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Background
The rapid development of biotechnology enables researchers to generate multiple types 
of biomedical data. For example, The Cancer Genome Atlas (TCGA) has accumulated 
comprehensive multi-omics molecular profiles of 33 cancer types from more than 
10,000 patients (e.g., genomics, transcriptomics, proteomics, and epigenomics) [1]. The 
integrated analysis of multi-omics data not only help to explore disease-related biologi-
cal processes through differences in omics features between different patients [2, 3], but 
also contributes to precision treatment of specific patients in clinical practice.

Abstract 

Background: The accumulation of various multi-omics data and computational 
approaches for data integration can accelerate the development of precision medicine. 
However, the algorithm development for multi-omics data integration remains a press-
ing challenge.

Results: Here, we propose a multi-omics data integration algorithm based on random 
walk with restart (RWR) on multiplex network. We call the resulting methodology Ran-
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Compared with methods that use only a single data type, data integration approach 
enables more comprehensive and informative analysis of biomedical data. Integrat-
ing multiple data types can compensate for missing or unreliable information in any 
single data type, and multiple sources of evidence pointing to the same result are less 
likely to lead to false positives. Therefore, algorithms for integrating multi-omics or 
multi-dimensional biomedical data become indispensable key technologies for multi-
omics research and new algorithms are increasingly needed.

One of the research areas most in need of data integration approach is cancer sub-
typing. For cancer subtyping, there are many computational strategies based on data 
integration. The simplest way is to concatenate multiple features from different omics 
data. But concatenation approach dilutes the already low signal-to-noise ratio in spe-
cific data type [4], thus affecting the accuracy of subtyping. The second strategy is to 
cluster each type of omics data separately and then integrate these different clusters 
based on the similarity of clustering results. Previously, after clustering of each type 
of omics data, data integration mainly relies on experts’ artificial integration, which 
are inefficient and expensive. Afterward there comes a method called consensus clus-
tering or cluster ensemble [5]. The advantage of this method is that it can integrate 
clustering results through algorithm and obtain common information across various 
types of data. But how to measure the consistency between clustering results and how 
to use valuable complementary information are problems that need to be solved. A 
typical consensus clustering method is cluster-of-cluster assignments (COCA). The 
Cancer Genome Atlas Network et al. used COCA to integrate five types of omics data 
for subtyping of breast cancer [6]. The algorithm takes as input the binary vectors 
that represent each of the platform-specific cluster groups and reclusters the samples 
according to those vectors [7]. It is useful but is less powerful when the molecular 
patterns are not strong enough to specify a distinct group on multiple individual plat-
forms [8]. The third strategy is to use co-projection approaches. To find common low-
dimensional subspace across different data types, co-projection (joint dimensionality 
reduction) methods are efficient approaches [9–18]. Co-projection methods came 
into focus of data integration analysis due to their prominent ability to integrate large-
scale, diverse, and heterogeneous biomedical data. For example, Shen et al. proposed 
iCluster, a joint latent variable model for data integration [14, 19, 20]. It uses a prob-
abilistic matrix factorization approach to simultaneously decompose data matrices, 
representing different data types over the same number of samples, into a common 
feature space [21]. Katherine et  al. performed integrative molecular subtyping with 
iCluster using four data types (copy number, DNA methylation, mRNA, and miRNA) 
across 9759 tumor samples, identifying 28 Clusters [8]. Although it is powerful, iClus-
ter and other similar co-projection methods that operate with high-dimensional fea-
ture × sample matrices have scalability drawbacks, making these methods sensitive 
to gene preselection step [4, 10, 22]. Instead of processing largescale matrices con-
structed over a large number of features, network-based methods use samples net-
work as a basis for integration. Wang et al. proposed a network-based method called 
similarity network fusion (SNF) [4]. SNF is shown to be effective in cancer subtyping. 
But SNF only uses local topology information of sample similarity network, thus its 
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integration performance is limited. Affinity Network Fusion (ANF), an “upgrade” of 
SNF which incorporates weights of each view, also has the same problem [23].

In this paper, we proposed a multi-omics data integration algorithm based on random 
walk with restart (RWR) on multiplex network. RWR algorithm can be seen as an exten-
sion of the PageRank algorithm developed by Google [24]. An imaginary particle starts a 
random walk from the seed node. At each step, the particle either walks to other nodes 
with a certain probability, or returns to the seed node. After several iterations, the sta-
tionary probability distribution can be seen as the distribution of influence of the seed 
node. RWR algorithm has been applied to the recommendation system and has obtained 
good performance [25]. For inference of novel biological relations such as drug-target 
interaction and disease-gene association prediction, RWR based on the heterogeneous 
network has also gotten excellent prediction performance [26–29].

We extend RWR to integrate similarity networks established from multiple omics 
data. Two methods called Random Walk with Restart for multi-dimensional data Fusion 
(RWRF) and Random Walk with Restart and Neighbor information-based multi-dimen-
sional data Fusion (RWRNF) are proposed. The methods consist of two main steps: (1) 
Construction of sample similarity network for each data type and construction of a mul-
tiplex network in which corresponding samples of multiple similarity networks are con-
nected. (2) Random walk with restart (RWR) on the multiplex network. After several 
iterations, the stationary probability distribution can be obtained. The stationary prob-
ability distribution is utilized to get the integrated similarity network, which contains 
each type of data’s information.

Our method can not only capture the consistent patterns across different omics data, 
but also make use of complementary information provided by different omics data. They 
can automatically capture various structure information and make full use of topol-
ogy information of the whole similarity network of each type of data. Our methods 
have strong anti-noise ability without being affected by an increase in the number of 
features. Moreover, by introducing the random walk theory, our methods have a clear 
interpretation.

We applied our methods to TCGA data to identify subtypes in different cancer data 
sets. Three types of omics data are integrated and network clustering (subtyping) is 
conducted. Experiment results show that our methods perform better than previous 
methods. The subtyping results also provide an analytical basis for clinical applications. 
Source code is available at https ://githu b.com/Sepst ar/RWRF/.

Results
Overview

RWRF and RWRNF are two multi-omics data integration algorithms based on random 
walk with restart on multiplex network. Given two or more types of omics data, the two 
algorithms first construct similarity network for each omics data based on the same 
batch of samples. Then corresponding samples of multiple similarity networks are con-
nected to construct a multiplex network. Inspired by the PageRank algorithm, we apply 
random walk with restart (RWR) to the multiplex network.

For example, we have a similarity network S1 constructed based on omics data 1 
and a similarity network S2 constructed based on omics data 2. As shown in Fig. 1a, 

https://github.com/Sepstar/RWRF/
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corresponding samples are connected. Suppose that an imaginary particle starts a 
random walk from seed node A in the multiplex network. After several iterations, the 
stationary probability distribution −→p stable represents similarities between A and other 
nodes in the multiplex network. Because of the different topology structure between 
S1 and S2 , when the particle moves through the multiplex network, not only topology 
information of the similarity network constructed based on omics data 1 but also that 
of the similarity network constructed based on omics data 2 is used. The stationary 
probability distribution −→p stable reflects the influence distribution of the seed node A 
based on the two omics data. For example, in similarity network S1 , the connection 
between A and C cannot be captured directly, but in the multiplex network, it can be 
obtained in just two steps by the random walk process. At last, based on the station-
ary distribution, two new similarity networks are fused to get the integrated similar-
ity network, which contains each type of data’s information. Figure 1b illustrates the 
RWRNF process in the same way.

Making full use of topology information of each similarity network, the two algo-
rithms have strong anti-noise ability. Aiming at tumor subtyping, the algorithms are 

a

b

Fig. 1 RWRF and RWRNF overview. a We constructed a multiplex network in which corresponding samples 
of S1 and S2 are connected. An imaginary particle starts a random walk from seed node A. The number next to 
the node indicates the probability of walking to the node. After several iterations, the stationary probability 
distribution will be obtained. RWRF utilizes the stationary probability distribution representing similarities 
between A and other nodes in the multiplex network. Here, we set α = 0.5. b Unlike RWRF, RWRNF connects 
S1 and S2 differently. For the sake of clarity and brevity, we only draw the connections from A in S1 to other 
nodes in S2 . Here, we set m = 2, α = 0.5, β = 0.5. Note that edges with similarity less than 0.5 are omitted
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applied to multi-omics cancer data from TCGA. By comparing with other algorithms, 
our algorithms are shown to be effective in cancer subtyping.

Experimental setup

Datasets and preprocessing

In this paper, we applied our methods to 6 different cancer data sets from TCGA: adren-
ocortical carcinoma (ACC), bladder urothelial carcinoma (BLCA), head and neck squa-
mous cell carcinoma (HNSC), uveal melanoma (UVM), pancreatic adenocarcinoma 
(PAAD) and thyroid carcinoma (THCA). For each of cancer data sets, we used 3 types of 
omics data: mRNA expression, DNA methylation, and microRNA (miRNA) expression.

First of all, we preprocess the data in the following steps:

1. Samples with all three types of omics data are retained.
2. If a sample has more than 20% data missed or more than 20% of samples do not 

measure a feature, we will delete the sample or the feature.
3. For each sample’s features, we fill the missing values with the mean value of the same 

feature in the other samples.
4. We normalized each row (each feature) of feature-sample matrix data with average 0 

and standard deviation 1.

After four steps of data preprocessing, we obtained 76 ACC samples, 396 BLCA sam-
ples, 469 HNSC samples, 80 UVM samples, 175 PAAD samples, and 492 THCA samples.

Similarity measurement

We used the following formula to calculate the similarity measure between samples Cx 
and Cy:

where dist(cx, cy) is the Euclidean distance between sample cx and cy , µ is a hyper-param-
eter. E(cx, cy) is defined as:

where mean(dist(cx,Nx)) is the average value of the distances between cx and each of its 
N  neighbors. Nx represents the neighbor nodes of cx . According to Wang et al. study [4], 
we set N=20 , µ=0.5.

Previous methods for comparison

We choose six previous methods designed for multi-dimensional data integration: 
concatenation, COCA, iCluster, intNMF, SNF and ANF. The concatenation method 
is a commonly used method that is simple and has a low computational cost. For 
each sample, the concatenation method assembles the multiple data type to a long 
vector, reserves complete information about multi-dimensional data, and treats the 

(1)S(cx, cy) = exp

(

−
dist2(cx, cy)

µE(cx, cy)

)

(2)E(cx, cy) =
mean(dist(cx,Nx))+mean

(

dist
(

cy,Ny

))

+ dist
(

cx, cy
)

3
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assembling vector as a new data type [30]. COCA takes as input the binary vectors 
that represent each of the platform-specific cluster groups and reclusters the sam-
ples according to those vectors [7]. iCluster is a joint latent variable model for data 
integration. This method models the tumor subtypes as unobserved latent variables 
which are simultaneously estimated from the multiple data types [31]. For iCluster, 
we used the 5% features with the largest median absolute deviation for each type of 
omics data. This is for the purpose of selecting the most informative genes for class 
detection [32]. Like iCluster, intNMF is a joint dimensionality reduction method 
and is an extension of non-Negative Matrix Factorization (NMF) [22]. Cantini et al. 
benchmarked joint multi-omics dimensionality reduction approaches for cancer sub-
typing [10]. They observed that intNMF performs best in clustering. For both iCluster 
and intNMF, we provide feature matrices as inputs. SNF method constructs sample 
similarity network for each data type and integrates these networks into a fused net-
work using a nonlinear combination method [4]. Different from the linear integration 
strategy based on simple average or maximization, the network fusion step of SNF 
iteratively updates each of the networks with information from the other networks, 
making them more similar with each step. ANF, which incorporates weights of each 
view, is an “upgrade” of SNF [23].

Network clustering

We used spectral clustering on the sample similarity network for subtyping. The clus-
ter number is the majority of the optimal number determined by seven cluster validity 
indexes: Ratkowsky Lance, Tau, Silhouette, C-index, SD-scat, SD-Dis, and Calinski-
Harabasz (Additional file 1). Each indicator gives an optimal number of clusters. The 
two most voted cluster numbers are recommended.

Evaluation metrics

Two metrics are adopted for algorithm evaluation. First, we use the Dunn index to 
evaluate the quality of clustering results (subtyping results). The Dunn index is 
defined as follows:

where C is the collection of all clusters, diam(Cm) is the largest intra-cluster distance in 
Cluster Cm , dist(Ck ,Cl) is the distance between the nearest pair of samples in Cluster 
Ck and Cluster Cl . The Dunn index has a value between zero and infinity, and should be 
maximized.

Besides, P value for the log-rank test of survival analysis is used to evaluate the sig-
nificance of the difference between cancer subtypes. Statistical significance thresh-
old is set to 0.05. If the P value is less than 0.05, it indicates a significant difference 
between the population survival curves representing different subtypes of cancer. 
This metric should be minimized.

(3)DI = min
Ck∈C



min
Cl∈C

dist(Ck ,Cl)

max
Cm∈C

diam(Cm)
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Performance evaluation

To prove the effectiveness of RWRF and RWRNF, we evaluated their performance by 
identifying subtypes in each of six different cancer data sets.

Comparison with single omics data‑based model

First, we compared data fusion by using our methods to the use of individual omics 
data types separately across the six different cancer data. For individual omics data type, 
sample similarity network is constructed and then clustered by spectral clustering. For 
RWRF and RWRNF, the added network fusion step is conducted before spectral cluster-
ing. Two measures (Dunn index and P value for log-rank test) are calculated to compare 
the subtyping results of individual omics data analysis and multi-omics data fusion. As 
shown in Fig. 2a, b (also shown in Additional file 2: Table S1, Additional file 3: Table S2), 
RWRF and RWRNF perform much better than individual omics data analysis. Data 
fusion by using our methods shows good subtyping results in all six cancer data sets.

Comparison with previous methods

Furthermore, to better evaluate the network fusion of RWRF and RWRNF, we compared 
our methods with six previous methods. Performance comparison was implemented 
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across six different cancer data. The Dunn index comparison is shown in Fig. 2c, the P 
value comparison is shown in Fig. 2d (also shown in Additional file 4: Table S3, Addi-
tional file 5: Table S4). Note that iCluster and intNMF are NMF-based methods and they 
do not generate similarity matrix, so Dunn index for the two methods is not provided. 
For the Dunn index, RWRF and RWRNF are both better than the concatenation, COCA, 
SNF and ANF. For the P value, Fig.  2d shows that RWRF and RWRNF are both bet-
ter than the concatenation, COCA and the two joint dimensionality reduction methods 
except that RWRF performs worse than intNMF on one data set. As for the two simi-
larity-based methods, Fig. 2d shows that RWRNF is better that them on five datasets, 
RWRF is superior to SNF on three datasets and to ANF on three datasets.

Model analysis

Parameter selection

We use ACC data as an example to test the sensitivity of hyper-parameters of RWRF and 
RWRNF. On other data sets, parameter selection also has the similar results.

For RWRF and RWRNF, we varied γ and fixed other hyper-parameters, then P values 
for log-rank test and Dunn values are recorded (Additional file 6: Fig. S1). Here, γ = 0.6–
0.9 is recommended. In this study, we choose γ = 0.7.

For RWRNF, P values for the log-rank test and Dunn values are recorded when m, α, 
and β are varied respectively (Additional file 7: Fig. S2). Here, m = 5–15 (In this study, we 
choose m = 10), α = 0.9, β = 0.9 are recommended.

Anti‑noise ability

Simulated data is created (as in Methods section) to verify the anti-noise ability of 
RWRF and RWRNF.

To show the anti-noise ability more clearly, we drew similarity heatmap for each type 
of data. The similarity heatmap of the original data is shown in Fig. 3a. And the similarity 
heatmaps of the data with Gaussian noise and the data with Gamma noise are shown in 
Fig. 3b, c respectively. Comparing the heatmap of the original data and that of each noise 
addition data, we found that the original data has a clearer cluster structure than any of 
the noise addition data. Subsequently, we fused the data with Gaussian noise and the 
data with Gamma noise by using RWRF. The integrated similarity heatmap are shown 
in Fig. 3d. We also used RWRNF to fuse data with two noise (Fig. 3e). In the initial two 
matrices of noise addition data, there are many similarities between the two classes due 
to noise. But after the fusion, the between-class similarity is reduced and the within-
class similarity is strengthened. To prove that, we performed spectral clustering and 
calculated normalized mutual information (NMI), which reflects consistency across the 
original true label and the results from the clustering procedure. The NMI indexes of the 
data with Gaussian noise and the data with Gamma noise are 0.60 and 0.56 respectively. 
After the fusion by RWRF and RWRNF, the NMI indexes are both 0.76. The results indi-
cate that RWRF and RWRNF both have strong anti-noise ability.

For the data with Gaussian noise and the data with Gamma noise, we set standard 
deviation, shape parameter α and rate parameter β as 1.5, 3 and 1 respectively. Here, the 
parameters of the simulation are set as an example. In order to explore the influence of 
noise parameters on anti-noise performance, we conducted the following analysis.
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NMI between cluster labels obtained by spectral clustering of the RWRF (and 
RWRNF) fused similarity matrix and the simulated ground truth plotted as a function of 
standard deviation, parameter α and parameter β respectively (Additional file 8: Fig. S3). 
Higher NMI corresponds to higher concordance between obtained clusters and ground 
truth. Increases in standard deviation, α and β will cause an increase in noise. RWRF and 
RWRNF maintain the anti-noise ability when the noise gradually increases.

For the artificial multi-omics datasets, we fused the three types of data using RWRF 
and RWRNF. Then spectral clustering is used on the similarity network for subtyping. 
The similarity heatmaps of the three types of data are shown in Additional file 9: Fig. 
S4b–d respectively. The integrated similarity heatmaps are shown in Additional file  9: 
Fig. S4e, f. After the fusion, the between-class similarity is reduced and the within-class 
similarity is strengthened. The NMI indexes of the simulated methylation data, the 
simulated gene expression data and the simulated protein expression data are 0.10, 0.27 
and 0.58 respectively. After the fusion by RWRF and RWRNF, the NMI indexes are both 
0.89. The results also show the strong anti-noise ability of RWRF and RWRNF.

Case study

Here, we take the identification of adrenocortical carcinoma (ACC) molecular subtypes 
as an example to demonstrate the effectiveness of RWRF and RWRNF algorithms. Three 
types of omics data (mRNA expression, DNA methylation, and miRNA expression) are 
integrated as a sample similarity network. After that, molecular subtyping is conducted 
on the integrated network.
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PCA dimensionality reduction is then applied to the resulting integrated similarity 
network. Figure 4a, b (represent the results of RWRF and RWRNF respectively) show 
that samples colored by their cluster labels can be separated through the first two princi-
pal components. Kaplan–Meier survival curves are demonstrated in Fig. 4c, d (represent 
the results of RWRF and RWRNF respectively). In this research, we used overall survival 
(OS) in the survival analysis. OS is an important endpoint, with the advantage that there 
is minimal ambiguity in defining an OS event; the patient is either alive or dead [33]. 
Among three subtypes of ACC, subtype 1 results in the poorest overall survival.

We also found associations between the subtypes and clinical variables. The Clinical 
T (TNM) is based on the TNM staging system. It indicates the extent of the tumor (T). 
For the Clinical T (TNM) stage, the larger the number is, the worse the prognosis is. 
The pathologic stage combines the results of both the clinical staging (physical exam, 
imaging test) with surgical results. It estimates the extent of the cancer, where stage 
IV is the most serious condition. Tumors in subtype 3 are less aggressive considering 
the extent of the tumor (T) whereas tumors in subtype 1 tend to be diagnosed at more 
advanced stages (III and IV) (Fig. 5a, b). Furthermore, each of omics data has a distinct 
molecular pattern for 3 different molecular subtypes. Figure 5c shows the heatmap of 
features among the 3 ACC subtypes. We select and demonstrate these features whose 
NMI values are ranked in the top two hundred of all NMI values across all feature types 
(see Methods). Each subtype has a very different profile in mRNA expression, miRNA 
expression, and DNA methylation. And the signature difference between subtype 1 and 
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Page 12 of 22Wen et al. BMC Bioinformatics           (2021) 22:97 

subtype 3 is very obvious. The results indicate that these three subtypes may have differ-
ent molecular mechanisms.

To illustrate the reliability of the different molecular features, we studied the biological 
contextualization in several cases.

Among the top two hundred important features of mRNA expression, gene G0S2, 
which significantly effects the prognosis of ACC patients (Additional file  10: Fig. S5), 
shows potential as a biomarker. In our findings, the expression of G0S2 in subtype 1 is 
the lowest, but the expression in subtype3 is the highest. Then we focus on the CpG 
islands of G0S2 in DNA methylation data. Except cg23646375 and cg07434244, nine 
CpG sites (cg02638691, cg06616057, cg08158408, cg08185241, cg09666230, cg14824901, 
cg17710021, cg26050864 and cg27176828) are among the top 5% important features of 
DNA methylation. The methylation levels at the nine CpG sites are also significantly dif-
ferent between subtype 1 and subtype 3 (Additional file 11: Fig. S6). This suggests that 
G0S2 methylation may be one of the biological characteristics of the subtype 1. Indeed, 
a recent study confirmed that hypermethylation of the G0S2 locus and decreased G0S2 
expression are hallmarks of rapidly recurrent or fatal ACC [34]. Moreover, G0S2 hyper-
methylation and silencing is exclusive to ACC. G0S2 may have important roles in adren-
ocortical biology and is worthy of future investigation.

The contribution of deregulated miRNAs to the pathogenesis of ACC has been studied 
in recent years, and some miRNAs have been shown to carry potential diagnostic and 
prognostic values. Among the top important features of miRNA expression in this study, 
four miRNAs (miR-125b-5p, miR-139-3p, miR-139-5p and miR-335-5p) are shown as 
potential biomarkers in ACC according to previous researches [35–39]. Overexpressed 
miR-139-5p, and underexpressed miR-125b-5p, miR-139-3p and miR-335-5p were 
found associated with ACC aggressiveness and poor prognosis. Therefore, these four 
miRNAs may serve as diagnostic and prognostic markers.

Moreover, in order to show the difference in biological pathways between subtype 
1 and subtype 3, we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and Gene Ontology Molecular Function (GOMF) enrichment analysis based on fea-
ture genes of subtype 1 and subtype 3 respectively (Additional file 12: Fig. S7). KEGG 
and GOMF enrichment results were selected by a P value threshold of 0.05. Compare 
to subtype 3, subtype 1 were significantly enriched in cortisol synthesis and secretion 
KEGG pathway. One of the symptoms of ACC is excessive levels of cortisol. Subtype 1, 
which has a poorer prognosis, may cause even more abnormal increases in cortisol lev-
els. Furthermore, compare to subtype 3, subtype 1 were significantly enriched in meth-
ylation-related molecular function (histone binding, methylated histone binding and 
methylation-dependent protein binding). A recent study has shown that the genomes 
of rapidly recurrent carcinomas are characterized by aberrant methylation directed to 
promoter CpG islands [34].

Discussion
Here, we proposed RWRF and RWRNF, two network-based methods for integrating 
multi-omics data. Appling RWRF and RWRNF to TCGA data, we integrated mRNA 
expression, miRNA expression, and DNA methylation data to identify cancer subtypes. 
Notably, RWRF and RWRNF both have strong anti-noise ability. Through comparing 
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with single data type analysis and previous integrative methods, it is proven that RWRF 
and RWRNF are more effective.

The network fusion of RWRF and RWRNF goes beyond a simple integration repre-
senting an average or a maximum of sample similarity measurements. By the random 
walk with restart on multiplex network, RWRF and RWRNF can capture potential links 
between samples with high sensitivity. If the similarity score in a single network is high 
but the similarity score in other single networks are low, the methods do not lost the 
original information. The random walk process helps RWRF and RWRNF make full use 
of topology information of each similarity network, which contains each type of data’s 
information.

As highly extensible methods, RWRF and RWRNF can fuse various omics data beyond 
the three examined here. For example, metabolomics data and proteomics data can also 
be integrated by using our methods. Furthermore, besides cancer subtyping, RWRF and 
RWRNF have many other applications. In drug repositioning, integrating various drug 
properties could offer new insight into the universality and complementarity of drug 
properties.

Nevertheless, both RWRF and RWRNF have their limitations. Multi-omics data are 
frequently profiled from different sets of patients/samples, leading to missing data. One 
of the limitations of this research is the limited set of samples using the intersection of 
different sample sets with multi-dimensional features. Data with more than 20% of miss-
ing values were removed and remaining missing values were imputed. Missing values for 
mRNA expression, DNA methylation and miRNA expression were substituted by their 
mean value over all the cohorts.

In addition to imputation, there are some other approaches that deal with missing val-
ues. Similarity measurements that can tolerate missing values is a promising method. 
Sitaram et  al. present an approach which can make use of the characteristics of the 
mahalanobis distance to inherently accommodate the missing values [40]. Li et al. pro-
posed a matrix calibration approach, which can estimating jaccard index with missing 
observations [41]. But these methods can only be applied to specific types of data or 
small data sets.

In general, with the accumulation of multi-omics data in the future, the scale of sample 
set will be expanded, and with the development of similarity measurements managing 
missing data, the performance of RWRF and RWRNF will be improved and the applica-
tion scenarios will be expanded.

Conclusions
In this study, we proposed two multi-omics data integration algorithms based on ran-
dom walk with restart (RWR) on multiplex network, namely Random Walk with Restart 
for multi-dimensional data Fusion (RWRF) and Random Walk with Restart and Neigh-
bor information-based multi-dimensional data Fusion (RWRNF) respectively. RWRF 
and RWRNF apply the theory of random walk to data integration and implement the 
integrated analysis of multi-omics data. By being used in cancer subtyping, the methods 
facilitate our understanding of cancer and precision treatment in clinical practice, and 
their high expansibility allows us to explore cancer from a wider range of fields.
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Methods
RWRF algorithm

In this study, a multiplex network is a collection of L similarity networks, considered as 
layers, sharing the same set of n nodes [42, 43]. Here, suppose L = 2 , then each layer is 
defined by its n× n adjacency matrix, S1 and S2 . They are constructed based on different 
features for the same batch of sample nodes. There are n samples in each of the net-
works. The identical samples in the two networks are connected to construct a multiplex 
network S:

where In is diagonal matrix, indicating the connection between S1 and S2.
The whole algorithm consists of three steps: (1) initial value determination, (2) random 

walk with restart (RWR) on the multiplex network, (3) similarity network fusion.
First of all, we set the initial value of the algorithm.
If we want to obtain similarity scores between the x-th node C(1)

x  in similarity network 
S1 and other nodes, C(1)

x  is denoted as the seed node in the multiplex network S . An 
imaginary particle starts a random walk from the seed node. In the similarity network 
S1 , probability 1 is assigned to the seed node C(1)

x  and probability 0 is assigned to other 
nodes, forming the initial probability distribution −→u 0 for similarity network S1 . Simi-
larly, the initial probability distribution for the x-th node C(2)

x  on similarity network S2 
is −→v 0 . Both −→u 0 and −→v 0 are n-dimensional vectors and satisfy the following conditions:

So, the initial probability distribution for the multiplex network S is:

The parameters α1 and α2 ∈ [0, 1] weight the importance of similarity network S1 and 
similarity network S2 . If there are k similarity networks, the first similarity network S1 
has the weight α and each of the other similarity networks has the weight 1−α

k−1
.

After that, we implemented RWR on the multiplex network. RWR equation can be 
defined as:

where �p0 is the initial probability distribution, �pt is a vector in which the i-th element 
indicates the probability for the situation that the imaginary particle walks to node i at 
step t. The parameter γ is restart probability, which allows the restart of the random walk 
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[

S1 In
In S2

]

(5)
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(7)−→
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v 0
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(8)α1 + α2 = 1

(9)−→
p t+1 = (1− γ )WT−→p t + γ

−→
p 0
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from the seed node at each step. This formula is iteratively updated. WT denotes a tran-
sition matrix defined as follows:

where W11 and W22 are intra-transition matrixes indicating the probability of walking 
from one node to other nodes in the same similarity network; W12 and W21 are inter-
transition matrixes. W12 is the transition matrix indicating the probability of walking 
from the first similarity network S1 to the second similarity network S2 , and W21 is the 
transition matrix indicating the probability of walking from S2 to S1 . Each entry wij in the 
transition probability matrix W is the probability of a transition from node j to node i.

Suppose that in the process of random walk, the probability of walking from one node 
to other nodes in the same similarity network is �1 , and the probability of jumping from 
one similarity network to other similarity networks is �2 . �1 and �2 satisfy �1 + �2 = 1 . 
The parameter �1 and �2 quantifies the probability of staying in a layer or jumping 
between the layers.

The transition matrix is defined as follows:

where W11

(

i, j
)

 is transition probability from node C(1)
i  to C(1)

j  , W12

(

i, j
)

 is transition 
probability from node C(1)

i  to C(2)
j  . S1

(

i, j
)

 indicates the similarity score between node 
C
(1)
i  and node C(1)

j  in similarity network S1 . 
∑

l

S1(i, l) represents the sum of the similarity 

scores between node C(1)
i  and each of all other nodes in the similarity network S1 . W22 

and W21 are defined similarly.
Iterations are repeated until the difference between �pt and �pt+1 falls below 10−10 , as in 

previous studies [44, 45]. After several iterations, the stationary probability distribution 
�pstable =

[

�ustable
�vstable

]

 will be obtained. The stationary probability distribution �pstable is usu-

ally reached after 16 iterations (Additional file  13: Fig. S8). Here, �ustable is similarity 
scores between C(1)

x  and other nodes in similarity network S1 , and �vstable is similarity 
scores between C(1)

x  and other nodes in similarity network S2.
When the stationary probability distribution is reached, the elements in �pstable rep-

resent a proximity measure from every graph node to the seed node. Considering that 
there are 2× n nodes in the multiplex network S , the above process was repeated 2× n 
times (the 2× n nodes were set as seeds respectively). Then we can obtain 2× n �pstable 
for 2× n seeds. The 2× n �pstable is combined to form a new multiplex network:
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W11 W12
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S
′

1 and S′

2 represent new similarity matrixes for each layer, which measure proximities 
among the nodes in each layer. A′

12 and A′

21 represent similarities between different layers.
The integrated similarity network is defined as follows:

Here, we set γ = 0.7 . The value of the restart parameter will be kept in the fol-
lowing version of the network fusion algorithm. If there are k similarity networks, 
�1 = �2 = · · · = �k = 1/k , α1 = α2 = · · · = αk = 1/k.

RWRNF algorithm

RWRNF algorithm is an extension of the RWRF algorithm. RWRNF algorithm considers 
not only the connected edges between the identical samples of different similarity net-
works, but also the neighborhood information of the samples in each similarity network.

Similarly, suppose L = 2 , then each layer is defined by its n× n adjacency matrix, S1 and 
S2 . They are constructed based on different features for the same batch of samples. There 
are n samples in each of the networks. C(1)

x  is the x-th node in similarity network S1 . C(2)
x  , 

the mirror node of C(1)
x  , is the x-th node in similarity network S2.

We connect the nodes in the two similarity networks in the form of weighted directed 
edges as follows:

The m nearest neighbors of C(1)
x  in similarity network S1 is 

{

C
(1)
x1 ,C

(1)
x2 , . . . ,C

(1)
xm

}

 . The 

mirror nodes of this m nodes in similarity network S2 is 
{

C
(2)
x1 ,C

(2)
x2 , . . . ,C

(2)
xm

}

 . C(1)
x  and C(2)

x  

are connected by an directed edge pointing from C(1)
x  to C(2)

x  with the weight of β . C(1)
x  

(source node) and 
{

C
(2)
x1 ,C

(2)
x2 , . . . ,C

(2)
xm

}

 (target nodes) are connected by directed edges 

where the weight of each edge is (1− β)/m . Similarly, the m nearest neighbors of C(2)
x  in 

similarity network S2 is 
{

C
(2)
x1′ ,C

(2)
x2′ , . . . ,C

(2)
xm′

}

 . The mirror nodes of this m nodes in similar-

ity network S1 is 
{

C
(1)
x1′ ,C

(1)
x2′ , . . . ,C

(1)
xm′

}

 . C(2)
x  and C(1)

x  are connected by a directed edge 

pointing from C(2)
x  to C(1)

x  with the weight of β . C(2)
x  (source node) and 

{

C
(1)
x1′ ,C

(1)
x2′ , . . . ,C

(1)
xm′

}

 

(target nodes) are connected by directed edges where the weight of each edge is (1− β)/m . 
Note that 

{

C
(1)
x1 ,C

(1)
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(1)
xm

}

 and 
{

C
(2)
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(2)
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}

 are not necessarily the same 

because the nearest neighbors of C(1)
x  and C(2)

x  may be different. Then a multiplex network S 
is constructed as follows:

where A12 indicates the connected matrix from S1 to S2 , A21 indicates the connected 
matrix from S2 to S1 . A12 and A21 satisfy the following requirements:

First of all, we set the initial value of the algorithm.
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If we want to obtain similarity scores between the x-th node C(1)
x  in the similarity 

network S1 and other nodes, C(1)
x  is denoted as the seed node in the multiplex net-

work S . An imaginary particle starts a random walk from the seed node. In the simi-
larity network S1 , probability 1 is assigned to the seed node C(1)

x  and probability 0 is 
assigned to other nodes, forming the initial probability distribution �u0 for similarity 
network S1 . The initial probability distribution for similarity network S2 is �v0:

where probability values are assigned to C(2)
x  and 

{

C
(2)
x1 ,C

(2)
x2 , . . . ,C

(2)
xm

}

 according to 

A12(x) . Both �u0 and �v0 are n-dimensional vectors and satisfy the conditions of Eqs.  (5) 
and (6).

So, the initial probability distribution for the multiplex network is:

The parameter α ∈ [0,1] weights the importance of similarity network S1 and similar-
ity network S2 . If there are k similarity networks, the first similarity network S1 has 
the weight α and each of the other similarity networks has the weight 1−α

k−1
.

After that, we implemented RWR on the multiplex network. RWR equation can be 
defined as:

where �p0 is the initial probability distribution. �pt is a vector in which the i-th element 
indicates the probability for the situation that the imaginary particle walks to node i at 
step t. The parameter γ is restart probability, which allows the restart of the random walk 
from the seed nodes at each step. This formula is iteratively updated. WT denotes a tran-
sition matrix defined as follows:

where W11 and W22 are intra-transition matrixes indicating the probability of walking 
from one node to other nodes in the same similarity network; W12 and W21 are inter-
transition matrixes. W12 is the transition matrix indicating the probability of walking 
from the first similarity network S1 to the second similarity network S2 , and W21 is the 
transition matrix indicating the probability of walking from S2 to S1 . Each entry wij in the 
transition probability matrix W is the probability of a transition from node j to node i.

Suppose that in the process of random walk, the probability of walking from one 
node to other node in the same similarity network is �1 , and the probability of jump-
ing from one similarity network to the other similarity network is �2 . �1 and �2 satisfy 
�1 + �2 = 1 . The parameter �1 and �2 quantifies the probability of staying in a layer or 
jumping between the layers.

The transition matrix is defined as follows:

(18)−→
v 0 = A12(x, )

(19)�p0 =

[

α�u0
(1− α)�v0

]

(20)−→
p t+1 = (1− γ )WT−→p t + γ

−→
p 0

(21)W =

[

W11 W12

W21 W22

]



Page 18 of 22Wen et al. BMC Bioinformatics           (2021) 22:97 

where W11

(

i, j
)

 is transition probability from node C(1)
i  to C(1)

j  , W12

(

i, j
)

 is transition 
probability from node C(1)

i  to C(2)
j  . S1

(

i, j
)

 indicates the similarity score between node 
C
(1)
i  and node C(1)

j  in similarity network S1 . 
∑

l

S1(i, l) represents the sum of the similarity 

scores between node C(1)
i  and each of all other nodes in the similarity network S1 . 

A12

(

i, j
)

 indicates the connection weight from node C(1)
i  to node C(2)

j  . 
∑

m
A12(i,m) repre-

sents the sum of the connection weights from node C(1)
i  to each of 
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xm

}

 

(The m nearest neighbors of C(1)
x  in similarity network S1 is 

{

C
(1)
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(1)
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(1)
xm

}

 , The 

mirror nodes of this m nodes in similarity network S2 is 
{

C
(2)
x1 ,C

(2)
x2 , . . . ,C

(2)
xm

}

 ). W22 and 

W21 are defined similarly.
Iterations are repeated until the difference between �pt and �pt+1 falls below 10−10 , as in 

previous studies [44, 45]. After several iterations, the stationary probability distribution 
�pstable =

[

�ustable
�vstable

]

 will be obtained. The stationary probability distribution �pstable is usu-

ally reached after 16 iterations (Additional file  13: Fig. S8). Here, �ustable is similarity 
scores between C(1)

x  and other nodes in similarity network S1 , and �vstable is similarity 
scores between C(1)

x  and other nodes in similarity network S2.
When the stationary probability distribution is reached, the elements in �pstable rep-

resent a proximity measure from every graph node to the seed node. Considering that 
there are 2× n nodes in the multiplex network S , the above process was repeated 2× n 
times (the 2× n nodes were set as seeds respectively). Then we can obtain 2× n �pstable 
for 2× n seeds. The 2× n �pstable is combined to form a new multiplex network:

S
′

1 and S′

2 represent new similarity matrixes for each layer, which measure proximi-
ties among the nodes in each layer. A′

12 and A′

21 represent similarities between different 
layers.

The integrated similarity network is defined as follows:

Here, we set m = 10 , α = 0.9 , β = 0.9 , γ = 0.7 . If there are k similarity networks, 
�1 = �2 = · · · = �k = 1/k.

Simulated data generation

To verify the anti-noise ability of RWRF and RWRNF, simulated data is generated. First, 
two clusters that are linearly separable are generated. There are 200 samples in the 
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simulated data. The first 100 samples belong to one class, the second 100 samples belong 
to the other class. The original distribution of the simulated data is shown in Additional 
file 14: Fig. S9a. Two types of noise are added to the original data: (1) Gaussian noise 
with a mean of 0 and a standard deviation of 1.5 (Additional file 14: Fig. S9b); (2) Gamma 
noise with shape parameter α = 3 and rate parameter β = 1 (Additional file 14: Fig. S9c).

Moreover, we used artificial multi-omics datasets (Additional file 9: Fig. S4), which is 
closer to what is expected in real multi-omics dataset. We simulated these datasets using 
the “InterSIM” R package [46].

This package simulates multiple interrelated data types with realistic intra- and inter-
relationships based on the DNA methylation, mRNA gene expression, and protein 
expression from the TCGA ovarian cancer study. InterSIM generates clusters and asso-
ciates features to these clusters by shifting their mean values by a fixed amount.

In this study, we simulated multi-omics data with five clusters. The simulated data 
contains three types of data. There are 100 samples in each type of data. The simulated 
methylation data has 367-dimensional features, the simulated gene expression data has 
131-dimensional features and the simulated protein expression data has 160-dimen-
sional features.

Feature selection

To select important features for each of the subtypes, we perform the following opera-
tions. For each of all features (including features in mRNA expression, DNA methylation 
and miRNA expression), a network is constructed independently. Then we use spectral 
clustering on the network to obtain subtypes. After that, we calculate NMI between the 
resulting cluster label and the RWRF (and RWRNF) found subtypes. The lager the NMI 
value is, the more likely the network based on the feature is to have the same subtypes 
as RWRF (and RWRNF) found subtypes. Therefore this feature is more important to the 
fused network structure. At last, according to the NMI value, we can select top ranking 
features, which are relatively important for the integrated network.
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