a). Therefore, we selected the top 100 genes as the marker genes 
(Additional file  2). Examining the t-SNE plots of training and testing samples using 
these marker genes further confirmed their discriminative power (Fig. 4a, b) as samples 
from the same type are mostly grouped in clearly separated clusters. The heatmap of the 
markers demonstrated cancer-type specific expression patterns (FIG. 4c). To investigate 
the functions of identified marker genes, we utilized The Database for Annotation, Visu-
alization and Integrated Discovery (DAVID, v6.7) [29, 30] to search for Gene Ontology 
(GO) terms of molecular functions and biological processes, and KEGG and Biocarta 
pathways. To ensure a meaningful functional annotation analysis, we slightly relaxed 
the criterion and analyzed the top 5% (243 genes) of the ranked gene significant vector 
yielded from CancerSiamese. As shown in Additional file 1: Table S3, the top functional 

Table 2 Accuracies of the stepwise greedy forward selections for selecting marker genes for 
primary cancers (column 2) and their ability for predicting metastatic cancer types (column 3) and 
discriminating primary from metastatic cancers (column 4)

Number of top 
genes

6-way prediction (primary 
cancers; 1-NN)

6-way prediction 
(metastatic cancers; 1-NN)

Classification of primary 
and metastatic cancers 
(GNB)

10 78.64 37.4 88.35

20 80.74 38.11 95.22

30 81.61 37.58 92.87

40 81.8 38.12 93.13

50 81.8 37.29 93.55

100 82.38 37.51 93.28

150 82.23 37.08 94.38

200 82.1 37.36 95.1
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annotation clusters included translation, apoptosis, cell growth, response to oxidative 
stress, extracellular matrix (ECM), and response to wounding. Most of these functions 
play essential roles in cancer. Apoptosis and cell growth are key determinants of can-
cer cell proliferation [31]. ECM and wound healing are critical components/indicators 
for the migration and metastasis of tumors and represent the fundamentally different 
tumor microenvironment between solid and hematopoietic cancers. The oxidative stress 
is known to trigger tumor progression and modulate chemotherapies’ response [32, 33]. 
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Fig. 4 t‑SNE plots and heatmap of primary and metastatic test samples with top gene markers. a t‑SNE of 
primary training samples with top 100 gene markers. b t‑SNE of primary testing samples with top 100 gene 
markers. c Heatmap of the top 100 marker genes across all 29 primary cancer types. Cancers were clustered 
by the average per cancer type. Gene expression levels were z‑transformed per gene. d t‑SNE of primary 
and metastatic test samples together with the top 100 gene markers. e t‑SNE of primary and metastatic test 
samples together with the top 20 gene markers
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Taken together, the top marker genes capture critical functions executed by tumors to 
survive and metastasize, thus potentially making the differences between tumors and 
between primary and metastatic tumors.

Identification of metastatic tumor marker genes learned by CancerSiamese and their 

relationship with those for primary tumors

Because this CancerSiamese model was also shown to achieve 63.46% accuracy when 
being extrapolated to the 6-way prediction for metastatic unseen sample types, we first 
wondered if these marker genes might also be responsible for this accuracy in predicting 
similar metastatic cancer types. To this end, we performed 1-NN for 6-way prediction 
on the metastatic samples again using multiple of 10 genes in the ranked list from the top 
and the accuracies stayed between 37% and 39% (Table 2), which is considerably lower 
than 63.46%. This result indicates that these 100 marker genes possess predominantly 
similar but distinct expression patterns among samples from the same primary cancer 
types but not the metastatic cancer types. The t-SNE plot of the testing primary and 
metastatic samples (Fig. 4d) further confirmed this finding. Although many studies have 
shown that metastasized tumors are similar to the parent primary tumors, many others 
have also pointed out the increased genome heterogeneity in metastasized tumors due 
to their different tumor microenvironment and immunological conditions [34, 35]. Our 
result suggests that the marker genes that define similar/dissimilar metastatic cancer 
types are different from those of primary cancer types. Therefore, we hypothesized that 
the markers that explain the unique characteristics of metastasized tumors might also 
serve to discriminate two metastatic cancer types. Interestingly, we observed that meta-
static samples of 6 types (PAAD, STAD, ESCA, CHOL, SARC, and ACC) were separated 
from their corresponding primary cancers (Fig. 4d). This further implies that these 100 
marker genes also carry discriminative expression patterns that can be used to separate 
metastatic from primary samples, for at least these 6 cancer types. To validate this obser-
vation and determine the specific subset of the markers responsible for this discrimina-
tive power, we performed the stepwise greedy forward selection on these 100 genes. For 
each increment of 10 genes in the ranked list, we trained a Gaussian Naïve Bayes (GNB) 
classifier to classify primary and metastatic cancer using the testing samples and deter-
mine that the top 20 genes were the discriminative markers (Table 2). The t-SNE plot of 
test samples using these 20 genes (Fig. 4e) showed a clear separation between primary 
and metastatic cancer samples than using 100 markers (Fig. 4d). We noted that many of 
the 20 genes were well-known to be strongly associated with metastatic mechanisms in 
many cancer types, such as TAGLN2 [36], S100A11 [37, 38], CD74 [39], TMSB10 [40, 
41], and ALDOA [42].

To further determine the marker genes for metastatic cancers, we performed a step-
wise greedy forward selection on the CancerSiamese trained on the metastatic tumors 
with 10 classes and identified 250 marker genes (Additional file 2), which produced an 
accuracy of 60.05% by 1-NN (Additional file 1: Table S4), which is very close to the accu-
racy by 1-NN from all genes (61.26%, Fig. 3b). Comparing these metastatic marker genes 
with 100 markers for primary cancers yielded little overlapping (only 24 common genes), 
demonstrating the clear difference between metastatic and primary markers again. 
These different genes in the metastatic markers list are responsible for the additional 
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improvement over the 38.12% accuracy achieved by primary markers (Table 2). Func-
tional annotation analysis of these 250 gene markers confirmed an association with cell–
cell adhesion while also highlighted other fundamental molecular functions, such as 
nucleotide binding and peptide modification (Additional file 1: Table S5).

Discussion and conclusion
In this paper, we proposed CancerSiamese, a one-shot learning model for predicting pri-
mary and metastatic cancer type of a query expression sample based on a set of sup-
port expression samples, one from each cancer type. This model was developed based 
on the hypothesis that there exists a set of marker genes whose expressions define the 
similarity/dissimilarity between samples of the same/different types. CancerSiamese 
includes two parallel 1D-CNN with shared weights for extracting expression representa-
tions from the input query and support samples and a metrics learning network to assess 
the similarity between the two representations. This model was trained for primary and 
metastatic tumors separately and tested for different N-way predictions. The test results 
showed high prediction accuracy for primary cancers (89.67%, 87.32%, and 84.59% for 6, 
8, and 10-way predictions), representing about 7–8% improvement over 1-NN. We also 
showed that these prediction accuracies could be further improved by including more 
cancer classes in the training data. Interestingly, because the testing was done on cancer 
types unseen during training, these markers learned by CancerSiamese from the train-
ing cancer types seem to be cancer type agnostic, i.e., they are also the markers for the 
independent test cancer types. To determine this list of marker genes, we applied GBSM 
coupled with the stepwise greedy forward feature selection algorithm to interrogate 
CancerSiamese, which resulted in 100 maker genes capable of predicting cancer types 
with equivalent accuracy (Table 2). t-SNE plots further verified the cancer-type agnostic 
nature of these marker genes. Further analysis also showed that these maker genes are 
unique to the primary cancer types and the top 20 of them possess significant discrim-
inative power for discerning primary from metastatic cancers. Functional enrichment 
analysis of these marker genes revealed their association with many important functions 
such as translation, apoptosis, cell growth, response to oxidative stress, extracellular 
matrix (ECM), and response to wounding were observed.

In contrast, the CancerSiamese trained for predicting metastatic cancer acquired 
accuracies only in low 60% during testing, even though they still outperformed 1-NN 
by about 4%. Given that the number of MET500 samples for each cancer type is 10- to 
20-fold less than those in TCGA (refer to Methods section Fig. 5), these low accuracy 
could be improved with an expanded collection of metastatic tumor types as witnessed 
in Fig. 3a for the primary cancers. Nevertheless, metastatic tumors with the same tis-
sue of origin could exhibit disparate genomic features in different metastatic sites. This 
heterogeneity compounded by the impurity of metastatic tumor samples could further 
contribute to the low prediction accuracies. A refined classification of metastatic cancer 
types that also consider metastatic sites could help improve the performance. However, 
this also requires collecting more metastatic tumor samples. Despite the low perfor-
mance, we still identified 200 marker genes, which account for 90% of the CancerSia-
mese’s performance. However, we observed a little overlap with the marker genes for the 
primary cancers.
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These results, especially those for primary cancers, serve to validate our hypothesis 
and, for the first time, demonstrated the possibility of applying one-shot learning for 
expression-based cancer type prediction. This new paradigm of one-shot learning rec-
ognizes the reality of having very few samples for each tumor type in the era of preci-
sion oncology. It provides a principled approach to meet the need for data-driven cancer 
diagnosis with small samples. Extension of CancerSiamese into a more versatile few-shot 
learning model will directly impact the practical application of CancerSiamese for preci-
sion tumor diagnosis. As the small sample size is one of the key machine learning chal-
lenges in precision oncology and general precision medicine research, this work could 
inspire new and ingenious development of one-shot and few-shot learning solutions to 
improve cancer therapy our understanding of cancer.

Methods
Dataset

RNA-Seq data from TCGA and Integrative Clinical Genomics of Metastatic Cancer 
known as MET500 [4] were downloaded by R/Bioconductor package TCGAbiolinks 
(https:// www. bioco nduct or. org) and UCSC Xena (https:// xenab rowser. net/ datap ages/) 

TCGA MET500

Transformation, filtering, and merging cancers

Acquiring data

~6.3k genes
29 primary cancers

~ 6.2k genes
20 metastatic cancers

Overlapping genes

10340x4858 765x4858

Cancer TCGA
UCEC 552
LGG 528

CESC 306
PCPG 183
LAML 151
MESO 86
UVM 80
UCS 56

DLBC 48

Cancer TCGA MET
STAD 374 15
HCC 374 10

SARC 263 100
PAAD 178 24
GBM 168 9
ESCA 162 21
TGCT 142 5
THYM 119 5
ACC 79 15

CHOL 36 45

Cancer TCGA MET
159BRCA 1108

LUNG 1037 42
KDNY 893 12
COLO 644 20
THCA 508 5
HNSC 502 45
PRAD 499 155
SKCM 471 24
BLCA 414 30

OV 379 24

Training Testing
Fig. 5 Preprocessing workflow for extracting the training and testing primary and metastatic tumor samples. 
After downloading the TCGA and MET500 datasets, data preprocessing, including filtering genes and 
merging related cancer types, was performed. 4,858 common genes in TCGA and MET500 were retained and 
then samples were divided into training and testing sets according to the number of primary cancer types 
in TCGA. Cancer types in italic font are merged tumor groups, as described in the Methods section. Three 
training datasets for primary cancers were created and included 9 (blue labeled), 14 (blue + red labeled), and 
all 19 cancer types, respectively

https://www.bioconductor.org
https://xenabrowser.net/datapages/
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in December 2018, respectively. In total, TCGA contains 10,340 samples from 33 differ-
ent primary cancer types, whereas MET500 includes 765 samples from 20 cancer types 
of metastatic tumors. Additional file 1: Table S6 shows the 11 different metastatic tumor 
types in MET500. The gene expressions of these two datasets were transformed by log2 
(FPKM + 1) where FPKM (fragments per kilobase per million mapped reads) is the unit 
of gene expression level.

We used the tissue of origin to label both primary and metastatic tumors. As the first 
preprocessing step, all primary cancer types with a similar origin were grouped together 
and then renamed with their counterpart metastatic tumor label in MET500. Specifi-
cally, four primary cancer groups in TCGA known as [(COAD, READ), (KIRP, KIRC, 
KICH), (LUAD, LUSC), LIHC] were renamed as their corresponding metastatic labels in 
MET500 [COLO, KDNY, LUNG, HCC], respectively. After this process, the number of 
primary cancer types in TCGA dropped from 33 to 29 (i.e. four groups with similar ori-
gin were merged). Out of 29 types, 9 are unique to TCGA (primary) cancers, whereas 20 
are common between TCGA and MET500 (primary and metastatic) cancer types. See 
Fig. 5 for the names and sample sizes of each cancer type.

Similar to the processing strategy as in [12, 43, 44], genes with both mean and stand-
ard deviation of less than 0.8 across all samples, regardless of their cancer types, in 
TCGA and MET500 were filtered out. This preprocessing step was designed to reduce 
the effect of noise as well as genes that have little discriminative value in these two data-
sets. As shown in Fig. 5, this step reduced the number of genes in TCGA and MET500 
to around 6.3 K and 6.2 K, respectively, and 4,858 common genes in both datasets were 
determined. These 4858 genes were kept for all primary and metastatic tumors in TCGA 
and MET500, respectively.

The training data include samples from 9 unique primary cancer types and 10 addi-
tional cancer types with primary and metastatic samples. The training set were selected 
based on their higher number of primary samples or when only TCGA samples were 
available (Fig. 5, brown color). The testing data include the primary and metastatic sam-
ples from the remaining 10 cancer types (Fig. 5, green color). It is important to note that 
the testing set does not share any common cancer types with the training set. This is 
because our goal is to predict query samples from cancer types unseen in the training 
set.

Proposed network model for CancerSiamese

We consider a scenario where we have a query and N support gene expression samples, 
each from a different cancer type. Among the N support samples, one has the same can-
cer type as the query sample. The goal is to determine which one of N cancer types the 
query sample belongs to, or make an N-way prediction. To achieve the goal, we propose 
CancerSiamese, a one-shot learning model inspired by the Siamese network [23], that 
takes a pair of query and support samples, using DL model to extract appropriate data 
representation for both query and support, and then computes the probability that the 
query is from the same cancer type as the support. After we apply CancerSiamese to all 
the samples in the support set, the query sample’s predicted cancer type is taken as the 
one with the highest probability (Fig. 1).
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CancerSiamese consists of two identical CNNs applied to the query and support 
sample individually, followed by a similarity metric network (Fig. 2a). We adopted the 
1D-CNN proposed in [12], due to its simplicity and high accuracy for TCGA cancer 
type prediction, to learn a low-dimensional representation of tumor gene expression. In 
particular, after the first 1D convolution layer, we added two consecutive 1D convolu-
tion and maxpooling layers, and finally a flatten layer. Similar to [23], the relu activation 
function was selected for the first two 1D convolution layers and sigmoid for the last 1D 
convolution layer. For the similarity metric network, an element-wise L2 distance was 
applied to the two feature vectors generated by the 1D-CNNs and the output was passed 
onto two consecutive fully connected (FC) layers followed by a sigmoid node to deter-
mine whether the input pairs belong to the same cancer type.

Network transfer learning

Due to the large network size of CancerSiamese, training the network from scratch suf-
fered from training instability and poor convergence, eventually resulting in less robust 
prediction [45, 46]. To address these training challenges, we adopted a transfer learning 
scheme to build the CancerSiamese model. Specifically, we first trained a 1D-CNN using 
the cancer training samples from TCGA for cancer type classification. Afterward, we 
removed the classification layer and took the remaining trained 1D-CNN for Cancer-
Siamese (Fig. 2b). During the training of the CancerSiamese model, these 1D-CNN net-
works were further optimized for predicting the similarity of the input samples. Because 
the 1D-CNN has already been trained to extract expression representations important 
for cancer type classification, the weights are closer to the one-shot learning optimal. 
Therefore, initializing from this pretrained 1D-CNN makes CancerSiamese training 
more stable with faster convergence.

Identifying the marker genes from CancerSiamese

We hypothesized that the CancerSiamese trained on primary and metastatic tumors 
(the details are described in the Results section) rely on marker genes to define a simi-
lar cancer type. To uncover the marker genes, a deep learning interpretation approach 
known as Guided Backpropagation Saliency Maps (GBSM) was employed [47] to 
compute each gene score to be a potential marker gene. GBSM computes such scores 
for every gene in pair of gene expression samples by backpropagating a gradient from 
the model’s output to the input to examine the impact of input genes on the model’s 
final decision. We have previously applied this approach to extract significant cancer 
markers across different primary cancer types [12]. Briefly, for an input pair of expres-
sion samples x0 and x1 (vectors of length 4858 in our CancerSiamese model) from the 
same cancer type, GBSM was applied to compute the corresponding gradient vec-
tors w0 and w1 , which have the the same dimension as x0 and x1 and whose elements 
represent the significance of the corresponding genes. We calculated position-wise 
average wavg = (w0 + w1)/2 to obtain a single significance vector for every pair of 
expressions from the same cancer type and then computed w, averaged wavg over all 
the similar pairs used for identifying marker genes, as the significant scores for each 
gene to be marker gene. We ranked the genes based on their score and then adopted a 
popular feature selection method, a stepwise greedy forward selection[28], to search 
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for a subset of genes that produced the best classification performance. This subset is 
determined as the marker genes. We chose a search step size of 10 genes and applied 
1-NN as the one-shot classifier for the search.
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