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Background
With the coming of biotechnology era, a lot of gene expression data are generated by 
DNA microarray technology to measure the expression levels of genes [1]. The analy-
sis of gene expression data has been widely used in numerous researches over a broad 
range of biological disciplines, including disease diagnosis [2], disease prediction [3], 
drug design [4], specific therapy identification [5], etc.. However, the available genomics 
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datasets suffer from missing values, which greatly hinder the use of gene data and the 
mining of effective gene information [6–9].

Genetic data is marked as missing values when the detected signals are very weak or 
far apart from biological knowledge. That happens due to various factors in the micro-
array experiment, such as the contamination of microarray surfaces, inappropriate 
manual operations, insufficient resolution, and systematic errors during the laboratory 
process, etc. [10–12]. Missing Data recovery is impractical by replicating the microar-
ray experiment because of the high experimental costs and long experimental cycle. 
Ignoring the rows or columns with missing entries of a matrix of gene data is another 
optional method in further analysis. However, this results in the significant loss of useful 
gene information. Thus, as a necessary preprocess operation, missing data imputation is 
extensively performed before analyzing the microarray data.

So far, many efforts have been made to develop effective imputation methods for 
missing values in genomics [13–16]. The existing simplest methods are to replace the 
missing data by zeros, or the average values over the row or column in the target matrix 
[17]. Obviously, no data structure information is explored in these method. Following 
the phenomenon that the genes with similar biological function have similar expression 
profile, the KNNimpute was proposed in [10], which works by computing the weighted 
average of a set of gene expression data near to those of the target gene. On the basis of 
KNNimpute, the imputation order for genes with missing data was considered, leading 
to sequential KNNimpute (SKNNimpute) [18]. Iterative KNNimpute (IKNNimpute) [19] 
was another variant of KNNimpute, where the predictions of missing data were obtained 
by iteratively running the KNNimpute method. The later two methods improve the per-
formance of KNNimpute, especially for a large missing rate. Further, by taking dynamic 
time warping (DTW) distance as the gene matching rule, KNNimpute performs better 
with respect to the efficiency and accuracy on microarray time-series data [20].

Unlike KNNimpute, a set of neighboring genes were selected by Pearson correlation 
for a target gene in local least square imputation (LLSimpute) [21], and their relationship 
was built on a linear regression model. LLSimpute is highly competitive compared to 
KNNimpute. Moreover, its imputation performance may also be improved by iterative 
LLSimpute (ILLSimpute) and sequential LLSimpute (SLLSimpute) [18, 22], as done in 
IKNNimpute and SKNNimpute. Additionally, in [23], the authors presented an impu-
tation framework exploring histone acetylation information, under which performance 
improvement can be brought about to KNNimpute and LLSimpute.

In [24], missing data imputation was accomplished by integrating decision trees and 
fuzzy k-means clustering into an iterative learning approach. Comparing with KNNim-
pute, the method changes the gene matching rule and the imputation model, and 
achieves the improved accuracy and robustness at the relatively low missing rate.

The above imputation methods have one thing in common, namely, only local simi-
larity structure in gene data set is explored for missing value imputation. On the con-
trary, some research efforts were made to develop global imputation methods. For 
example, in singular value decomposition based imputation method (SVDimpute) 
[10], the missing values of the target genes were represented by a linear combina-
tion of a set of mutually orthogonal expression patterns, which are the eigengenes 
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corresponding to the k most significant eigenvalues. In comparison with KNNimpute, 
SVDimpute is relatively sensitive to the missing rate and noise in the data.

In Bayesian principle component analysis (BPCA) [25], a probability model with k 
principal axis vectors was built to model the missing data, and the model parame-
ters were estimated within the framework of Bayesian inference. It has been shown 
that BPCA outperforms the representative methods mentioned previously. However, 
the shortcoming of BPCA is that it is difficult to determine the number of principal 
axes. In [26], the missing data was imputed by applying a global learning with a local 
similarity measurement module and a global weighted imputation module involved. 
The method achieves the improved imputation accuracy and less sensitivity to the 
number of neighbors by contrast with several typical local learning-based imputation 
methods.

The support vector regression for imputation (SVRimpute) was first developed in [27], 
where radial basis function was chosen as the kernel function. However, in terms of the 
prediction accuracy, the method is only comparable with BPCA. SVRimpute was fur-
ther extended in [28] by modifying the prediction model and the cost function to predict 
the locations and the values of missing data simultaneously. Relevance vector machine 
working in the way similar to SVR was also applied for the imputation in [29].

The imputation method based on multilayer perceptron networks (called MLPimpute 
hereafter) was proposed in [30]. The method learns to establish the mapping from the 
known data of a gene to its missing data on the whole training dataset. Although mul-
tilayer perceptrons have the very good regression performance, the relationship among 
genes is not considered sufficiently in the method.

A category of hybrid imputation methods was developed by combining local and 
global learning methods. A typical method is named LinCmb [31], where the final esti-
mates of missing data were produced by integrating the output of five base imputation 
methods, including row average, KNNimpute, SVDimpute, BPCA and GMCimpute. In 
[32], the hybrid method works in such a way that the output of BPCA imputation was 
used to initialize the input of ILLS imputation, thus called BPCA-iLLS. By introducing 
semi-supervised learning with collaborative training, the recursive mutual imputation 
(RMI) method was proposed in [33], which exploited the information captured by the 
two imputation methods used in [32]. The hybrid methods possess the advantages of 
both local and global learning methods, and thus better adapt to different gene data sets.

There are some works focusing on incorporating the relationships between diverse 
omics data or biological knowledge for the imputation. In [34], for imputing the miss-
ing proteomics data, a Zero-inflated Poisson regression model was built with the use of 
the correlation between transcriptomics and proteomics datasets. In [35], by a stochas-
tic Gradient Boosted Tree (GBT) method, the relationships between transcriptomics 
and proteomics data were revealed and used to predict the missing protein abundance. 
Artificial neural network approach was also applied to impute the missing values of the 
proteins using the relations between transcriptomics and proteomics data in [36]. Based 
on ensemble learning, the information from microRNA, mRNA and DNA methylation 
was combined to estimate the missing data in an integrative model [37]. Obviously, in 
these methods with more than one gene dataset considered, more information can be 
explored to improve the imputation performance.
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The biological knowledge, such as the functional similarities of genes, the regula-
tory mechanism, information from multiple external data sets, was applied to the 
missing data imputation in [38–40]. They help to determine the consistent neigh-
bors or to select top closest genes of a target gene with missing data. However, such 
kind of imputation methods requires domain-specific knowledge and are infeasible 
for the situations without or less prior knowledge.

Notice that most of the existing imputation methods make use of only a certain 
characteristic of the genetic data to impute the missing values, resulting in the weak 
generalization or even the database-dependent performance. To solve the problem, a 
comprehensive method based on ensemble learning is proposed in this paper. First, 
a set of representative single imputation methods are built and individually applied 
for predicting the missing values with the use of the bootstrap sampling. Then, the 
predictions output by all the individual predictors are combined into the final pre-
diction using weighted average. And the weights for the linear prediction model 
are learned by using this model to estimate known gene data and minimizing the 
imputation errors. The proposed method has two prominent advantages: (1) more 
information from known genomics data is allowed to be used for the performance 
improvement; (2) the good generalization can be achieved by a weight learning 
approach involved in the training procedure.

The main contributions of this work are as follows: 

1. A basic framework for the ensemble learning based imputation method is proposed, 
where bootstrap sampling is introduced to train a set of base predictors, and the base 
predictors are integrated by the weighted average. On the framework, a strong pre-
dictor can be derived by the combinations of weak base predictors.

2. The learning scheme of the combination weights is provided for the ensemble impu-
tation. In this scheme, a linear regression model is built for the combination weights, 
and the expression of the optimal weights is derived in closed form.

3. A specific ensemble imputation method is carefully described, including the choice 
of base predictors and the generation of multiple implementations for each predictor. 
The proposed method is extensively tested on several typical genomic datasets, and 
compared with the state-of-the-art imputation methods. The experiments confirms 
that our method achieves the significant performance improvement.

The remainder of this paper is structured as follows. First, the problem model for 
missing value imputation is given and some basic definitions and conventions are 
formulated. Next, the ensemble imputation method with the bootstrap sampling is 
presented. Here, the imputation procedure and the weight learning scheme are care-
fully described. Detailed derivation of the optimal weights is provided in the sequel. 
The theoretical performance is subsequently analyzed in terms of the imputation 
errors. In addition, the choice of base imputation methods and the generation of the 
base predictions are explained. After that, a series of tests are done to evaluate the 
presented method. Finally, we conclude the paper.
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Problem model
Throughout the article, we will use a matrix GGG ∈ RM×N  to denote the gene expression 
data for M genes in N experiments. The element of GGG at the position (i,  j) is desig-
nated by gi,j , which is the data for the ith gene produced in the jth experiment.

Due to various reasons, e.g., media or experimental conditions, the elements of GGG 
are not completely known. The missing values of the ith gene locate at the ith row of 
GGG and columns whose positions compose the set �i . The complementary set of �i , 
denoted by �̄i , contains the column positions of the known values of the ith gene. The 
missing rate γ is thus expressed as γ = 1

MN

∑M
i=1 |�i| , where |�i| represents the cardi-

nality of �i.
Further, for the sake of explanation, a vector or matrix operator (·)· represented by 

yyy = (xxx)ϕ or YYY = (XXX)ϕ is introduced, which means that the vector yyy (or matrix YYY  ) is 
produced by extracting the elements (or columns) of a given vector xxx (matrix XXX ) at 
the positions in the set ϕ . By the operator, the vectors gggi and gggi , which are respec-
tively composing of the missing values and the known values of gene i, can be written 
as gggi =

(
gi,1, gi,2, . . . , gi,N

)
�i

 and g̃gg i =
(
gi,1, gi,2, . . . , gi,N

)
�̄i

 . The vector 
ggg = (ggg1,ggg2, . . . ,gggM) is thus composed of all missing elements in GGG.

The basic idea of missing value imputation is to estimate the missing gene expres-
sion data by the use of the known gene expression data. Using the above notations, 
the process can be generally expressed as

where ĝgg denotes the imputation vector for ggg . The imputation function H(·) is usually 
built by minimizing a certain cost function of g̃gg i , i = 1, 2, . . . ,M.

The performance of an imputation method is usually assessed by the normalized root 
mean square error (NRMSE), which is the most widely used metric to evaluate the accu-
racy of a prediction approach. For the imputation problem, NRMSE is defined as

where � · � stands for Euclidean (i.e., ℓ2 ) norm, and Var(·) is the sample variance operator. 
Obviously, NRMSE can reflect the estimation accuracy by the root mean square errors 
between the imputation values and the true values, and the impact from the dispersion 
degree of the true gene expression data.

Methods
Ensemble imputation

As a major learning paradigm, an ensemble method tries to construct a set of learners 
from training data and combine them to generate a desirable learner [41]. The promi-
nent advantage of ensemble methods is that weak learners can be boosted to a strong 
learner [41, 42]. Following the same idea, we develop an ensemble method for miss-
ing value imputations. The whole imputation process is shown in Fig. 1, and carefully 
described as follows.

(1)ĝgg = H(g̃gg1, g̃gg2, . . . , g̃ggM),

(2)NRMSE =
�ĝgg − ggg�√

MNγVar
(
ggg
) ,
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Step 1: A set of K imputation methods are selected as the component predictors 
in the proposed ensemble method. According to the generalization error analysis for 
ensemble learning in [42], the use of independent component predictors can dra-
matically reduce the prediction errors. The selected component predictors will be 
described in a later section.

Step 2: In order to predict gggi of gene i by each component predictor multiple times, L 
samples GGG(i,l) , l = 1, 2, . . . , L of the given gene express data in GGG are generated in such a 
way that GGG(i,l) = (GGG)

�i∪�̄
(l)
i

 , where �̄(l)
i  is the lth sampled set of the known column posi-

tion set �̄i . Here, the bootstrap sampling is adopted for the generation of �̄(l)
i  . In such a 

sampling way, randomness can be introduced into the process for building the compo-
nent predictors, which is in favor of the reduction of their dependence.

Step 3: For the kth imputation method, the imputation function h(k ,l)i  is built for gene 
i with the use of the data in sample GGG(i,l) . The detailed explanations will be presented in 
each individual base method. Therefore, the estimation ĝgg (k ,l)i  of the missing vector gggi is 
obtained by applying

Step 4: By weighting and summing the predictions in (3), the final prediction ĝgg of ggg is 
produced as

where ααα denotes the row weight vector of length K × L , and ĜGG is a matrix with the 
((k − 1) ∗ L+ l) th row being the vector ĝgg (k ,l) = (ĝgg

(k ,l)
1 , ĝgg

(k ,l)
2 , . . . , ĝgg

(k ,l)
M ) . A large weight 

component means that the corresponding imputation method has a high priority. To 
obtain an optimal weight vector is of crucial significance for the ensemble method, and 
will be presented in the following section.

A few observations are in order about the proposed imputation method. First, in 
step 2, the sample datasets are generated by bootstrap sampling for each utilized base 

(3)ĝgg
(k ,l)
i = h

(k ,l)
i

(
GGG(i,l)

)
.

(4)ĝgg = αααĜGG,

Fig. 1 Basic framework of ensemble imputation
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imputation method, by which the performance loss of them from sampling process 
can be reduced.

Second, the predictions given by the individual predictors are combined into the 
final prediction in step 4. It has been theoretically shown [41] that the variance and 
the bias of the final prediction errors can be reduced by the integration.

A more intuitive explanation of the theoretical results is that each individual predic-
tor is only adapted to a data space with a certain characteristics and the combination 
of them is capable of expressing a data space with various characteristics and form-
ing a better imputation method. The specific performance analysis for the ensemble 
method will be addressed later.

Third, the optimal weight vector ααα is obtained by a learning approach on a given 
data matrix, and thus takes different values on different datasets. As a result, a better 
generalization ability can be achieved by the ensemble method [42].

In addition, Equation (4) indicates that a set of L predictions obtained by a base 
imputation method are combined with the use of different weights, while the same 
weight is assigned to the predictions of a base learner in the existing stacked regres-
sion methods. From this perspective, the proposed imputation method utilizes a 
more general combination rule.

Weight learning for base imputation methods

In the expression (4), the weight vector ααα is unknown and should be learned from 
known gene express data in the dataset GGG . To be specific, a set of known gene data of 
the matrix GGG are randomly chosen to form a vector g as we construct the missing vec-
tor ggg  . First, by applying h(k ,l)i (·) , i = 1, . . . ,M , the prediction ĝ(k ,l) = (ĝ

(k ,l)
1 , . . . , ĝ

(k ,l)
M ) 

of g is generated. In our simulations, the prediction of all the known data are taken 
to derive the good combination weights. That is, the vector ĝ(k ,l) is composed of the 
predictions of all the known data. Then, similarly to ĜGG , the matrix ĜGGT  is formed by the 
use of ĝ(k ,l) , k = 1, 2, . . . ,K  , l = 1, 2, . . . , L . Last, the weight vector ααα is determined in 
order to minimize the imputation error as

subject to the conditions

where αi is the ith element of ααα.
This is a convex optimization problem with linear constraints. Solving the problem 

yields

where

(5)ααα = arg min
ααα′

�g − ααα′ĜGGT�
2

(6)∀ i,αi ≥ 0 and

KL∑

i=1

αi = 1,

(7)αααT = αααT
0 +BBB���T
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and

with 111 = (1, 1, . . . , 1) , AAA = ĜGGTĜGG
T

T and the superscript † denoting the pseudo inverse 
operator.

In (7), the vector ��� has zero components located at the columns designated by the 
elements in the set �  , and other non-zero elements determined according to

where the sets � and � satisfy 
(
BBB†αααT

0

)
i
< 0, ∀ i ∈ � , and � = CM −� with CM being the 

complete set, defined as CM = {1, 2, . . . ,KL} . In the formula (8), the term [(BBB)� ]� repre-
sents the matrix formed by the rows of the matrix (BBB)� listed in the set �.

The detailed derivation is presented as follows. To solve the optimization problem 
(5) with the constraints in (6), we build the associated Lagrangian L(·) as

where η refers to the Lagrange multiplier associated with the equality constraint in (6), 
and ��� is a Lagrange multiplier vector associated with the inequality constraint in (6). 
The Karush–Kuhn–Tucker (KKT) conditions state that the optimal points for ααα′ , η and ��� 
must satisfy

where α′
i and �i denote the ith component of the vector ααα′ and ��� , respectively.

According to (9), we can write

With the constraint (10), it is easy to derive

Combining the equality constraints in (6) and (13), we have

αααT
0 = AAA†ĜGGT g

T −
111AAA†ĜGGT g

T − 1

111AAA†111T
AAA†111T

BBB = AAA† −
AAA†111T111AAA†

111AAA†111T

(8)
(
(���)�

)T
= −

(
[(BBB)� ]�

)†
((ααα0)�)

T

(9)L(ααα′, η,���) =
1

2
�g − ααα′ĜGGT�

2 + η(ααα′111T − 1)− ααα′
���
T ,

(10)
∂L(ααα′, η,���)

∂ααα′
= 0

(11)�i ≥ 0, i = 1, . . . ,K

(12)�iαi ≥ 0, i = 1, . . . ,K

∂L(ααα′, η,���)

∂ααα′
=

(
ααα′ĜGGT − g

)
ĜGG

T

T + η111− ���

(13)ααα′ =
(
gĜGG

T

T − η111+ ���

)(
AAA†

)T
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Substituting (14) into (13), results in (7).
Further, applying the inequality in (6) to (7), we obtain

By considering the inequality (11) and due to (12), it is immediate to write �i = 0 if (
BBB†αααT

0

)
i
≥ 0 and αi = 0 otherwise, i = 1, 2, . . . ,K  . That is,

Last, (8) can be obtained by inserting (7) into (15) and solving the equation.

Theoretical analysis for imputation error

In the sequel, the theoretical performance for the ensemble imputation method is 
accessed by the sum of squared regression errors, denoted by Er . According to (3) and 
(4), we can write

where E{·} is the expectation operator, and the parameters k and l satisfy 
j = (k − 1)L+ l . For an individual predictor h(k ,l) , the sum of squared regression errors 
E
(k ,l)
r  becomes

Comparing (16) to (17), it is easy to derive

The expression (18) shows that the ensemble method in statistics can perform better 
than the strongest individual predictor among the used predictors by choosing the opti-
mal combination weights.

Further, let ḡgg i =
∑KL

j=1 αjE
{
ĝgg
(k ,l)
i

}
 and ĝgg i =

∑KL
j=1 αjĝgg

(k ,l)
i  . Then, the equivalent expres-

sion for Er in (16) is

(14)η =
111AAA†ĜGGT g

T + 111AAA†
���
T − 1

111AAA†111T

���
T ≥ −BBB†αααT

0

(15)(���)� = (0, 0, . . . , 0)
(ααα)� = (0, 0, . . . , 0)

(16)Er = E





M�

i=1

������

KL�

j=1

αjĝgg
(k ,l)
i − gggi

������

2



,

(17)E(k ,l)
r = E

{
M∑

i=1

∥∥∥ĝgg (k ,l)i − gggi

∥∥∥
2
}
.

(18)min
α

Er ≤ min
k ,l

E(k ,l)
r .
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Moreover, it is easy to derive that

where

and

with the parameters k ′ and l′ satisfying j′ = (k ′ − 1)L+ l′ . As a result, Er can be decom-
posed into three terms as

where

The three terms Er1 , Er2 and Er3 in (21) can be called the variance, covariance and bias 
terms, respectively, according to their expressions. Apparently, by choosing a set of 
strong base predictors, the variance term Er1 and the bias term Er3 can be effectively 
reduced. The covariance term Er2 actually models the correlation between the chosen 
base predictors, and the base predictors making different errors are preferred. The diver-
sity is obtained by applying the bootstrap sampling to the generation of the training 
samples as well as choosing the relatively independent base predictors in our ensemble 
method. Through the above analyses, it can be understood that the proposed ensemble 
method has the significant performance advantage over an individual predictor.

(19)

Er = E

{
M∑

i=1

∥∥ĝgg i − ḡgg i + ḡgg i − gggi
∥∥2
}

=

M∑

i=1

E
{∥∥ĝgg i − ḡgg i

∥∥2
}
+ 2E

{(
ĝgg i − ḡgg i

)}(
ḡgg i − gggi

)T

+ E
{∥∥ḡgg i − gggi

∥∥2
}

=

M∑

i=1

E
{∥∥ĝgg i − ḡgg i

∥∥2
}
+

M∑

i=1

E
{∥∥ḡgg i − gggi

∥∥2
}
.

(20)
M∑

i=1

E
{∥∥ĝgg i − ḡgg i

∥∥2
}
= Er1 + Er2 ,

Er1 =

M∑

i=1

KL∑

j=1

α2
j E

{∥∥∥ĝgg (k ,l)i − E
{
ĝgg
(k ,l)
i

}∥∥∥
2
}

Er2 =

M∑

i=1

KL∑

j=1

KL∑

j′ = 1
j′ �= j

αjαmE
{(

ĝgg
(k ,l)
i − E

{
ĝgg
(k ,l)
i

})

×
(
ĝgg
(k ′,l′)
i − E

{
ĝgg
(k ′,l′)
i

})T}

(21)Er = Er1 + Er2 + Er3 ,

Er3 =

M�

i=1

E





������

KL�

j=1

αj

�
E
�
ĝgg
(k ,l)
i

�
− gggi

�
������

2



.
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In addition, we may assess the effectiveness of the ensemble method by the estimation 
bias ǫ , which is calculated by

The expression (22) shows that the bias for the proposed method is the weighted average 
of the biases for the utilized base predictors. Therefore, if each base predictor is unbi-
ased, the output of the proposed method is also unbiased. And the bias in estimation can 
be reduced by choosing the base predictors with small biases.

Utilized individual imputation methods

To design the ensemble method, four early and relatively primitive imputation methods 
are adopted as base predictors: KNN imputation [10], LLS imputation [21], ILLS impu-
tation [22] and SVD imputation [10]. They were developed following the relatively inde-
pendent ideas and work independently to some extent. The first three methods explore 
the P nearest neighbor genes, i.e., the local gene information, for the imputation, how-
ever, they determine the candidate genes by different gene matching rules. The last one 
achieves the aim by the use of the support vectors corresponding to the Q largest singu-
lar values, which contains the global gene information. As a result, the key characteristic 
diversity of base predictors can be ensured to obtain a good ensemble. Detailed descrip-
tions for the chosen base predictors are presented as follows.

KNNimpute

We establish the imputation functions h(1,l)i (·) on the dataset GGG(i,l) , l = 1, 2, . . . , L by 
KNNimpute. First, the missing values of GGG(i,l) except for those of gene i should be filled 
for the neighboring gene searching. As in [10], the row average approach is adopted.

Then, taking the vector g̃gg (l)i  with the elements of the matrix at the ith row and the col-
umns in �̄i after the row average operation, the Euclidean distance between gene i and 
each of other genes is computed as d(l)ij = �g̃gg

(l)
i − g̃gg

(l)
j � , j = 1, . . . ,M and j  = i , where the 

vector g̃gg (l)j  is defined similarly to g̃gg (l)i .
Next, by Euclidean distance, the P nearest neighbor genes of gene i are determined as 

the candidate genes for the imputation, whose expression data composes a matrix of size 
P × N  , denoted by GGG(i,l)

c .
Last, the missing gene data for the ith gene are estimated by

where βββ(1,l)
i  is a row vector of weights corresponding to the ith gene and the lth sampling. 

For KNNimpute, the jth element of the weight vector βββ(1,l)
i  is given by 1/d(l)i,j /

∑P
j=1 1/d

(l)
i,j  

with d(l)i,j  being the distance between g̃gg (l)i  and the jth row of GGG(i,l)
c .

Since KNNimpute estimates the missing data by exploiting the local structure infor-
mation in the target dataset, the imputation performance largely depends on the local 

(22)
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similarity of gene data. Moreover, it is clearly unable to make use of the global information 
contained in the data.

LLSimpute

We use LLSimpute to establish the imputation functions h(2,l)i (·) on the sample dataset 
GGG(i,l) , l = 1, 2, . . . , L . The basic imputation process is similar to that of KNNimpute but the 
utilized gene matching rule and the computation of the weight vector.

Specifically, in LLSimpute, Pearson correlation based gene matching rule is adopted to 
find out the P nearest neighbor genes of gene i. For any two genes i and j, the Pearson cor-
relation δ(l)ij  is obtained by computing the inner product between the normalized versions of 
g̃gg
(l)
i  and g̃gg (l)j .
The weight vector βββ(2,l)

i  is derived so that

where GGG(i,l)
c  is the candidate gene data matrix determined by the Pearson correlation 

based gene matching rule. Solving (24) yields βββ(2,l)
i = g̃gg

(l)
i

(
GGG(i,l)

c

)†
.

Clearly, LLSimpute is a local imputation method with the use of the correlation among 
gene data. It has the same shortcomings as KNNimpute, and is more sensitive to the num-
ber of reference genes and the missing rate.

ILLSimpute

The imputation function h(3,l)i (·) is built on the sample dataset GGG(i,l) , l = 1, 2, . . . , L by ILL-
Simpute. ILLSimpute is an iterative missing value imputation method. At each iteration, 
ILLSimpute updates the candidate gene dataset GGG(i,l)

c  by applying Pearson correlation based 
gene matching rule to the imputed matrix at previous iteration. Then, it is substituted into 
(23) and (24) to derive the new imputation results. This procedure is carried out iteratively 
until a pre-defined quantity of iterations is reached or there are no differences of imputed 
values between two iterations [22].

It has been shown that ILLSimpute achieves the improved imputation quality by multiple 
iterations of imputation, but fails to capture some unique properties that non time series 
datasets have. That is, ILLSimpute presents the good performance only on some kind of 
datasets.

SVDimpute

SVDimpute is finally used to construct the imputation functions h(4,l)i (·) on the sample 
dataset GGG(i,l) , l = 1, 2, . . . , L . The first step is to fill the missing values of GGG(i,l) , resulting in 
GGG

(i,l)
r′  . Unlike KNNimpute, all the missing values of GGG(i,l) are filled for singular value decom-

position (SVD).
Then, the resulted real matrix GGG(i,l)

r′  is decomposed by applying SVD , expressed as

(24)βββ
(2,l)
i = arg min

βββ
�g̃gg

(l)
i − βββGGG(i,l)

c �2,

(25)GGG
(i,l)
r′ = UUU (i,l)�(i,l)VVV (i,l)T ,
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where UUU (i,l) and VVV (i,l) are orthogonal matrices of size M ×M and N × N  respectively, 
and ���(i,l) is a diagonal matrix of size min{M,N } ×min{M,N } . The diagonal elements of 
���(i,l) consist of non-negative singular values of GGG(i,l)

r′ .
Next, the eigengenes corresponding to the Q largest eigenvalues are selected from 

VVV (i,l)T to construct the matrix VVV (i,l)
c

T . And the prediction ĝgg (4,l)i  for the missing gene data 
gggi of gene i can be represented by (23), where GGG(i,l)

c  is replaced by VVV (i,l)
c

T , and the weight 
vector is denoted by βββ(4,l)

i .
Last, the weight vector βββ(4,l)

i  is optimized as done in LLSimpute. Thus, βββ(4,l)
i  is 

expressed by replacing GGG(i,l)
c  in the expression of βββ(2,l)

i  with VVV (i,l)
c

T .
SVDimpute is suitable for a large microarray dataset having a good global structure. 

It is relatively sensitive to noise in the data. Moreover, it often manifests unsatisfactory 
performance on the dataset with similar local structures.

Now, we can see the distinct difference between the proposed ensemble method and 
the typical hybrid imputation method, LinCmb [31]. LinCmb predicts the missing data 
by a different combination of five imputation methods, and three of them are not applied 
in our method. Moreover, in the process, bootstrap sampling is not explored, and thus 
it is difficult to ensure that the diversity of base predictors and the randomness of the 
prediction errors are obtained. Meanwhile, the expression for the optimal weights is not 
derived in closed form in LinCmb.

Results
Simulation scheme

Simulations are carried out on a complete data matrix containing 50 subjects with 104 
microRNAs (miRNA). The data matrix is derived by the use of a subset of the cancer 
genomic atlas database on Glioma cancer study with all missing values removed [43], 
called TCGA subset1. The incomplete data matrix is generated from the complete one by 
randomly removing a set of entries at a certain missing rate. And the proposed ensemble 
method is applied to impute the faking missing data. The performance is measured by 
the average NRMSE over 30 imputations. We investigate the imputation performance 
by varying the missing rate and the sample size, as well as adding Gaussian noise with 
different standard deviations to the incomplete data matrix. The results of KNNimpute 
[10], LLSimpute [21], ILLSimpute [22], and SVDimpute [10] are also presented for com-
parison purposes.

Parameter setting

The bootstrap sampling is performed T = 30 times for computing the average weight 
vector ααα except otherwise indicated. Note that better imputation performance can be 
achieved by increasing T but the larger computational cost will be caused. The param-
eters for the utilized component imputation methods KNNimpute and SVDimpute take 
the optimal values as suggested in [10]. That is, the neighboring size P = 15 is taken 
for KNNimpute, and the number Q of the selected eigengenes is 20% of the samples 
number in SVDimpute. For LLSimpute and ILLSimpute, we simply set the same neigh-
boring size P as that of KNNimpute for avoiding the optimal parameter searching as 
done in [21, 22]. The number of iterations for ILLSimpute is set to 10. These parameter 
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settings remain the same when each base imputation method is individually applied for 
imputation.

Performance evaluation

First, we test the imputation performance by varying the missing rate from 1 to 20%. 
The results for all the tested methods are shown in Fig. 2. Clearly, the ensemble method 
yields the best performance on the microRNAs data matrix among all the tested meth-
ods. In the wide range of the missing rate, the ensemble method presents the lowest 
NRMSE. This performance advantage is brought about by combining the individual 
imputation methods in the ensemble learning way. With the increase of missing rate, 
the performance of all the methods becomes worse, particularly for ILLSimpute. This is 

Fig. 2 Average NRMSE by KNNimpute [10], LLSimpute [21], ILLSimpute [22], SVDimpute [10], and ensemble 
imputation on TCGA subset1 with different missing rates

Fig. 3 Average NRMSE by KNNimpute [10], LLSimpute [21], ILLSimpute [22], SVDimpute [10], and ensemble 
imputation on TCGA subset1 with different sample number
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caused by the fact that less data information can be explored for imputation at a larger 
missing rate. In contrast, the performance of our method degrades more gradually as the 
missing rate increases.

Next, the imputation performance is evaluated for different sample size, where the 
incomplete data matrix is generated at a given missing rate after a specific number of 
samples are selected randomly. The effect of sample size varying from 20 to 45 is demon-
strated in Fig. 3 with the missing rate at 5% . We can see, among the tested methods, ILL-
Simpute seems to be the most sensitive to sample size, particular for sample size lower 
than 30. It is easy to be understood that a small sample size may lead to over-fitting for 
local methods, like LLSimpute, while for SVDimpute the incomplete data matrices tends 
to be ill-conditioned in the case of less samples. Although the NRMSE for the proposed 
method increases as sample size decreases, it performs better than other individual 
methods across all different sample size.

Last, considering the measurement of gene expression data itself has a lot of noises, the 
imputation performance shall be evaluated in the existence of noise. For this purpose, 
the generated incomplete data matrices undergo additive white Gaussian noise (AWGN) 
with standard deviation being within the range 0.1–0.9. The robustness of all the tested 
methods to noise is demonstrated in Fig. 4 while fixing the missing rate at 5% . Clearly, 
the stronger the noise is, the worse the ensemble method performs. Other tested meth-
ods behaves like our method in this regard. However, the performance of KNNimpute 
degrades much slower than that of LLSimpute and ILLSimpute, which causes that the 
ensemble method is more sensitive to noise than KNNimpute. Particularly, our method 
obtains the lowest NRMSE at each noise level. These reflect that the robust to noise is 
improved by combining multiple individual imputation methods.

Test results on another dataset

Simulations are also done on another subset of the cancer genomic atlas data-
base [43], called TCGA subset2. Like the previous one, the data matrix contains 50 

Fig. 4 Average NRMSE by KNNimpute [10], LLSimpute [21], ILLSimpute [22], SVDimpute [10], and ensemble 
imputation on TCGA subset1 with different noise of standard deviation
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subjects with 104 microRNAs. Simulation scheme and parameter setting remain the 
same as before. The obtained NRMSE by each tested imputation method is plotted in 
Figs. 5, 6 and 7 as a function of missing rate, sample size and noise level, respectively.

In principle, on the second data matrix, the tested imputation methods per-
form worse than on the previous one in terms of the imputation accuracy. Moreo-
ver, among the individual imputation methods, the relative performance depends on 
the utilized datasets. For example, in Fig. 5, ILLSimpute presents the NRMSE larger 
than KNNimpute for the missing rate larger than 0.05, which is inconsistent with the 
observation in Fig.  2. The effect is caused by the fact that neither the global infor-
mation or the local information remains consistent importance on the imputation 

Fig. 5 Average NRMSE by KNNimpute [10], LLSimpute [21], ILLSimpute [22], SVDimpute [10], and ensemble 
imputation on TCGA subset2 with different missing rates

Fig. 6 Average NRMSE by KNNimpute [10], LLSimpute [21], ILLSimpute [22], SVDimpute [10], and ensemble 
imputation on TCGA subset2 with different sample number
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for different data matrices. For this reason, it is hard to choose a suitable individual 
imputation methods in practical applications.

Again, we can see that, in most cases, the proposed method still outperforms other 
methods significantly despite the change of the data matrix. The good generalization 
ability is obtained for our method takes use of more data information by integrating 
diverse imputation methods. Moreover, the weights for each base method are opti-
mized in a data-driven way, by which the importance of the global information or the 
local information depending on the used dataset can be expressed. This ensures that the 
ensemble output is best in the sense of Statistics.

Comparison with other single imputation methods

Furthermore, the proposed ensemble method is compared with SKNNimpute [18], IKN-
Nimpute [19], SLLSimpute [18], SVRimpute [27], and MLPimpute [30]. SKNNimpute 
and SLLSimpute are respectively the extensions of the basic KNNimpute and LLSim-
pute with the imputation order for genes considered. IKNNimpute works by iteratively 
running KNNimpute. SVRimpute explores SVR to predict missing values. And MLPim-
pute is built based on multilayer perceptron. These methods are chosen for comparison 
because they are the state-of-the-art imputation techniques for microarray missing data.

Simulations are performed on the data matrix called GDS38 for a study of cell-cycle-
regulated genes in Saccharomyces cerevisiae [44]. GDS38 contains 16 subjects with 
7680 genes, which were collected at different points in the cell cycle within 7 min. The 
whole GDS38 is incomplete and has 6.1% missing data. We randomly extract a total of 
420 genes without missing data to form the complete data matrix for simulations. The 
parameters of SKNNimpute, IKNNimpute and SLLSimpute take the values as used in 
KNNimpute and ILLSimpute before. For SVRimpute, the relaxation variable, the penalty 
factor and the parameter of radial basis function are set to 10−3 , 1, and 0.033, respec-
tively. They are chosen by a grid search strategy [27]. MLPimpute uses the following 
parameter settings: the number of inputs and outputs is 16, and the size of hidden layer 

Fig. 7 Average NRMSE by KNNimpute [10], LLSimpute [21], ILLSimpute [22], SVDimpute [10], and ensemble 
imputation on TCGA subset2 with different noise of standard deviation
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is 80. The network is trained applying gradient descent with adaptive learning rate and 
the learning rate is initialize to 10−3 . The training is stopped when the learning rate is 
less than 10−5.

The obtained NRMSE for the tested imputation methods is plotted in Fig. 8 as a func-
tion of missing rate. From Fig. 8, we observe that, IKNNimpute gets NRMSEs less than 
SKNNimpute, particularly at a high missing rate. This indicates that the strategy itera-
tively running KNNimpute is more effective than changing the imputation order. For 
SLLSimpute, the effect taken by changing the imputation order is also very weak. The 
two global imputation methods, both SVRimpute and MLPimpute, exhibit the per-
formance advantage over the previous three local methods. Comparing with MLPim-
pute, SVRimpute has better prediction precision at each tested missing rate. Moreover, 
SVRimpute is more insensitive to missing rate. Impressively, among all the tested meth-
ods, our method yields the superior imputation accuracy at any tested missing rate, and 
achieves relatively steady performance while missing rate varies within a large range.

Comparison with hybrid imputation methods

The proposed ensemble method is also compared with several typical hybrid imputation 
methods including LinCmb [31], BPCA-iLLS [32] and RMI [33]. These methods are cho-
sen for comparison because they are the state-of-the-art hybrid imputation techniques 
for microarray missing data.

The results obtained on GDS38 dataset is shown in Fig. 9, where the default parameter 
values are taken for LinCmb, BPCA-iLLS, and RMI given in their papers.

Clearly, comparing with the single imputation methods in the last test, all the hybrid 
methods can obtain much lower NRMSE at the same missing rate, which confirms that 
the combination of multiple imputation methods is an effective strategy for the imputa-
tion performance improvement. Among the existing hybrid methods, LinCmb receives 
the NRMSE smaller than that of BPCA-iLLS and RMI at each missing rate. Moreover, 
the performance of LinCmb degrades more smoothly when the missing rate varies from 

Fig. 8 Average NRMSE by SKNNimpute [18], IKNNimpute [19], SLLSimpute [18], SVRimpute [27], MLPimpute 
[30], and ensemble method on GDS38 dataset with different missing rates
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5 to 20% . This is due to the fact that in LinCmb the results of more individual imputa-
tion methods are combined into the final prediction. Our method not only has the best 
imputation accuracy but also possesses the lowest insensitivity to missing rate.

Effects of the number of base predictors

To investigate the effects of the number of base predictors, we vary the number of base 
predictors in the proposed ensemble method from 2 to 4, and conduct the experiments 
on GDS38 dataset. The obtained results are shown in Fig. 10 for different missing rates.

As can be seen, among the variants of our full method, the one combining KNNim-
pute and SVDimpute, called KNN-SVD in Fig.  10 (the names for other ensem-
ble methods in Fig.  10 can be understood in a similar manner) presents the largest 

Fig. 9 Average NRMSE by LinCmb [31], BPCA-iLLS [32], RMI [33], and ensemble method on GDS38 dataset 
with different missing rates

Fig. 10 Average NRMSE of ensemble methods combining two to four base predictors respectively on 
GDS38 dataset with different missing rates
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NRMSE at each tested missing rate. The combination ILLS-SVD performs better than 
KNN-SVD, indicating that the performance of the ensemble method largely depends 
on the used base imputation methods. The combination KNN-ILLS-SVD achieves the 
imputation performance very close to that of ILLS-SVD, and KNN-LLS-ILLS per-
forms better than the combinations of two base predictors. This shows that the per-
formance of the ensemble method can be improved by increasing the number of the 
utilized base predictors. Notice that the performance of KNN-LLS-ILLS is very near 
to one of the ensemble method with four base predictors.

Further, the performance of the variants of our ensemble method (full model) in 
the test is explained based on the theoretical results given previously. We compute 
the sample mean µ and standard deviation σ for the base imputation methods and 
the covariance between each pair of base methods in prediction errors. The symbol 
σ with a subscript represents the covariance between two base methods in prediction 
errors. For instance, σKL stands for the covariance between KNN and LLS. The results 
for missing rate γ varying from 5 to 15% are summarized in Tables 1 and 2. As is clear, 
for the case of γ = 10% , ILLS produces the imputation results with the sample mean 
in imputation errors close to that of KNN but the standard deviation lower than that 
of KNN. Hence, according to (19) and (20), the combination ILLS-SVD is theoreti-
cally superior to KNN-SVD. Moreover, the performance of ILLS-SVD degrades more 
gradually with the increase of γ because the standard deviation of ILLS is relatively 
stable for different missing rates.

Notice that SVD presents the sample mean and standard deviation in imputation 
errors close to that of LLS. The sample covariance of KNN and LLS in imputation 
errors is apparently larger than that of KNN and SVD, and the sample covariance of 
LLS and ILLS in imputation errors is also much larger than that of SVD and ILLS. 
According to the results and considering (19) and (20), we can analytically derive 

Table 1 Sample mean µ and standard deviation σ for base imputation methods in prediction errors

The experiment is conducted on GDS38 dataset while missing rate γ varies from 5 to 15% , and the given sample mean and 
standard deviation are averaged over the results obtained by repeating the imputation process ten times in bootstrapping 
way

Method γ = 5% γ = 10% γ = 15%

µ σ µ σ µ σ

KNN 0.0036 0.4879 0.0114 0.5398 0.0050 0.5760

LLS 0.0089 0.4079 0.0155 0.4385 0.0084 0.4439

ILLS 0.0090 0.4232 0.0158 0.4441 0.0106 0.4606

SVD 0.0038 0.3975 0.0124 0.4185 0.0013 0.4362

Table 2 Sample covariance for base imputation methods in prediction errors

The experiment is conducted on GDS38 dataset while missing rate γ varies from 5 to 15% , and the given covariance values 
are averaged over the results obtained by repeating the imputation process ten times in bootstrapping way

γ (%) σKL σKI σKS σLI σLS σIS

5 0.1160 0.1172 0.0906 0.1589 0.1016 0.1034

10 0.1301 0.1220 0.1057 0.1617 0.1138 0.1126

15 0.1269 0.1312 0.1057 0.1583 0.1179 0.1147
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that KNN-ILLS-SVD should be better than KNN-LLS-ILLS. However, the theoretical 
analysis is inconsistent with our experimental results. This might be because the com-
bination weights in (4) are learned from the training data other than the testing data. 
The theoretical performance of the variants with more base predictors is better or not 
worse than that of the variants with less base predictors. The analytical predictions 
are in accordance with the experimental results in Fig. 10. Similar observations can be 
made for other two values of missing rate.

Application in the classification of tumor samples

Tumor classification is an important application of gene expression data, which is of 
great significance to the diagnosis and treatment of cancer diseases. In the application, 
missing data in gene expression data is first imputed and then tumor classification is 
performed on the imputed data. Therefore, the performance of the imputation method 
is straightforwardly related to the classification accuracy. In the sequel, we evaluate the 
performance of the proposed method by conducting a tumor classification experiment.

Tumor cell gene expression data set GDS1761 is used in the experiment, which was 
sampled from gene expression profile data of 64 cell lines of tumors [45]. This dataset 
includes breast tumor samples, central nervous system tumor samples, etc., as shown 
in Table 3, after deleting 3 samples with very much missing data. Each sample is formed 
by a total of 9706 gene data. The categories, quantities as well as average missing rates of 
tumor samples are shown in Table 3.

The missing data in the dataset are imputed by applying the ensemble method and 
other popular imputation methods respectively. After that, the dimensionality of each 
sample is reduced from 9706 to 16 by the use of principle component analysis (PCA) 
[46, 47]. Then, gene data are classified into tumor categories listed in Table 3, by carry-
ing out two typical classifiers: k-nearest neighbor (KNN) and support vector machine 
(SVM) [48, 49].

For the performance evaluation method, the leave-one-out cross validation is adopted 
by considering the small sample number of each tumor category. And the classification 
performance is assessed by the average accuracy, i.e., the ratio of the number of samples 
to be correctly classified in all the cross-validation tests to the total times of the cross-
validation tests. The experimental results are summarized in Table 4.

Table 3 The Number and the missing rate of tumor samples for each tumor category in the used 
dataset

Tumor Sample size Missing rate (%)

Breast tumor 9 15.6

Central nervous system tumors 6 9.1

Colonic neoplasms 7 13.5

Leukemia 8 11.2

Melanoma and birthmark tumors 8 7.6

Non-small cell lung cancer 9 15.7

Ovarian tumor 6 8.5

Kidney neoplasm 8 14.9
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Obviously, the classification performance is closely related with the utilized imputa-
tion method. A good imputation method helps improve the classification performance. 
For instance, our ensemble method brings about the significant performance advantage 
over other tested methods for the two typical classifiers. The behavior indicates that the 
imputation method with high precision definitely plays a positive role in the subsequent 
data analysis. However, surprisingly, the simple imputation method, MEANimpute, is 
more effective than KNNimpute, LLSimpute, SVDimpute and their improved versions 
in the task of gene data classification. This reveals that the data imputation is less reli-
able if only exploiting local information (e.g., KNNimpute) or global information (e.g., 
SVDimpute). In addition, SVM possesses better classification performance than KNN 
for the same imputation method.

Conclusion
In this paper, an ensemble method has been proposed for missing value imputation by 
constructing a set of base imputation methods and combining them. Four commonly 
used imputation methods served as the base methods and were trained by applying the 
bootstrap sampling to reduce their dependence. The final predictions were produced 
by weighting and summing the predictions given by all base methods, where a learn-
ing scheme was developed to derive the optimal weights by minimizing the imputation 
errors with known gene data. Moreover, we theoretically evaluated the performance of 
the proposed method.

The ensemble imputation method has been extensively tested on several typical 
genomic datasets, and compared with the state-of-the-art imputation methods includ-
ing KNNimpute, IKNNimpute, SKNNimpute, LLSimpute, ILLSimpute, SLLSimpute, 
SVDimpute, SVRimpute, MLPimpute, LinCmb, BPCA-iLLS, and RMI. Experimental 
results confirmed the advantage of the proposed method over other tested methods 
consistently in all three different scenarios in terms of lower value of NRMSE. Of par-
ticular importance is that our method yields much better generalization and universality.
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