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Background
In a traditional genome-wide association study (GWAS) each single nucleotide poly-
morphism (SNP) is tested individually for association with a particular phenotype. Using 
computationally efficient generalized or Bayesian linear mixed models that account for 
population stratification and cryptic relatedness, this approach can successfully identify 
risk alleles in the genome for complex diseases such as type 2 diabetes, Celiac disease and 
schizophrenia using large biobanks consisting of hundreds of thousands of individuals 

Abstract 

Background: The identification of gene–gene and gene–environment interactions 
in genome‑wide association studies is challenging due to the unknown nature of the 
interactions and the overwhelmingly large number of possible combinations. Paramet‑
ric regression models are suitable to look for prespecified interactions. Nonparametric 
models such as tree ensemble models, with the ability to detect any unspecified inter‑
action, have previously been difficult to interpret. However, with the development of 
methods for model explainability, it is now possible to interpret tree ensemble models 
efficiently and with a strong theoretical basis.

Results: We propose a tree ensemble‑ and SHAP‑based method for identifying as well 
as interpreting potential gene–gene and gene–environment interactions on large‑
scale biobank data. A set of independent cross‑validation runs are used to implicitly 
investigate the whole genome. We apply and evaluate the method using data from 
the UK Biobank with obesity as the phenotype. The results are in line with previous 
research on obesity as we identify top SNPs previously associated with obesity. We 
further demonstrate how to interpret and visualize interaction candidates.

Conclusions: The new method identifies interaction candidates otherwise not 
detected with parametric regression models. However, further research is needed to 
evaluate the uncertainties of these candidates. The method can be applied to large‑
scale biobanks with high‑dimensional data.
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and SNPs [1–3]. Despite this, the estimated effects of the risk alleles are typically small 
and a large proportion of the estimated genetic heritability is yet to be explained for 
common traits and diseases [4]. One reason may be that most traits and diseases are 
highly polygenic, and thus many risk alleles with tiny effects will not be declared statisti-
cally significant due to stringent p-value significance thresholds. A second reason may 
be that the effect of the risk alleles are parametrically misspecified in the models. Model 
misspecification may lead to reduced power of detecting risk alleles [5, 6]. A third rea-
son may be failure to account for epistasis, namely interactions between genes which 
together can impact the association with a certain phenotype [7, 8]. A fourth reason for 
the missing genetic heritability may be gene–environment interactions where the effect 
of a gene depends on some external environmental factor. Incorporating interactions in 
a generalized linear mixed model, particularly gene–gene interactions, remains a dif-
ficult task in GWAS due to the large number of interactions to investigate, the strict 
assumptions of the interaction effects needed and the multiple testing problem among 
other things [9].

In many situations the number of directly genotyped SNPs to evaluate, ignoring 
imputed genotype values, may be of the order of millions. With millions of SNPs to 
investigate the total number of SNP-pairs becomes of the order of 1012 . For instance, 
with a family-wise error rate (FWER) less that 0.05, using the Bonferroni method this 
will require rejection of the null hypothesis of no interaction for p-values less than 10−14 . 
Even with less conservative criteria than FWER, the small group of true interactions 
would be required to have very strong signals in order to be identified. Therefore, sev-
eral two-stage algorithms have been developed such as GBOOST, SHEsisEpi and DSS 
where the first stage is a screening procedure to find the most promising gene–gene 
interactions, and the second stage is further investigation only based on these gene–
gene interaction candidates [10–14]. However, inclusion of environmental features is 
either not considered or limited in the aforementioned two-stage algorithms [10, 15]. 
This can lead to overlooking important relationships including gene–environment inter-
actions. Within modern biobanks, a rich amount of information, clinical, demographic, 
environmental and genetic, is available for each individual. A GWAS implemented using 
biobank data should therefore take full advantage of information with any perceived rel-
evance for the trait of interest.

As an alternative to separately testing one parametric model for each interaction as 
well as the two-stage algorithms mentioned above, we suggest a nonparametric three-
phase algorithm that can adjust for an unlimited number of features while searching 
for both gene–gene and gene–environment interaction candidates using tree ensemble 
models and SHAP values. We first rank the importance of each feature using the tree 
ensemble model XGBoost, a powerful prediction model suitable for high-dimensional 
data [16]. Recent research has demonstrated the possibility to interpret efficiently and 
with strong theoretical basis the importance of each feature from tree ensemble models 
using so-called SHapley Additive exPlanation (SHAP) values [17]. Based on this ranking, 
we further propose a model fitting process where the aim is to find the best XGBoost 
models with respect to predictive performance. The idea is that better predictive per-
formance is a result of revealing additional relationships. Finally, based on these mod-
els, the aim is to explain the relationships that the models consider most important, and 
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specifically the interactions. This type of procedure is more inclusive in order to find true 
interactions with the intention that these interaction candidates will need to be thor-
oughly investigated in a second stage. By using real data from UK Biobank, we demon-
strate these models’ capability to: (a) Rank features by importance and thereby removing 
noise. (b) Evaluate the use of XGBoost as both a predictive model and explainable model, 
and finally (c) Rank and explain plausible gene–gene and gene–environment interac-
tions. We finish by comparing the top ranked interactions with logistic regression with 
interaction terms and perform statistical tests. We will in addition do a stratified analysis 
of the interaction candidates. In this paper, the focus is on a case-control setting, but the 
method outlined in this paper can be applied to both continuous and discrete pheno-
types. Obesity was selected since this particular trait has been extensively researched in 
previous GWAS [18–20] providing a meaningful way to evaluate our method.

Methods
Recent research within GWAS to account for both genetic and environmental interac-
tions have focused on how to explore the large amount of data in a more systematic way 
by using various nonparametric machine learning models such as tree ensemble models 
and deep neural networks [21–23]. So far, the most successfully applied machine learn-
ing methods for genotype data are tree ensemble models such as gradient tree boosting 
models [24] first introduced by Jerome H. Friedman [25], but with subsequent improve-
ments. One such improvement is the so-called XGBoost implementation [16] used in 
this paper. XGBoost, as any tree ensemble model, consists of many so-called weak learn-
ers which in our case are regression trees. There are several advantages of using trees as 
they can naturally handle data of mixed type (continuous, categorical etc.) and missing 
values, they have the ability to deal with irrelevant and correlated variables, and they are 
computationally efficient to use [26]. However, trees suffer from low predictive power, 
high variance, lack of smoothness, and inability to capture linear structures. High vari-
ance and overfitting are of greater concern with deeper trees. Tree ensemble models, 
consisting of many trees, will reduce this variance and improve the predictive power 
[26]. Smoothness and ability to capture linear structures have also been shown to be 
improved [27]. The concern about using tree ensemble models within GWAS has been 
how to objectively evaluate the importance of each feature similar to p-values in tradi-
tional GWAS. However, a recent paper by Lundeberg et al. [17] showed that tree ensem-
ble models have the capability to be efficiently and objectively interpreted by measuring 
the importance of each feature with respect to the predictions of the model by introduc-
ing so-called SHAP values. Interpretation of the XGBoost models through SHAP values 
will allow us to explain the prediction for each individual, a beneficial property in a pre-
cision medicine setting.

Problem description and syntax

Let yi be the value/phenotype of some trait for individual i. This value may signify the 
absence or presence of a certain trait, such as a disease, or some continuous measure such as 
height, weight or blood pressure, or even a combination of measures such as the body mass 
index (BMI). Let gi,a denote the number of copies (0, 1 or 2) of the minor allele (referred to 
as the genotype) for a biallelic SNP a and individual i. Furthermore, let xi,e denote the value 
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of some environmental feature, and let the matrix XN×M represent all genetic and envi-
ronmental data for all N individuals and M features. Usually in a GWAS, the association 
between a SNP and a trait is tested separately for each SNP. However, another approach is 
to model the association between several SNPs and a trait simultaneously. We will use the 
latter approach, and will refer to genetic and environmental data as features, xi , for each 
individual i. Consider a model for predicting the phenotype, yi , denoted ŷi(xi) . The perfor-
mance of the model depends on how close each ŷi(xi) is to yi for all individuals with respect 
to some loss function. However, equally important in this setting is to understand what 
influences the prediction ŷi(xi) . In other words, we would like to understand how each fea-
ture contributes to the prediction ŷi(xi) for each individual i. In this paper we aim to derive 
such a model and we will specifically consider the special case where the trait yi is binary, 
that is, presence or absence of a phenotype. We denote the group consisting of individuals 
where the phenotype is absent as the control group, and the other group as the case group.

Before introducing our tree ensemble- and SHAP-based method for identifying inter-
action candidates, we will outline the necessary building blocks applied in our method 
including the choice of tree ensemble model, the performance metric to use in a binary 
classification setting as well as which metrics to use in order to evaluate the importance of 
each feature.

XGBoost

The XGBoost tree ensemble model consists of several regression trees, as illustrated in 
Fig. 1. An important aspect of trees, is that they automatically handle interactions between 
features. Consider the leftmost tree in Fig. 1, where the first split is for feature x1 , and then 
for both branches of the tree the next split is for feature x2 . Observe that the impact of fea-
ture x2 in the tree is dependent on the value of feature x1 , with a different outcome if x1 ≤ 1 
than if x1 = 2 . This means that a statistical interaction between feature x1 and x2 is encoded 
in the tree.

xi,1

xi,2 xi,2

xi,3

xi,4

xi,1

xi,3

xi,1 = 2 xi,1 <= 1

xi,2 >= 1xi,2 = 0
xi,2 <= 1 xi,2 = 2

xi,3 = 1

xi,4 <= 60 xi,4  > 60

xi,5<=1 xi,5=2

xi,1= 0 xi,1 >= 1

xi,3= 0

0.146 -0.53 0.164 0.488 -0.67 -0.57 -0.18 -0.76 0.24 0.1 -0.35 0.7

xi = {xi,1 = 1, xi,2 = 2, xi,3 =1, xi,4 = 65, xi,5 = 2, xi,6 = 0}

f(xi) = f1(xi) + f2(xi) + f3(xi) =  - 0.53 - 0.76 - 0.35 = - 1.64  

xi,3 = 0

xi,5

xi,3= 1

xi,6

xi,6 <=1 xi,6 =2

Fig. 1 An example with three constructed regression trees with six features xi,1 to xi,6 used as splitting points 
at each branch, and leaf node values. Also shown is the computation of f (xi) given an example of feature 
values xi . The structure of the trees opens the possibility to explore interactions since a path from a root node 
to a leaf node denotes a combination of feature values
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Constructing trees

The XGBoost algorithm starts with the construction of a single regression tree, and then 
new regression trees are consecutively constructed in a gradient boosting matter based on 
a loss function. The loss function is a sum of a loss function per individual, ℓ(yi, ŷ(T )

i (xi)) , 
which is a differentiable convex function. It measures the performance of the prediction, 
ŷ
(T )
i (xi) , with respect to the observed response, yi , for observation i with features xi when 

there is a total of T trees in the model. In a binary classification setting a convenient loss 
function is the binary cross-entropy:

Regression tree number τ is denoted as fτ , a data structure that contains information 
of nodes, features used as splitting points and leaf node values. The function fτ (xi) ∈ R 
outputs the value of the leaf node (green circles in Fig. 1) corresponding to features xi 
based on tree τ . In a binary classification setting, the prediction ŷ(T )

i (xi) is interpreted as 
the probability that individual i is a case given a total of T regression trees.

In order for ŷ(T )
i (xi) to represent a probability, a much used transformation is the sig-

moid function:

When constructing each tree, one starts at the root node and successively investigates 
which feature to use as a splitting point at each node. The model will choose the split 
that minimizes the total loss function at that point. There are different strategies when 
constructing the trees. Splitting at the node which gives the largest decrease in loss is 
the approach that will be used in our case. The XGBoost R software package applies the 
histogram method to reduce the search time [28–30]. For the handling of missing values, 
we refer to the original XGBoost paper [16].

The model will typically stop training when the total loss function has not decreased 
in a given number of iterations, where a new regression tree is constructed in each itera-
tion. The prediction of the final model on the logit scale given features xi is given by 
f (xi) =

∑T
τ=1 fτ (xi) , while the probability of the case class will be calculated using the 

sigmoid transform on f (xi) , as in Eq. (1).

Hyperparameters in XGBoost

XGBoost has a large set of hyperparameters, which may influence the performance of 
the algorithm and its ability to find the best representation of the data. In this paper, we 
focus on the learning rate η , subsample, colsample_bytree, colsample_bylevel and max_
depth. The learning rate η ∈ (0, 1] scales the values of the leaf nodes after the construc-
tion of each new tree, in which case ft(xi) = ηf ∗t (xi) where f ∗t (xi) is the raw regression 
tree before the scaling of the leaf node values has been applied. This will limit particular 
trees to dominate the prediction. It has been shown to be important since it influences 
how fast the model will learn and it can prevent early overfitting. In high-dimensional 
problems this is crucial and the learning rate should be well below 1 and is typically 0.1 
or smaller [26, 31]. The subsample and colsample_bytree hyperparameters decide the 

ℓ(yi, ŷ
(T )
i (xi)) = −yi log(ŷ

(T )
i (xi))− (1− yi) log(1− ŷ

(T )
i (xi)).

(1)ŷ
(T )
i (xi) =

1

1+ e−
∑T

τ=1 fτ (xi)
.
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proportion of individuals and features to be evaluated in each regression tree respec-
tively. They also prevent overfitting, and in addition reduce the training time of the 
model. A typical value for both hyperparameters is 0.5, and in high-dimensional data 
it has been proposed that even smaller values can be beneficial [26]. However, this will 
depend on what proportion of the high-dimensional data is relevant. If the relevant 
proportion is small, a more reasonable value is closer to 1 [16]. The parameter colsam-
ple_bylevel is used to partition the number of possible features to use as splitting points 
in each level of the tree. The literature is quite scarce on its effect, but it may oppose 
the non-optimal greedy approach search as well as providing more room for learning 
in a way similar to the learning rate. The parameter max_depth is the maximum depth 
in each tree. Other important hyperparameters are the regularization parameter � 
described in Chen and Guestrin [16] as well as the parameter early_stopping_rounds 
which is the maximum number of rounds without predictive improvement of the valida-
tion data before the training stops. To avoid overfitting, the validation data is independ-
ent of the training data.

Classification performance metric

For a binary classification model, the predictive performance in the validation data 
can be evaluated with specific focus on the group that is of particular interest (the case 
group). Let TP, FP and FN be the number of true positives, false positives and false nega-
tives, respectively. The precision and recall given the classifications from a model are 
defined as follows,

A convenient measure for the model performance is the area under the curve, denoted 
PR-AUC (precision-recall area-under-curve) [32]. PR-AUC is most often used in the 
case of imbalance, meaning that one group is larger than the other. When TP = 0 and 
FP = 0, corresponding to a model that always predicts an individual to be a control, the 
precision is defined to be zero.

A measure of feature importance in tree ensemble models ‑ SHapley Additive exPlanation 

(SHAP) values

When evaluating the global feature importance in a tree ensemble model, one possibility 
is to look at the relative decrease in loss for all splits by a given feature over all trees [33]. 
Unfortunately, this measure suffers from so-called inconsistency as discussed in Lundberg 
et al. [34]. In short, this means that the feature contributions are unfairly distributed as a 
result of not accounting for the importance of the order in which the features are intro-
duced in the trees. Another popular, but similarly inconsistent, importance metric is count-
ing the number of times each feature is used as a splitting point. Instead, a metric based 
on so-called SHapley Additive exPlanation (SHAP) values can be shown to achieve con-
sistency [17, 35]. In the case of tree ensemble models, each feature j for each individual i 
is given a SHAP value, φi,j , which represents the contribution of feature j with respect to 

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
.
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the prediction, f (xi) =
∑T

τ=1 ηf
∗
τ (xi) , equal to the output of the linear sum of all T regres-

sion trees in a tree ensemble model given features xi . This metric exhibits several favourable 
properties aside from consistency [35]. For instance, the sum of the contributions of each 
feature, φi,j , including a constant φ0 equals the prediction of the model f (xi):

where M is the number of features included in the model. Moreover, the total contribu-
tion of a subset of all features for each individual is simply equal to the sum of the SHAP 
values for each feature. The reason for these favourable properties is that the contribu-
tion, φi,j , is computed based on a concept from game theory first introduced by Lloyd 
Shapley [36]:

where M is the set of all features included in the model, the function vi(S) measures 
the total contribution of a given set of features (vi(M) = f (xi) ), and the sum is across 
all possible subsets where feature j is not included. The parameter φ0 is defined as 
φ0 = v(S = ∅) . The key idea is that the contribution of each feature for each individ-
ual is measured by evaluating the difference between the prediction when the value of 
feature j is known, versus the case when the value feature j is unknown for all subsets 
S ⊆ M \ {j} . In a statistical setting, the marginal expectation first introduced in Janzing, 
Minorics, and Blöbaum [37] seems to be a reasonable measure:

where E[f (Xi,S∪{j} = x
∗
i,S∪{j},Xi,S∪{j})] is the expected prediction when only the values 

of the feature subset S as well as feature j, denoted x∗i,S∪{j} , are known, while the vector 
of the complement set, Xi,S∪{j} , is regarded as a random vector. Notice that S ∪ S = M . 
The values φi,j in Expression (3) with vi(S) measured as marginal expectations are 
denoted as SHAP values [35]. In the case of binary classification using a tree ensemble 
model, the prediction f (xi) can be interpreted as the log-odds prediction.

By assuming all features are mutually independent, Lundberg et al. [17] constructed an 
algorithm to estimate the SHAP values in polynomial running time, O(TLD2) , with maxi-
mum depth D and maximum number of leaves L in all T trees. The assumption about 
mutual independence is a limitation, and without this assumption the estimation of the 
SHAP values becomes more complicated [38]. For further details about estimations of 
SHAP values assuming mutual independence, see Additional File 1.

SHAP interaction value

The SHAP values can be further generalized to interpret pairwise interactions through 
the SHAP interaction values �i,j,k , j  = k , for individual i and features j and k given by 
[17, 39]:

(2)f (xi) = φ0 +

M
∑

j=1

φi,j ,

(3)φi,j =
∑

S⊆M\{j}

|S|!(M − |S| − 1)!

M!
[vi(S ∪ j)− vi(S)],

vi(S ∪ j) = E[f (Xi,S∪{j} = x
∗
i,S∪{j},Xi,S∪{j})]
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where

If feature k yields additional information when present simultaneously with feature j, 
∇i,j,k(S) will be different from zero with the sign depending on how feature k (when pre-
sent) affects feature j. With these definitions, the pairwise SHAP interaction values have 
the same properties as the single-feature SHAP values. For instance, the contribution of 
a given feature j, φi,j , can be separated into the contribution of j itself, denoted �i,j,j , in 
addition to all interactions including feature j, denoted as �i,j,k , for all k  = j:

The final prediction for each individual can be decomposed into

where �i,j,k = �i,k ,j.
The interactions for all possible pairs of features for a particular tree ensemble model 

can be computed in O(TMLD2) time [17].

Tree ensemble‑ and SHAP‑based method for identifying interaction candidates

We propose a new method using XGBoost and SHAP values to identify potential inter-
actions such as SNP-SNP interactions or SNP-environment interactions, but also non-
parametric single-SNP effects. The method is outlined in Fig. 2.

We use a tree ensemble model (XGBoost) trained on data consisting of observations 
from individuals each with a trait yi and features xi , to rank features by importance using 
SHAP values. The ranked list of features makes it possible to construct new models 
that use only the most important features, and therefore have higher predictive power. 
Finally, having a fitted model that only consists of relevant features, we want to graphi-
cally present which relationships are important with respect to the phenotype, both 
marginal effects and interactions.

In order to evaluate the ability to both rank features by importance, find the best pre-
dictive models, and explain the best models without causing optimism bias, we divide 
the individuals in three disjoint subsets, namely the ranking data, fitting data and evalu-
ation data (Fig. 3).

Dividing the data into several subsets will reduce the power to detect relevant fea-
tures as well as reducing the degree to which each subset is representative of the 

(4)�i,j,k =
∑

S⊆M\{j,k}

|S|!(M − |S| − 2)!

2(M − 1)!
∇i,j,k(S),

∇i,j,k(S) =
[

E[f (Xi,S∪{j,k} = x
∗
i,S∪{j,k},Xi,S∪{j,k})]

−E[f (Xi,S∪{k} = x
∗
i,S∪{k},Xi,S∪{k})]

]

−
[

E[f (Xi,S∪{j} = x
∗
i,S∪{j},Xi,S∪{j})] − E[f (Xi,S = x

∗
i,S ,Xi,S)]

]

.

φi,j = �i,j,j +
∑

j �=k

�i,j,k .

(5)f (xi) = φ0 +

M
�

j=1

φi,j = φ0 +

M
�

j=1



�i,j,j +
�

k �=j

�i,j,k



,
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full data set. However, the procedures are intended to be used on data from large 
biobanks to reduce power loss and representativeness of the subsets. By using inde-
pendent subsets of the data for each phase of our method, we avoid potential overfit-
ting by reusing data, and will be able to give an accurate account to which extent tree 

RANKING
DATA

RANKING
PROCESS

IMPORTANCE
RANKING OF

MAIN EFFECTS

FITTING
DATA

MODEL
FITTING

EVALUATION
DATA

MODEL
EXPLAINABILITY

MODEL

HYPERPARAMETER
SETS FOR MODEL

FITTING

HYPERPARAMETER
SET USED IN 

RANKING PROCESS
PHASE 1 - RANK
FEATURES BY
IMPORTANCE

PHASE 2 - MODEL
FITTING

PHASE 3 -
EXPLAIN WHAT

MODEL
CONSIDERS
IMPORTANT RANKING OF

INTERACTIONS

Fig. 2 The ranking, model fitting and explanation phases. In the ranking phase, the SNPs and environmental 
features are ordered by their relative importance. The ranking is achieved with XGBoost and SHAP values as 
explained in Fig. 4. In the model fitting process, the top ranked features are combined and modelled with 
XGBoost as described in Fig. 6. Finally, the explanations and interactions are obtained from the SHAP values. 
This is visualized in Figs. 10, and 11
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ensemble models are able to capture relationships between features and the trait of 
interest that classical GWAS methods might have difficulties to achieve [40].

Phase 1: The ranking process

Identifying associations between SNPs and a phenotype is a typical example of a high-
dimensional problem. Experience from several GWAS suggests that many low-effect 
SNPs are not detected. At the same time we still expect only a small proportion of the 
total genome to have any effect with respect to the trait of interest. Consequently, we 
face a challenge where many potential SNPs have a causal effect on the trait, but a much 
larger number of SNPs are not causal at all and therefore contribute as noise. To make it 
even more complicated, among the large number of SNPs in the human genome, there 
exist correlations between different SNPs throughout the whole genome in a given pop-
ulation called linkage disequilibrium [41]. In general, the closer the physical distance 
between a pair of SNPs is, the more correlated the SNPs tend to be. As not all SNPs are 
genotyped, and if we disregard imputed data, there will be gaps between the SNPs that 
are present. We expect that in many cases, SNPs with causal effect fall in such gaps. But 
here we are helped by the linkage disequilibrium and the correlation between nearby 
SNPs. For practical purpose this means that a subset of all SNPs available can provide 
information beyond only those SNPs selected, but also those nearby SNPs that are in 
linkage disequilibrium. This also applies for interactions.

The analysis is further complicated by confounders such as population stratification 
and cryptic relatedness between individuals which can lead to spurious associations in 
our models [42]. Cross-validation is a model validation technique in which several mod-
els of identical structure are trained on different portions of the training data, and each 
model is evaluated on independent validation data. With respect to feature importance, 

ALL DATA
AVAILABLE

TO SPLIT INTO
THREE SUBSETS

RANKING DATA FITTING DATA EVALUATION DATA

Fig. 3 All data available is divided into three subsets: Ranking data, fitting data and evaluation data. The 
ranking data is used to rank features by importance in order to remove noise. The fitting data is used to fit 
models by using the ranking derived from the ranking data. The evaluation data is finally used to explain 
what is considered important with respect to the predictions from the models trained on the fitting data
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a procedure with the purpose of preventing spurious associations, is to evaluate the 
importance of each feature based on all models constructed during cross-validation.

From our knowledge about linkage disequilibrium, population stratification and 
cryptic relatedness, we therefore propose a method to implicitly investigate the whole 
genome efficiently and objectively through a series of independent cross-validations by 
using XGBoost, a tree ensemble model, as shown in Fig. 4. It is from these independent 
cross-validations we will provide a ranking of the importance of each feature.

Consider a data set with N individuals and R directly genotyped SNPs. We create 
A randomly selected subsets, where each subset consist of S SNPs with low mutual 
correlation and G ≤ N  individuals randomly sampled with equal probability in order 
to keep an as agnostic narrowed search as possible. Furthermore, each sampled sub-
set is divided into F folds where F − 1 folds are used in an ordinary cross-validation 
to train F − 1 XGBoost models, while the last fold never seen or used during cross-
validation is used as test data. This will create F − 1 models trained on different 
data, and their performance can be objectively evaluated on the test data. As shown 
in Fig.  5 for the F − 1 folds used in cross-validation, in each iteration F − 2 folds 
are used to train an XGBoost model, while the last fold is used as validation data. 
Training of the model will proceed as long as the performance on the validation 
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procedure with tree ensemble models. The trained models will be used to rank the importance of the 
features
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data improves within a certain number of iterations as given by the early_stopping_
rounds hyperparameter. Cross-validation reduces the harm of both overfitting and 
selection bias [43]. The degree of overfitting can be further investigated by looking 
at the model performance difference on the validation and test data.

With A subsets each creating F − 1 models, the question is now how to rank all 
features investigated in all A subsets for all P = A(F − 1) models. We define a new 
concept called the relative feature contribution, denoted κpi,j , for individual i, feature 
j and model p as:

where φp
i,j is the SHAP value for feature j. The measure κpi,j can be interpreted as the pro-

portion of the prediction for individual i attributed to feature j for model p. We now 
want to estimate the expected relative contribution of feature j using all the past inde-
pendent cross-validations. The expected relative feature contribution (ERFC), Ê[κj] , is 
defined as:

where κpi,j denotes the relative feature contribution of feature j for individual i in a set 
of Gp individuals used to explain model p, and I(j ∈ σp) is the indicator function which 
is equal to one if feature j is included in the subset data used to train model p, and zero 
elsewhere.

The individuals Gp used to explain a particular model p created from a particu-
lar subset a are chosen to be the individuals from the test data of the subset. This 
means that the contribution of each feature in each model will be based on individu-
als never seen during training. The estimation of Ê[κj] for each feature j will finally 
create a ranking of the contribution of each feature.

(6)κ
p
i,j =

|φ
p
i,j|

|φ
p
0 | +

∑M
m=1 |φ

p
i,m|

,
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Fig. 5 The cross‑validation phase when training data consists of F − 2 specific merged folds. Training of the 
model will proceed as long as the performance on the validation data improves within a certain number of 
iterations as given by the early_stopping_rounds hyperparameter
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Phase 2: The model fitting process

Given a ranked list of features based on their feature contribution with respect to the 
trait of interest, this allows us to disregard irrelevant features and thus increases the 
ability to detect important relationships.

At this stage we are interested in finding the models with the best performance on 
some test data by utilizing the ranking of feature importance from the ranking pro-
cess. For this purpose we use the fitting data never seen before in order to avoid any 
optimism bias [40]. The heterogeneity as well as possible relatedness among the indi-
viduals are taken into account by again using cross-validation. First we split the data 
in F folds, of which F − 1 folds are used for cross-validation while the last fold is used 
as test data. This gives F − 1 fitted models in total. The model fitting procedure is 
summarized in Fig. 6 which shows how one model (out of F − 1 ) is fitted using only 
the top K features as well a set of hyperparameters. The aim is to find which set of 
F − 1 models that on average performs best on the test data as a function of the value 
of K and hyperparameter values.

In order to explain the XGBoost models at a later stage we want to compute the 
SHAP values. We assume the features are mutually independent when computing the 
SHAP values. To take this into account, we combine the ranking with low values of 
the mutual squared Pearson’s correlation, denoted r2 , when selecting the K features to 
include. See Sect. 2 in Additional File 1 for more information. Even though we are not 
guaranteed an independent set of features using r2 , it significantly limits the number 
of dependent features and therefore reduces the negative effect of misleading compu-
tations of SHAP values.
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Fig. 6 Given a table of ranked feature importances, XGBoost models based on the top K features are trained 
in a new cross‑validation procedure based on an independent set of individuals, namely the fitting data. 
We search for the XGBoost models that on average performs the best for a given set of hyperparameters 
(including the value of K) based on test data
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Phase 3: Model explainability

After finding the best predictive models from the model fitting process, we can investi-
gate which features and interactions contribute to the models through the SHAP values. 
Along the same lines as for the marginal feature importance used for ranking, the rela-
tive contribution for each interaction between feature j and k for a particular individual i 
and model p can be computed as:

We can estimate the expected relative interaction contribution, Ê[µp
j,k |Ge, p] , given data 

consisting of Ge individuals and a model p:

The Ge individuals are part of the evaluation data as shown in Fig. 2. As we have F − 1 
models from the model fitting process, we average the result from all F − 1 models:

We define this new concept as the expected relative interaction contribution (ERIC). 
This will provide a ranked list of interactions. A ranked list of marginal effects can be 
constructed as explained in the ranking process, but this time based on the F − 1 models 
constructed after the model fitting process.

The contribution of the top ranked marginal effects and interactions to the predic-
tion for each individual can be visualized with sina plots and partial dependence plots 
as illustrated in Figs.  10 and 11 [17]. For one particular trained tree ensemble model, 
the sina plot in Fig. 10 shows the SHAP value for each individual indicated as a point 
with color depending on the value of the feature. The larger the absolute SHAP value, 
the more the feature contributes to the model prediction for a specific individual. Partial 
dependence plots, exemplified in Fig. 11, are used to visualize how the contribution, in 
other words the SHAP value, for a particular feature depends on another feature for dif-
ferent combinations of feature values. Here as well, each individual is marked as a point 
with the value of a given feature given on the x-axis and the corresponding SHAP value 
for this feature with respect to the prediction on the y-axis. The color of the point, how-
ever, represents the value of some other feature. In this way, interactions can be visual-
ized and interpreted.

Results: application using UK Biobank data
As an example, we apply and evaluate the method described on data from the UK 
Biobank Resource [44]. Among the available phenotypes, obesity was chosen because 
it has been subjected to a number of high quality and well-powered GWAS that have 
identified more than 100 loci, many that have been consistently replicated across studies 
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(e.g. FTO, BDNF, MC4R, TMEM18, SEC16B) [18–20] . Thus, we have a good set of true-
positive loci with which to compare our results. We only analyzed White European indi-
viduals to limit the effect of population stratification. We define an individual to be part 
of either the control group ( yi = 0 ) or case group ( yi = 1 ) by:

As should be evident above, we exclude overweight individuals with 25 < BMI < 30 
from the analysis and only compare normal-weight individuals ( 18.5 ≤ BMI ≤ 25 ) with 
obese individuals ( BMI ≥ 30 ). This reduces the number of subjects available for anal-
ysis, but allows us to define more distinct case and control groups. For power analy-
ses of extreme phenotype data we refer the reader to [45]. The BMI data is provided 
from measurements at the initial assessment visit (2006–2010) at which participants 
were recruited and consent given. Phenotype-independent quality control of the genetic 
data for White European subjects consisting of the genotyped SNPs is completed using 
PLINK1.9 [46], and the details are given in Additional File 1. We only consider directly 
genotyped SNPs. In addition, we limit our analysis to SNPs with minor allele frequency 
(MAF) greater than 0.01. By only considering the two groups defined in Equation (11), 
this results in a total of 529 024 SNPs and 207 015 individuals to investigate, of which 
43% of these individuals are in the group defined as obese. We apply the R package 
xgboost to both train xgboost models and to estimate SHAP values [47].

Environmental features

We include environmental features that are previously reported to be of importance 
with respect to obesity, namely sex, age, physical activity, intake of saturated fat, sleep 
duration, stress and alcohol consumption [48–52]. These environmental features are a 
representative set for the demonstration of the methodology and were not intended to 
be an exhaustive set of environmental features available in the UK Biobank for obesity. 
Information about the environmental features, including their definitions, are included 
in Additional File 1.

Ranking, fitting and evaluation data

We let the ranking data consist of 80,000 randomly chosen individuals, which will be 
used to rank the features by importance. The fitting data also consists of 80,000 individu-
als. This subset is used to find the best predictive models in the model fitting process. 
The evaluation data consists of 47 015 individuals, and is used to explain what the mod-
els found in the model fitting process consider the most important features and in which 
way they contribute. In all subsets, we retain the proportion of obese individuals.

Phase 1: The ranking process

By using the ranking data, at this stage we create A = 50 subsets where each subset con-
sists of G = 70,000 individuals and S = 110,000 randomly chosen SNPs corresponding 
to 21% of the total number of SNPs available. The choice of total number of subsets to 
create is motivated from Eq. (2) in Additional File 1 with the criteria that any pair of 
SNPs appears in the same subset at least once with 90% certainty. The larger the number 

(11)yi =

{

1, if 30 ≤ BMI ≤ 70
0, if 18.5 ≤ BMI ≤ 25
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of individuals in each subset, the higher statistical power, but at the same time, the mem-
ory capacity limits the number of individuals in each subset at the cost of lost power. 
As the ranking process is time-consuming, we do not attempt any sophisticated hyper-
parameter optimization, but instead choose four hyperparameters sets that we regard 
as reasonable, given in Table  1. In addition, in all further analysis, the regularization 
parameter � is set to 1, the default value in most XGBoost softwares [47]. The parameter 
early_stopping_rounds is set to 20.

As discussed in Blagus and Lusa [31], the learning rate η is set to be small for high-
dimensional data such as 0.1, while as discussed in Chen and Guestrin [16], colsam-
ple_bytree is set to be large as there is only a small proportion of all features that are 
relevant. The hyperparameter subsample is also set to be large in order to increase the 
power to detect features of importance. The parameter colsample_bylevel has not been 
extensively discussed in the literature, but the parameter will oppose the greedy con-
struction of the trees which may be beneficial in the long run. The maximum depth of 
the trees are set to no more than three, the reason being both computational considera-
tions as well as the fact that the marginal expectations used to compute the SHAP values 
in (3) will be more inaccurate the deeper the trees are (see Additional File 1).

Using Eq. (7) to estimate the expected relative contribution for each feature, we give 
the ranking for the top 20 features in Table 2 for hyperparameter set 2 in Table 1.

Not surprisingly, the environmental features are considered most important. The 
next features are predominantly those connected to the FTO gene at chromosome 16 as 
expected from previous studies. A SNP close to the TMEM18 gene (rs13393304) is also 
found in the top 20 list. The next SNPs on the list are predominantly from chromosome 
2, one SNP from chromosome 1 at the SEC16B gene (rs10913469) and further down 
SNPs from chromosome 18, yet no SNPs connected to the MC4R gene for instance. By 
further investigation, this is due to the fact that the SNPs randomly selected from the 50 
subsets did not include any SNPs close to the MC4R gene which illuminates the issue 
when not creating enough subsets. Apart from this, one can see that the ranking process 
is able to detect small effects, and importance of each feature can be evaluated by com-
puting SHAP values.

We compare with the corresponding ranked list derived using BOLT-LMM, a Bayes-
ian mixed model that evaluates the marginal effect of each SNP, and computes p-val-
ues based on the BOLT-LMM infinitesimal mixed-model statistic [1]. The p-values are 
shown to be well-calibrated for significance levels as low as 5 · 10−8 when the MAF of 
each SNP is larger than 1%, and that the case fraction is larger than 30% for a sample 
of 50,000 individuals [53]. All these criteria are satisfied in our ranking data set (with 
case fraction 42%, MAF greater than 1% and 80,000 individuals). Table 3 shows the top 
ranked 13 SNPs (top environmental features are not listed) where features with the 
smallest p-values are regarded to be of most importance.

In this case, all SNPs are related to the FTO gene, and most of the SNPs except two are 
also present in Table 2. These two SNPs were not sampled in any subset from the rank-
ing process. The ordering in Table 2 and 3 between SNPs related to the FTO gene are 
slightly different. However, at this stage it is not strictly necessary to find the true order 
of the feature impacts, but an approximate order that allows us to discard features with 
insignificant impact in the further analysis.
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Evaluation of the trained models used in the ranking process

To explore the degree of overfitting of the models trained during the ranking process, 
the PR-AUC score of each model computed on its corresponding validation data and test 
data (see Fig. 5) are explored in a Bland–Altman (mean—difference) plot. This shows the 
average PR-AUC score for each model on the x-axis, and the difference between the two 
scores on the y-axis. The results for all chosen sets of hyperparameters given in Table 1 
can be seen in Fig. 7.

Figure  7 shows no clear pattern of overfitting as can be seen from the agreement 
between the density plots of the difference in PR-AUC scores. However, hyperparameter 
set 1 from Table 1 shows a cluster of bad predictions with PR-AUC around 0.56. The 
reason for this can be seen in Fig. 8 where bad predictions using hyperparameter set 1 is 
due to early stopping in the training. When there is no early stopping in the training, we 
also see that due to the small learning rate given in set 1, more trees are constructed than 
for the other hyperparameter sets, but yet the performance score is not superior. This 
emphasizes the importance of hyperparameters.

Phase 2: model fit from the ranking process and from BOLT‑LMM ranking

In the model fitting process, we use the fitting data to train new XGBoost models with 
cross-validation by including the K most important SNPs for K = 0 (only including 
environmental features), K = 100 , 500, 1000, 3000, 5000, 10,000 and finally K = 15,000 . 
The ranking of the features is the output of the ranking process. In addition, to assess 
the quality of our method, we also train models based on the ranked table produced by 
BOLT-LMM.

Before training, the set of the K chosen SNPs is reduced such that the SNPs have 
mutually squared Pearson’s correlation r2 < 0.2 (see Additional File 1 for practical 
details about implementation). Due to computational limitations, we will only consider 

Fig. 7 Bland–Altman plot for the trained models used for ranking. No clear signs of overfitting, but one set of 
hyperparameters shows one cluster of poorer predictions than the others
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hyperparameter tuning from the XGBoost models through the sets given in Table 4, and 
optimize based on these sets. For each K and for the ranking based on our method and 
the ranking based on the BOLT-LMM model, the maximum average PR-AUC-score for 
the XGBoost models constructed in the cross-validation is found among the possible 
hyperparameter sets. For each K, we compare how the predictive model perform on the 
held-out test data from the fitting data. The results are shown in Fig. 9. When we vary K 
from small to large values, we expect that the model performance increases the most at 
the beginning as the most influential features are included, while as more features with 
low importance are added, the performance increases steadily until it flattens. At the 
end, the performance may even decrease as noise are added to the model in the form of 
SNPs without any predictive power.

The turning point for the BOLT-LMM ranking is K = 1000 while for the models based 
on the ranking process the turning point is consistently for a larger K value. The maxi-
mum average PR-AUC-score for the XGBoost models created in cross-validation is in 
general larger when using the ranking based on our method than the ranking based 
on BOLT-LMM. From Fig. 9, the average performance score is in general better when 
allowing the regression trees to be of maximum depth three instead of two. Addition-
ally, inclusion of the SNPs provide only a small contribution to the increase in the aver-
age prediction performance, where the best models increase the average PR-AUC score 
from 0.606 when only environmental features are included to 0.629 when the top 5000 
SNPs are included (blue line, Fig. 9b). This corresponds to an increase in average classifi-
cation accuracy from 0.64 to 0.66.

Phase 3: Model explainability

In the model explainability phase we use the evaluation data consisting of 47,015 indi-
viduals, that has not been used in Phase 1 and 2. For convenience, we consider the 
models constructed during cross-validation that performed best on average on the test 
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Fig. 9 The model fitting process based on top K features from both the ranking process (for different sets 
of XGBoost‑hyperparameters indicated by the different colours and the legend) and from BOLT‑LMM, for 
different values of K. In a hyperparameter sets 1–8 (all with max_depth = 2 ) from Table 4 in the model fitting 
process are used. In b hyperparameter sets 9–16 ( max_depth = 3 ) are used. Both figures show that the use of 
the ranking process gives in general better model performance than for the BOLT‑LMM ranking. There is also 
some gain in performance by increasing the hyperparameter max_depth from two to three

Fig. 10 A sina plot visualise the importance of each feature from a fitted model. Here we show the sina plot 
of the marginal effects for one of the four models constructed during the model fitting process when applied 
to the evaluation data from UK Biobank
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data during the model fitting process. These are the four models from fourfold cross-
validation trained on the top 5000 ranked features with hyperparameter set 2 visualised 
as the blue line in Fig. 9b. We now explore what these four models consider important 
with respect to their predictions on the evaluation data. This is done by computing the 
expected relative contribution for both individual features as well as interactions. Mar-
ginal and interaction effects can be visualized with sina plots and partial dependence 
plots respectively. For the case of marginal effects, Fig. 10 shows the sina plot for one 
of the four models trained on the SNPs with the largest expected relative contributions. 
Here, we visualize both dominant and additive main effects found by our nonparametric 
method.

We use Eq. (8) together with Eq. (10) to compute the average relative interaction con-
tribution (ERIC) for each pair of features based on the evaluation data, and list the top 
10 interaction candidates in Table 5.

First of all, we see that the contributions from the interactions are quite small with 
expected relative interaction contribution (ERIC) of no more than 0.001. To further 
investigate the behaviour of these interaction candidates, in Fig.  11 we show partial 

Fig. 11 Partial dependence plots for the pairs a rs180743 and rs171329, b rs17817449 and genetic sex, c 
rs17817449 and saturated fat intake, and d rs12123815 and rs12123815. In all panels we see how the SHAP 
values (vertical axis) depends on the feature value of the SNP (horizontal axis) and on the value of the second 
feature (color)
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dependence plots [17, 26] for the top four interactions from Table 5 when regarding one 
specific chosen model, out of the four, for each interaction.

We see in Fig. 11 examples where the SHAP value of the feature for each individual 
represented along the x-axis not only depends on its own feature value, but the value 
of some other feature as well. For instance, in Fig. 11a, we see that the increased risk of 
being obese when the genotype value is equal to two for rs180743, is reduced if the geno-
type value of rs171329 is equal to two as well. We also see in Fig. 11b that being a male 
(orange points) gives higher risk of being obese when the genotype value of rs17817449 
is two, compared to when the genotype value is zero or one. A positive SHAP value 
implies a positive contribution to the log-odds prediction, and therefore a contribution 
making it more likely to be a case (obese).

Interaction models in logistic regression

We compare the interaction rankings from Phase 3 with logistic regression fits on the 
full UK Biobank data set and the evaluation data alone. We consider a parametric model, 
assuming additive effects, for both SNP-SNP and SNP-environment interaction effects 
for logistic regression, and construct a hypothesis test to infer the presence of interac-
tions. For the test of SNP-SNP interactions between two SNPs a and b, the null model 
will be:

where xTi,c is a vector of features such as intercept, age, environmental features and prin-
cipal components, while γ is the vector of corresponding parameters for each feature. 
The parameters α and β are the marginal effects from SNP a and b resepectively. The 
corresponding alternative model incorporating an additive interaction effect will be:

For a SNP-environment interaction we will use the following alternative model:

where βe and φ are marginal environmental effect and interactions parameters 
respectively.

For the testing of the interactions we apply the likelihood ratio test (LRT) to test the 
null hypothesis that ν = 0 for SNP-SNP interactions or φ = 0 for SNP–environment 
interactions [26, 54]. The LRT assumes independence between the samples, and so we 
need to make sure the individuals included in the test are not related to any significant 
degree.

Comparison of Phase 3 results with logistic regression tests

Let the vector xi,c given in (13) consist of the intercept in addition to the features sex, age 
and the top four principal components for each individual. The principal components 
are used to correct for population stratification [55]. The ranking of the pairwise inter-
actions is based on the evaluation data consisting of 47,015 individuals. We fit a logis-
tic regression model based on all unrelated individuals in the evaluation data (39,286 

(12)logit H0,add
(P(Yi = 1|gi,a, gi,b, xi,c)) = x

T
i,cγ + αgi,a + βgi,b,

(13)logit H1,add
(P(Yi = 1|gi,a, gi,b, xi,c)) = x

T
i,cγ + αgi,a + βgi,b + νgi,agi,b.

(14)logit H1
(P(Yi = 1|gi, xi,e, xi,c)) = x

T
i,cγ + αgi,a + βexi,e + φgi,axi,e,
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individuals), as well as a logistic regression based on all unrelated individuals used in this 
paper (173,468 individuals). Unrelatedness is ensured by using data field 22020 in the UK 
Biobank Data Showcase [44]. The principal components were calculated using EIGEN-
SOFT (version 6.1.4) SmartPCA [56, 57]. We compute the principal components on the 
unrelated individuals in the evaluation data and all unrelated individuals separately. PCA 
plots for both the evaluation data and the full data set can be seen in the Additional File 
1. A few individuals have missing values for each test and are removed.

The top four interactions from the SHAP values visualized in Fig. 11 are evaluated by 
applying likelihood ratio tests for each interaction. The results are given in Table 6.

It is clear that the sample size is the dominating factor for the computed p-values. All 
p-values based on the evaluation data, the same data that is used to rank the interactions, 
are non-significant. As expected, the p-values are in general smaller when considering all 
individuals, yet none of them would be declared significant in the case of any reasonable 
genome-wide multiple testing procedure [58]. The smallest p-value is achieved for the 
interaction between the SNP rs17817449 and genetic sex when including all individu-
als. In the Additional File 1, we apply likelihood ratio tests based on logistic models with 
less stricter assumptions, but with the need for more parameters. However, this does not 
provide smaller p-values to any significant degree. The reason may be that these tests are 
less powerful due to a higher number of degrees of freedom [54].

Stratified analysis

Instead of incorporating prespecified interactions in the logistic regression model, one 
can instead stratify in groups according to the value of a feature a, and investigate the 
effect of a feature b for each group. For instance, one can fit for each group a logistic 
regression model with respect to feature b such as in (12). For a true interaction, the log 
odds ratio of feature b will differ between some or all groups. Fig. 12 shows a stratified 
analysis for the top four interactions in Table 5, with 95% confidence intervals assuming 
normality of the estimated log odds ratios, adjusting for the same environmental fea-
tures. The first example where the log odds ratio of rs171329 is compared within strati-
fied groups of rs180743 do not change additively, the opposite of what is assumed in 
(13). However, the second example concerning rs17817449 and sex do show additive 
changes in the log odds ratios. The third interaction also shows small, yet indicative, dif-
ferences in the log odds ratios. In the last example with rs12123815 and rs757318 the 
uncertainties in the log odds ratios are too large to give any conclusion.

Discussion
We have proposed how tree ensemble models, such as XGBoost, can be combined with 
SHAP values to explain the importance of individual SNPs as well as gene–gene and 
gene–environment interactions. The method has been illustrated on an example from 
the UK Biobank. We have shown that through several independent cross-validations on 
XGBoost models using subsets of SNPs spread along the genome, one is able to find a 
reasonable ranking of individual SNPs similar to what is found in previous GWAS of 
obesity [18]. In fact, Fig. 9 suggests that the ranking process has the potential to outper-
form BOLT-LMM.
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Ranking of interactions through SHAP values

The SHAP values may also identify interactions, but further investigation is needed. 
Comparing the top ranked interactions with logistic regression including interaction 
parameters, we see that none of the corresponding statistical tests provide convinc-
ing p-values. Assuming the ranking of interactions via SHAP values is reliable, we see 
from Table 5 that the interaction effects are small. Any genome-wide multiple testing 
procedure would struggle to find such small interaction effects. In addition, misspeci-
fication of the effects in the logistic regression models may reduce statistical power. 
Figure  12 shows that only the potential interaction between rs17817449 and sex 
seems to be additive. Tree ensemble models do not have any presumptions of what 
kind of effects are present, but instead they learn the effects iteratively. These effects 
can be investigated efficiently through SHAP values. However, the SHAP values are 
estimated, and uncertainties in these estimates must be accounted for. The interaction 
between rs12123815 and rs757318 in Fig.  12 is an example that may very well be a 
false positive. There is therefore a need to develop tests that can infer the trustworthi-
ness of the SHAP values in a similar fashion as through p values. The development of 
such tests will be important future research within SHAP values.

Table 1 The four hyperparameter sets for XGBoost considered in the analysis during the ranking 
process

Set η colsample_bytree subsample colsample_bylevel max_depth

1 0.01 0.9 0.9 0.9 2

2 0.05 0.8 0.8 0.8 2

3 0.05 0.8 0.8 0.8 3

4 0.1 0.8 0.8 0.8 2

Straified by
rs180743_G
  = 0
  = 1
  = 2
rs17817449_G
  = 0
  = 1
  = 2
rs17817449_G
  = 0
  = 1
  = 2
rs12123815_T
  = 0
  = 1
  = 2

LOR estimate for
rs171329_A

Sex

Saturated fat intake

rs757318_A

−0.2 0.7
Log odds ratio, β

Fig. 12 Stratified analysis of the top four interactions based on all unrelated individuals to illustrate how the 
log odds ratio, with 95% confidence intervals, of one feature changes depending on the value of another 
feature
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One natural way to account for some of the uncertainties in the SHAP values is 
through cross-validation. In addition, larger absolute SHAP values may not only be 
as a consequence of larger feature importance, but also as a consequence of larger 
uncertainties in the SHAP values. The denominator in ERFC and ERIC, given in (7) 

Table 2 The resulting ranking based on the expected relative feature contribution (ERFC) from the 
ranking process for hyperparameter set 2 in Table 1

The environmental features are, as expected, considered more important than the SNPs, while the most important SNPs are 
at or nearby the FTO gene in agreement with previous studies

Feature ERFC

Sex 0.12

Alcohol intake frequency 0.12

Physical activity 0.11

Saturated fat intake 0.058

Stressful events 0.056

Sleep duration 0.049

Age at initial assessment 0.047

rs17817449 (FTO, Chr. 16) 0.025

rs1421085 (FTO, Chr. 16) 0.025

rs1121980 (FTO, Chr. 16) 0.024

rs7202116 (FTO) 0.023

rs9941349 (FTO) 0.023

rs9940128 (FTO) 0.023

rs9922619 (FTO) 0.023

rs13393304 (FAM150B ‑ TMEM18, Chr. 2) 0.022

rs12149832 (FTO) 0.021

rs9939609 (FTO) 0.021

rs9930506 (FTO) 0.021

rs11642841 (FTO) 0.020

rs2947411 (Chr. 2) 0.019

Table 3 The result after running BOLT‑LMM on the ranking data showing the top SNPs with smallest 
p‑value from the BOLT‑LMM infinitesimal mixed‑model statistic

All top SNPs are connected to the FTO gene

Feature BOLT‑LMM p‑value

rs1421085 (FTO) 3.7E–57

rs9940128 (FTO) 1.8E–54

rs1121980 (FTO) 2.4E–54

rs3751812 (FTO) 7.0E–54

rs17817449 (FTO) 8.5E–54

rs9939609 (FTO) 1.3E–53

rs8050136 (FTO) 2.2E–53

rs7202116 (FTO) 5.7E–53

rs9941349 (FTO) 5.0E–52

rs12149832 (FTO) 3.0E–50

rs9922619 (FTO) 1.0E–48

rs9930506 (FTO) 1.1E–48

rs11642841 (FTO) 1.3E–40
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Table 4 The hyperparameter sets considered during the model fitting process

Set η colsample_bytree Subsample colsample_bylevel max_depth

1 0.1 0.3 0.3 0.3 2

2 0.1 0.5 0.5 0.5 2

3 0.1 0.5 0.5 1 2

4 0.1 0.8 0.8 0.8 2

5 0.1 1 1 1 2

6 0.05 0.5 0.5 0.5 2

7 0.05 0.8 0.8 0.8 2

8 0.2 0.5 0.5 0.5 2

9 0.1 0.3 0.3 0.3 3

10 0.1 0.5 0.5 0.5 3

11 0.1 0.5 0.5 1 3

12 0.1 0.8 0.8 0.8 3

13 0.1 1 1 1 3

14 0.05 0.5 0.5 0.5 3

15 0.05 0.8 0.8 0.8 3

16 0.2 0.5 0.5 0.5 3

Table 5 The top 10 interactions based on the expected relative interaction contribution (ERIC) 
estimated on the evaluation data (Phase 3), with the aim of explaining the best predictive models 
from Phase 2

Feature 1 Feature 2 ERIC

rs171329 rs180743 0.001

Sex rs17817449 0.001

Saturated fat intake rs17817449 0.00094

rs757318 rs12123815 0.0008

rs4697952 rs1488830 0.00074

rs60822591 rs17854357 0.00066

rs4711329 rs11676272 0.00066

rs1518278 rs1488830 0.0006

Sex rs12123815 0.00056

rs7132908 rs9949796 0.00054

Table 6 Results from likelihood ratio tests applied on the top four ranked interactions found from 
the model explainability process based on the evaluation data

Data set Interaction p‑value LRT

Evaluation data rs171329 and rs180743 0.85

All individuals rs171329 and rs180743 0.024

Evaluation data rs17817449 and genetic sex 0.77

All individuals rs17817449 and genetic sex 4.09e‑05

Evaluation data rs17817449 and saturated fat intake 0.44

All individuals rs17817449 and saturated fat intake 0.0017

Evaluation data rs757318 and rs12123815 0.25

All individuals rs757318 and rs12123815 0.71
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and (10), equal to the sum of the absolute SHAP values for each individual will tend 
to be larger, the larger the variance of the SHAP value estimates are. Consequently, 
the importance measures ERFC and ERIC are reduced for increasing uncertainties in 
the SHAP values.

Data split

In this paper, data is split in three subsets used for ranking, model fitting and model 
explanation respectively. This procedure requires a large amount of data, but the pur-
pose was to evaluate the credibility and potential of using tree ensemble models together 
with SHAP values. For smaller data samples, an alternative procedure is to rank interac-
tions directly during the ranking process by computing the expected relative interactions 
contributions (ERIC). However, the ranking process consists of many models with low 
predictive power, which makes it more difficult to explore the true relationships com-
pared to the models constructed in the model fitting process.

Limitations and improvements

The choice of number of SNPs S, individuals G, folds F and r2-threshold in each cross-
validation in the ranking process are all important with respect to performance, and 
should be considered as hyperparameters. The number of SNPs S must be large enough 
to represent important regions in the genome, but not so large that it introduces noise to 
the model. The number of individuals in each cross-validation, G, should be as large as 
possible as it increases the power to detect small as well as nonlinear effects. However, 
that may lead to computational challenges. The number of folds in the cross-validations, 
F, should neither be too small nor too large as we want to train the model on as many 
different subsets of the population as possible in order to find the most general effects, 
but at the same time the validation data set must be large enough to be sufficiently 
representative.

The mutual independence assumption when computing the SHAP values is a signifi-
cant restriction, and a mutual r2 below any threshold between features will by no means 
ascertain mutual independence as r2 measures linear dependency. Correlation measures 
that can also account for nonlinear dependencies in a high-dimensional setting could 
provide more trustworthy results.

Hyperparameter optimization

We have seen that the hyperparameters for XGBoost are important. Unfortunately, 
the computation time for each set of hyperparameters is protracted, and consequently 
systematic hyperparameter optimization is not feasible. However, from the choice of 
hyperparameter sets in this paper, the hyperparameters colsample_bytree, subsam-
ple and colsample_bylevel should be high (0.8–0.9), while the learning rate η should be 
low (0.05–0.1), but not too low. Another important hyperparameter, the regularization 
parameter, � , should be investigated more extensively.
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Predictive performance and obesity

Even with strong predictors such as physical activity, intake of saturated fat, alcohol use, 
stressful events, sleep duration, age and sex in addition to genome-wide genetic data, we 
are not capable of constructing a model with more than 66% classification accuracy, and 
the genetic data only provide a small portion of the predictive performance. The useful-
ness lies in the fact that tree ensemble models can be used to identify nonparametric 
gene–gene and gene–environment interaction candidates while accounting for a large 
amount of features simultaneously. If the prediction performance of the model is consid-
ered satisfactory, this can be an important diagnostic tool in the future.

Conclusion
Our proposed tree ensemble- and SHAP-based method gives us the possibility of explor-
ing both gene–gene and gene–environment interactions without any presumptions 
of what kind of effects may be present as well as adjusting for environmental features. 
Our proposed method can be applied to high-dimensional genetic data in large-scale 
biobanks. There is however a need to develop methods for assessing the uncertainties of 
the SHAP values to conclude whether the interaction candidates are reliable.
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