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Abstract
Background: The latest works on CRISPR genome editing tools mainly employs deep
learning techniques. However, deep learning models lack explainability and they are
harder to reproduce. We were motivated to build an accurate genome editing tool
using sequence-based features and traditional machine learning that can compete
with deep learning models.

Results: In this paper, we present CRISPRpred(SEQ), a method for sgRNA on-target
activity prediction that leverages only traditional machine learning techniques and
hand-crafted features extracted from sgRNA sequences. We compare the results of
CRISPRpred(SEQ) with that of DeepCRISPR, the current state-of-the-art, which uses a
deep learning pipeline. Despite using only traditional machine learning methods, we
have been able to beat DeepCRISPR for the three out of four cell lines in the benchmark
dataset convincingly (2.174%, 6.905% and 8.119% improvement for the three cell lines).

Conclusion: CRISPRpred(SEQ) has been able to convincingly beat DeepCRISPR in 3 out
of 4 cell lines. We believe that by exploring further, one can design better features only
using the sgRNA sequences and can come up with a better method leveraging only
traditional machine learning algorithms that can fully beat the deep learning models.

Keywords: CRISPR, sgRNA, Machine learning, Deep learning, Cas9

Background
Genome editing has become extremely popular in recent times andmore andmore works
are being done on it every day. One of the more widely used genome editing technologies
is CRISPR-Cas9 (Clustered Regularly Inter-spaced Short Palindromic Repeats-CRISPR-
associated protein 9). CRISPR-Cas9 is preferred over other technologies because of its
higher degree of flexibility and accuracy in cutting and pasting genes. It is also more
cost-efficient than other methods. Besides, it allows removing more than one gene at a
time. By using CRISPR-Cas9, we are now able to manipulate multiple genes in plant and
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animal cells within weeks, which would otherwise have taken years before. Moreover,
CRISPR-Cas9 can also edit genes of those species that were once considered resistant to
genetic engineering.

Motivation

Due to the off-target effect, the use of CRISPR-Cas9 on humans is still considered a risk
[1]. Designing an accurate genome editing tool is hence, necessary. While designing such
a tool, we only used sequence-based features. This is motivated by the empirical assertion
of the natural belief (please see the recent Ph.D. thesis of Rahman [2] and the published
results thereof in [3–5]) that the functional and structural information of a biological
sequence are intrinsically encoded within its primary sequence. Also, recent works on
this mainly leveraged deep learning techniques. Deep learning models are much harder
to scale and reproduce. Furthermore, they are considered a black box because it is hard
to explain what is happening inside a deep neural network. A recent study has analyzed
several deep learning algorithms for top-n recommendation and concluded that most of
the algorithms can be outperformed by simpler algorithms [6].Wemaintain that the same
can be done for CRISPR-Cas9 tools. Thus, besides trying to build an accurate tool using
only sequence-based features, our main motivation was to build an easily reproducible
and explainable traditional machine learning pipeline that can compete with state-of-the-
art deep learning models.

Previous works

In gene editing with CRISPR, we use a single guide RNA (sgRNA) with Cas-9 protein.
The cut position in the DNA is specified by that sgRNA. Theoretically, we can engineer
the sgRNA so that it binds to the site where it exactly matches the complement of the
DNA strand. But in practice, cutting efficacy may vary significantly [7–9]. For this reason,
predictive models are essential in designing sgRNAs.
There are many tools available for designing sgRNAs. These tools differ in the type

of models used, selected features, genomes, etc. The tool sgRNA Designer [10] followed
the rules proposed by Root laboratory [11]. Their training dataset contained genes from
human and mouse cells. They used the Support Vector Machine (SVM) [12] classi-
fier to select the best subset of features from among the 586 available features. Finally,
a logistic regression model was trained for prediction [13]. Subsequently, this dataset
was enriched and used by CRISPRpred [14], E-CRISPR [15], PROTOSPACER [16],
CHOPCHOP [17] and WU-CRISPR [18]. Among these tools, CRISPRpred performed
significantly better than others. The authors in [14], incorporated position-specific and
position-independent features ranked by random forest [19, 20] and trained a SVMmodel
for prediction.
DeepCRISPR [21] is the first tool to utilize deep learning for sgRNA activity predic-

tion. It leveraged a deep unsupervised representation learning strategy to train a Deep
Convolutional Denoising Neural Network (DCDNN) based Autoencoder [22] for learn-
ing features. These features are then fed into a Convolutional Neural Network (CNN) for
training the prediction model. To evaluate DeepCRISPR, the authors in [21] have used a
dataset comprising sgRNAs from four different cell types: HCT116, HEK293, HeLa and
HL60. DeepCRISPR achieved an ROC-AUC score of 0.874, 0.961, 0.782 and 0.739 for the
four cells respectively, beating the previous tools.
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During the review and publication process of the current manuscript, a new deep learn-
ing based tool. called DeepHF [23], has been proposed. DeepHF uses a Bidirectional
LSTM to extract features. Combining these features with hand-crafted biological fea-
tures, a fully connected network has been trained to construct the final model. A dataset
of about 50,000 sgRNAs with sgRNA activity for three SpCas9 variants was used for
this model. It achieved Spearman correlation coefficients of 0.867, 0.862 and 0.860 for
WT-SpCas9, eSpCas9(1.1) and SpCas9-HF1 respectively.

Our contributions

In this paper, we present CRISPRpred(SEQ), a method to predict the on-target activi-
ties of sgRNAs using a traditional machine learning pipeline. A characteristic feature of
CRISPRpred(SEQ) is that, unlike the previous models, it only focuses on sequence-based
features. As mentioned before, we believe that the necessary information of a biological
sequence can be decoded from its primary sequence. Indeed, our results in this research
work further strengthen this assertion empirically as CRISPRpred(SEQ) has performed
exceptionally well and has almost beaten the recent deep neural networking pipelines
leveraging only traditional machine learning techniques and focusing only on primary
sequence-based features. In particular, CRISPRpred(SEQ) has improved upon the results
of DeepCRISPR by 2.174%, 6.905% and 8.119% for the cells HCT116, HeLa and HL60
respectively. Also, our preliminary experiments, without any hyperparameter tuning,
achieved results close to that of DeepHF. This seems significant for at least two important
reasons as follows. Firstly, this suggests that traditional machine learning techniques may
have the potential to compete at par with the deep learning techniques and in a case like
this, a simpler model is advantageous because of its scalability and interpretability. And
secondly, this further suggests that our (human) feature engineering exercise, as has been
done in case of CRISPRpred(SEQ), which is an integral step in any traditional machine
learning pipeline, has almost been able to beat automatic feature extraction of the deep
networking pipelines.

Results
DeepCRISPR dataset

We have used the on-target dataset used in [21] (i.e., for DeepCRISPR), which was also
used by Haeussler et al. [24]. This whole dataset contains a total of over 16,000 labeled
sgRNAs for four cell types, namely, HCT116, HEK293, HeLa and HL60 (Please check
Additional file 1, 2, 3 and 4, respectively). We carried out our experiments in 6 different
settings (A, B, C, D, E and F) to be described below. The experimental pipelines are shown
in Fig. 1.
We split the dataset for four cells separately in 5 parts where the splits were stratified

by data labels. For experimental setup A, B and C, we selected one of the five parts for
each cell as test dataset (20% of the data) and the combination of remaining four parts
for each cell as the training dataset( 80% of the data). This was done for all the five parts
and every experiment was done five times for each testing and training datasets com-
bination. We, however, did not remove the common data between training and testing
datasets. The authors of DeepCRISPR also did not remove the common data between
training and testing datasets in their first experiment. Although they removed it in their
later experiments, they pretrained their model with a large number of unlabeled data and
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Fig. 1 Training pipelines, the steps of building the final prediction model. a The pipeline for experimental setup
A.We only extracted position-independent and position-specific features. The steps of splitting the dataset
and selecting features are described in “Results” section. We used the default parameters while training SVM.
b The pipeline for experimental setup B. The steps of extracting features and splitting dataset is same as
experimental setup A. But, in feature selection step we used extremely randomized trees (the feature
selection criteria are described in “Results” section). We performed hyperparameter tuning on SVM and
retrained SVM with the best hyperparameters. c The pipeline for experimental setup C. It is exactly same as the
pipeline for experimental setup B except we considered the feature type n-Gapped Di-nucleotide in feature
extraction step

from the description of the data it seemed that there are common portions between the
labeled and unlabeled data.
However, for experimental setup D, E and F, we ignored the data for HEK293 cell due

to the below par results achieved in experiments A, B and C for this cell. We performed
leave-one-cell-out experiments where we chose one of the five parts for one cell as the
testing dataset and the remaining four parts for the remaining cells as the training dataset.
For example, if we chose to leave out the data for HCT116 from the training dataset, we
chose one of the five parts for the same as the testing dataset and selected the remaining
four parts for HeLa and HL60 and combined them to be used as the training dataset.

Results of experimental setup a

In this setting, we have used the training data to train the pipeline used in CRISPRpred
[14] (CRISPRpred(SEQ)-A). We have extracted position-independent and position-
specific features (“Feature extraction” section) and then, used random forest to rank the
features using Gini score [25] and then selected the top 2899 features (number of features
used in [14]). Then support vector machine (with default parameters of scikit-learn [26]
library) was used to train the final model.
The results were compared with DeepCRISPR [21], sgRNA Designer [10], SSC [27],

CHOP-CHOP [17], CRISPR MultiTargeter [28], E-CRISP [15], sgRNA Scorer [29], Cas-
Designer [30] andWU-CRISPR [18] (Fig. 2). Following the paper presenting DeepCRISPR
[21], we have used ROC-AUC as the metric for comparison.
From the results we observe that the state-of-the-art tool, DeepCRISPR, has achieved

an ROC-AUC score of 0.874, 0.961, 0.782, 0.739 for the cells HCT116, HEK293, HeLa
and HL60 respectively whereas CRISPRpred(SEQ)-A has achieved an ROC-AUC score of
0.879, 0.444, 0.797 and 0.759 for the four cells respectively (Fig. 2, Additional file 5). Thus,
CRISPRpred(SEQ)-A was able to beat DeepCRISPR for 3 out of 4 cells.
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Fig. 2 Comparison of performance of various methods with first three experimental settings (A, B and C).
Y-axis denotes the ROC-AUC and X-axis denotes the cell types. In all three settings, CRISPRpred(SEQ) has
convincingly beaten DeepCRISPR in 3 out of 4 cells, i.e., in HCT116, HeLa and HL60. However, in HEK293,
DeepCRISPR performs far better than CRISPRpred(SEQ) (please also see a relevant discussion in “Results on
HEK293 cell” section). CRISPRpred(SEQ)-C performs slightly better than CRISPRpred(SEQ)-B which in turn
outperforms CRISPRpred(SEQ)-A in all cell lines

Results of experimental setup b

In this setting, unlike the normal CRISPRpred pipeline, we used extremely random-
ized trees [31] instead of the random forest to rank and select the features (the
difference between random forest and extremely randomized trees is discussed in
“Extremely randomized trees vs random forest” section). Like before, the features were
extracted and then ranked using the Gini score. Then we selected the features having a
score greater than or equal to the mean Gini score, thereby selecting around 1995 fea-
tures. Then we performed 3 fold cross-validation on the training data for tuning the
SVM parameters C and γ . Increasing the value of γ means that SVM tries more to
exactly fit the training data. On the other hand, the C parameter controls the smooth-
ness of the decision boundary. We tuned our model for C values of 1, 10 and 100
and γ values of 0.0001, 0.001, 0.01 (Table 1). We achieved the best cross-validation
result for C = 10 and γ = 0.001. We determined the best hyperparameters based on
ROC-AUC.
Subsequently, we retrained the model (CRISPRpred(SEQ)-B) using the best hyper-

parameters and then have compared the results with the previous tools as is done in
Experiment A (Fig. 2, Additional file 5). CRISPRpred(SEQ)-B has achieved an ROC-
AUC of 0.892, 0.446, 0.832 and 0.781 for the cells HCT116, HEK293, HeLa and HL60
respectively, improving further upon the results of CRISPRpred(SEQ)-A.
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Table 1 The results of 3 fold cross-validation hyperparameter tuning of Experiment B

γ
0.0001 0.001 0.01

C

1 0.702 0.775 0.759

10 0.733 0.781 0.758

100 0.765 0.781 0.758

All the values in the table are ROC-AUC. The best result has been achieved for C = 10 and γ = 0.001

Results of experimental setup c

In this setup, we added a new feature type called n-gapped di-nucleotide (“Feature extrac-
tion” section) along with the previous features used in Experiments A and B. Similar to the
previous pipeline, then the features were ranked and selected using extremely random-
ized trees (features having a score greater than or equal to the mean Gini score), thereby
selecting a total of around 1957 features. We again performed 3 fold cross-validation
to tune the SVM parameters C and γ (Table 2). After the final training of the model
(CRISPRpred(SEQ)-C) with the best hyperparameters (C = 10 and γ = 0.001), we com-
pared the results with the previous tools (Fig. 2, Additional file 5). CRISPRpred(SEQ)-C
registered a slight improvement over CRISPRpred(SEQ)-B with an ROC-AUC of 0.893,
0.445, 0.836 and 0.799 for the cells HCT116, HEK293, HeLa and HL60 respectively, which
might be attributed to the newly added n-gapped di-nucleotide features.

Results of experimental setup d, e and f

We followed the exact pipeline for A, B and C for Experiments D, E and F respectively but
we did not perform any hyperparameter tuning for Experiments E and F. For Experiments
E and F, we used the best hyperparameters (C = 10 and γ = 0.001) found in Experiments
B and C and for Experiment D, we used the default parameters as was done in Experiment
A. We then compared the results with the same previous tools that we used to compare
in Experiments A, B and C. Recall that in these experiments we did leave-one-cell-out
cross validation excluding HEK-293 cell from the experiments (a discussion on HEK-293
cell data is provided in “Discussion” section). DeepCRISPR achieved ROC-AUC values
of 0.919, 0.82 and 0.643 while leaving out cells HCT116, HeLa and HL60 respectively.
In Experiment D we achieved an ROC-AUC score of 0.885, 0.798 and 0.688 while leav-
ing out cells HCT116, HeLa and HL60 respectively, only managing to beat DeepCRISPR
when leaving out HL60. In Experiment E we were able to improve the result of experiment
D further by achieving an ROC-AUC scores of 0.894, 0.825 and 0.692 respectively out-
performing DeepCRISPR when leaving out cells HeLa and HL60. There was a noticeable
improvement when leaving out HL60 in Experiment F. Here we managed to attain ROC-
AUC values of 0.894, 0.823 and 0.754 while leaving out cells HCT116, HeLa and HL60
respectively. All the detailed comparisons are provided in Additional file 6 and illustrated
in Fig. 3.

Table 2 The result of 3 fold cross-validation hyperparameter tuning of Experiment C

γ
0.0001 0.001 0.01

C

1 0.705 0.783 0.763

10 0.732 0.788 0.762

100 0.763 0.788 0.762

All the values in the table are ROC-AUC. The best result is achieved for C = 10 and γ = 0.001
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Fig. 3 Comparison of performance of various methods with the three experimental settings D, E and F. Y-axis
denotes the ROC-AUC and X-axis denotes the cell type that we are leaving out. In all three settings,
CRISPRpred(SEQ) has beaten DeepCRISPR when leaving out cell HL60. CRISPRpred(SEQ)-E and
CRISPRpred(SEQ)-F achieved scores slightly better than DeepCRISPR when leaving out cell HeLa. None of the
settings were able to beat DeepCRISPR when leaving out cell HCT116 but managed to achieve a score close
to that of DeepCRISPR

Preliminary experiments on deepHF dataset

As has already been mentioned above, during the review and publication process of the
current manuscript a new tool named DeepHF has been reported in [23]. We repeated
the experimental setups A, B and C on the DeepHF dataset used in [23] (without any
hyperparameter tuning). This dataset contains over 50,000 sgRNAs, covering approxi-
mately 20,000 genes with sgRNA activities for three SpCas9 variants, namelyWT-SpCas9,
eSpCas9(1.1) and SpCas9-HF1 (Additional file 7). We used the same pipelines used in
Experiments A, B and C except that, in this case regression models for tree models and
SVM were used. The dataset was split into training (85% of the data) and testing datasets
(15% of the data). For experiment A, we achieved Spearman correlation coefficients
of 0.829, 0.814 and 0.804 for WT-SpCas9, eSpCas9(1.1) and SpCas9-HF1 respectively.
Spearman correlation coefficients were 0.837, 0.825 and 0.816 for WT-SpCas9, eSp-
Cas9(1.1) and SpCas9-HF1 respectively in Experiment B. There was a small improvement
in Experiment Cwith Spearman correlation coefficients of 0.838, 0.830 and 0.821 forWT-
SpCas9, eSpCas9(1.1) and SpCas9-HF1 respectively. We managed to be very close to the
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correlation coefficients achieved by DeepHF which are 0.867, 0.862 and 0.860 for WT-
SpCas9, eSpCas9(1.1) and SpCas9-HF1 respectively. The authors of [23] did not use SVM
because it took a long time to finish. But, we managed to use an SVM library that utilized
the GPU (ThunderSVM [32]) and our preliminary results strongly suggest that we can
achieve a greater coefficient than DeepHF if we run a hyperparameter tuning algorithm
with more hyperparameters in consideration.

Discussion
Traditional machine learning vs deep learning

CRISPRpred(SEQ) has performed remarkably well for 3 out of 4 cells for the DeepCRISPR
dataset thereby (almost) beating a deep learning pipeline (DeepCRISPR) leveraging only
classical machine learning methods. A simpler traditional machine learning model is
useful because- i) it is easier to reproduce the results of a traditional machine learning
pipeline, ii) it is faster to compute, iii) deep learning models are more prone to overfitting
because of their large hypothesis space [33], iv) and they are hardly interpretable.

Extremely randomized trees vs random forest

One of the main reasons behind using extremely randomized trees is that it is much faster
than random forest (about three times faster) [31] given that one of our goals is to build
a simpler and faster model. Unlike random forest models, extra trees algorithm selects
splits totally or partially at random [31].

Results on HEK293 cell

The performance of CRISPRpred(SEQ) on HEK293 cell is not up to the mark; thus a brief
discussion on this point is in order. The dataset for HEK293 cell had been termed as an
outlier in prior literature [24] because of being responsible for a lot of off-targets. Also,
they have a very high GC contents. Further details with statistics can be found in [24]. So,
the quality of dataset for HEK293 cell might not be as good as the datasets for other cells.
We have noticed that almost all the previous tools also did not perform well for this cell.
At this point, we also would like to remark on the (excellent) result of DeepCRISPR

for the HEK293 cell line. As has been mentioned above, DeepCRISPR has first leveraged
a deep unsupervised representation learning strategy to train a DCDNN based Autoen-
coder [22] for learning features. Here they have used over 70GB of unlabeled data by
generating all 23 nucleotide sequences ending with NGG, NAG, CCN and CTN from
the Human genome directly and then using ENCODE data to add epigenomic informa-
tion to each record [34]. This resulted in about 0.68 billion unlabeled sgRNA sequences.
Now, this raises the question of whether extra bias was introduced given that overlapping
sgRNAs between test data and unsupervised data were not removed.

Sequence based features

We note that, apart from some important changes in the machine learning pipeline
employed, CRISPRpred(SEQ) principally differs from its predecessor, CRISPRpred, in
that the former only focuses on sequence-based features whereas the latter have con-
sidered other types of features as well. This focus on only sequence-based features was
motivated by the empirical assertion of the natural belief [2–5]) that the functional
and structural information of a biological sequence are intrinsically encoded within its
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primary sequence. We believe that further research along this line is in order from both
pure biological (to validate this hypothesis) and computational biology (to propose and
evaluate more tools based on only sequence-based features) point of view.

DeepHF dataset

We have only done preliminary experiments with the DeepHF dataset. This dataset con-
sists of over 50,000 sgRNAs which requires more computational time to train. Although
we managed to find an SVM library that uses GPU, we had to use a library for tree algo-
rithms that uses CPU. So, we decided not to perform hyperparameter tuning for the
DeepHF dataset.We also believe that consideringmore values for hyperparametersC and
γ of SVMand also adding hyperparameters such as the number of trees in a random forest
and extremely randomized trees, the number of features selected during hyperparameter
tuning can improve our model further.

Conclusion
CRISPRpred(SEQ) has performed exceptionally well and has almost beaten the deep neu-
ral networking pipelines leveraging only traditional machine learning techniques and
focusing only on primary sequence-based features. In particular, CRISPRpred(SEQ) has
improved upon the results of DeepCRISPR by 2.174%, 6.905% and 8.119% for the cells
HCT116, HeLa and HL60 respectively. We believe, that we can improve our model if we
have more computational resources which will allow us to explore our model further.

Methods
Feature extraction

sgRNA sequence consists of four types of nucleotides: Adenine (A), Cytosine (C),
Thymine (T) and Guanine (G). We extracted three types of features related to the com-
position of nucleotides in the sgRNAs. Two types of features were already used in
CRISPRpred [14]. We added a new type of feature called n-gapped di-nucleotide which
is similar to the feature n-gapped dipeptide used in [35]. Nevertheless, the features are
described below for the sake of completeness.

• Position Independent Features (PIF): These features represent the number of
occurrences of a given n adjacent nucleotides in the entire sequence. We extracted
PIF features for n = 1, 2, 3, 4.
For example, the feature named AC indicates how many times the sequence AC
appears in a given sgRNA sequence. For the sgRNA

ACATCAGGTTACCTCTACCAAGG

the number of times AC appears is 3.
The number of PIF when n = 1 is 4, namely A, C, T, G. In the same way, number of
PIF when n = 2 is 42, i.e., AA, AC, . . . , GG. The number of PIF when n = 3 and
n = 4 is 43 and 44 respectively. Thus, the total number of PIF is

41 + 42 + 43 + 44 = 340

• Position Specific Features (PSF): This type of features are all binary features
indicating whether a nucleotide or n adjacent nucleotides appear at a certain position
in a given sgRNA. Again, we varied n from 1 to 4 for generating PSF.
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The feature named AA2 indicates whether the sequence AA appears at position 2 or
not for a sgRNA. For the sgRNA

GAAACAGGAGGCGGTAAAGGAGG

the value of AA2 is 1.
When n = 1, there are 23 possible positions in which 4 possible nucleotides can
appear. For n = 2, there are 22 possible positions in which 42 possible 2 adjacent
nucleotides can appear. In the same way, for n = 3, the number of possible positions
for 43 possible 3 adjacent nucleotides to appear is 21. 44 possible 4 adjacent
nucleotides can appear at 20 possible positions. So, number of PSF, considering
1 ≤ n ≤ 4 is

4 × 23 + 42 × 22 + 43 × 21 + 44 × 20 = 6908

• n-Gapped Di-nucleotides (nGD): This type of features were used in [35]. In this
type, we counted the number of times 2 given nucleotides appear at a certain
distance in a sgRNA.
The feature named GAP:AG2 specifies the number of times A and G occur at a
distance of 2 nucleotides with order of nucleotides preserved. In other words, the
value of GAP:AG2 may not be equal to the value of GAP:GA2. For the sgRNA,

AGATTCTTTGGATCGGAGGGAGG

the value of GAP:AG2 is 2.
2 specific nucleotides can appear at a distance of 1, 2, 3,. . . , 21. Possible combination
of 2 nucleotides is 42. The total number of nGD is

42 × 21 = 336.

Feature selection

We extracted a total of 7584 features. A large number of features have a chance of
over-fitting the model. Also, it increases the training time. To reduce the dimension of
feature space, first, we ranked the features using random forest (for experiments A and
D) and extremely randomized trees (for experiments B, C, E and F) using the Gini score.
The number of estimators while training random forest and extremely randomized trees
was 500.

Standard scaling

First, we scaled all of our features using standard scaling. Standard scaling is a data pre-
processing technique. It transforms data so that the mean of all data is 0 and the standard
deviation is 1. Among the extracted features there are binary features like if a nucleotide
is present or absent at a specific position. These types of features can only be equal to 0
or 1. There are also some features like how many times a nucleotide occurs in the entire
sequence. These features’ values have a different domain than binary features. So the fea-
ture values have varying ranges. Several machine learningmodels assume that the features
have been scaled to the same value range. If there is a feature with a higher variance com-
pared to other features then it will dominate the objective function and the model will not
be able to learn from other features.
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Support vector machine (SVM)

We experimented with several supervised machine learning algorithms to train our
model. Finally, a nonlinear support vector machine (SVM) was used to train our final
model. We used radial basis function (RBF) as the kernel for SVM. We also tuned the
hyperparametersC and γ which has already been described. Finally, we trained ourmodel
for C = 10 and γ = 0.001.

Experimental environment

We have conducted experiments using python language (version 3.6). We mainly used
the scikit-learn package (version 0.20.3) [26] of python for all machine learning related
programming. Pandas (0.24.2) andNumPy (1.16.2) library was used for datamanagement.
We later used Thundersvm [32] to train SVM which makes use of GPU.
The experiments were carried out on Kaggle Kernel and in a server machine. Kaggle is

a cloud computational environment. It had 4 CPU cores with 17 Gigabytes of RAM. In a
single session, it provides 9 hours of execution time with 5 Gigabytes of auto-saved disk
space and 16 Gigabytes of temporary disk space. The server machine was equipped with
Intel Xeon CPU E5-4617 @ 2.90GHz x 6, Ubuntu 13.04 64-bit OS and 64GB RAM.
Later, we used a machine equipped with NVIDIA GP102 Titan Xp graphics processor,

Intel Core i5-8400 CPU @ 2.80GHz x 6, Ubuntu 18.04 64-bit OS and 16GB RAM to run
the experiments for DeepHF feature.
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