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Abstract

Background: Evaluating the toxicity of chemical mixture and their possible
mechanism of action is still a challenge for humans and other organisms. Microarray
classifier analysis has shown promise in the toxicogenomic area by identifying
biomarkers to predict unknown samples. Our study focuses on identifying gene
markers with better sensitivity and specificity, building predictive models to
distinguish metals from non-metal toxicants, and individual metal from one another,
and furthermore helping understand underlying toxic mechanisms.

Results: Based on an independent dataset test, using only 15 gene markers, we
were able to distinguish metals from non-metal toxicants with 100% accuracy. Of
these, 6 and 9 genes were commonly down- and up-regulated respectively by most
of the metals. 8 out of 15 genes belong to membrane protein coding genes.
Function well annotated genes in the list include ADORA2B, ARNT, S100G, and DIO3.
Also, a 10-gene marker list was identified that can discriminate an individual metal
from one another with 100% accuracy. We could find a specific gene marker for
each metal in the 10-gene marker list. Function well annotated genes in this list
include GSTM2, HSD11B, AREG, and C8B.

Conclusions: Our findings suggest that using a microarray classifier analysis, not only
can we create diagnostic classifiers for predicting an exact metal contaminant from a
large scale of contaminant pool with high prediction accuracy, but we can also
identify valuable biomarkers to help understand the common and underlying toxic
mechanisms induced by metals.
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Background
The last decade has seen a growing interest in the metal toxicity towards environmental

contamination and human health, however, efficient and accurate assessment of the po-

tential environmental metallic and non-metallic contamination remains an enduring

challenge in environmental health protection [1]. Traditional methods are very time

consuming, inefficient, and expensive, so limited number of chemicals can be tested [2,

3]. Applications of new approaches, including massive sequencing techniques make

toxic genomics strategies to classify hepatotoxic and non-hepatotoxic compounds and

explore these molecular mechanism [4].

The liver is the main organ of metabolism and also the main organ of the toxicity of

chemical compounds [5, 6]. The primary culture method of hepatocytes provides an

in vitro system that is convenient to do toxic chemicals screening. Cell culture can also

reduce the damage to animals, reduce costs, and make research in vivo feasible [7]. The

use of in vitro system screening for the treatment of human diseases and new drug re-

search as well as molecular mechanisms has a long history [7]. In this study, gene ex-

pression profiles were generated from rat primary hepatocytes treated with 105

different compounds, including 9 heavy metals (Selenium, Chromium, Arsenic, Lead,

Cadmium, Nickel, Zinc, Copper, and Tungsten) and their respective vehicle controls [8,

9]. The microarray classifier is analyzed by comparing different feature types, sizes, and

two feature selection methods based on LibSVM classification algorithm [10]. Microarray

classifiers analyze the prospects in the field of toxic genomics in identifying biomarkers to

predict unknown samples and to help understand toxicity mechanisms [8, 11].

Material and methods
Chemicals

The chemicals were described in previous study [12].

Cell culture

The primary rat hepatocytes, rtNHeps (AC-2630), were isolated from male Sprague

Dawley, and reconstituted in HCM supplemented with ascorbic acid, fatty acid-free bo-

vine serum albumin, transferrin, insulin, recombinant human epidermal growth factor,

hydrocortisone 21 hemisuccinate, Gentamicin sulfate, and Amphotericin B immediately

upon receipt. 3 × 106 cells were seeded in Type 1 collagen-coated T-75 flask following

by incubation overnight at 37° with 5% CO2.

The cells were replenished with fresh HCM and dosed in triplicate flasks with the

non-toxic concentration of each compound at 1% DMSO (v/v) or with solution at 1%

water (v/v). Every 3 chemicals used a solvent control. A total of 105 chemicals were

used, and each chemical has 3 treatments plus controls. Cells were collected after 24 h’

exposure for RNA extraction.

Total RNA extraction

Total RNA was extracted from about 30mg cell pellet according to RNeasy kits (Qiagen)

manual instruction. The RNA concentrations were measured by NanoDrop ND-1000

Spectrophotometer (NanoDrop technologies, Wilmington, DE, USA). The integrity and

quality of total RNA was determined on an Agilent 2100 Bioanalyzer (Palo Alto, CA).
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Microarray hybridization

Rat whole genome oligo arrays in the format of 4X44K were purchased from Agi-

lent (Santa Clara, CA). Sample cRNA synthesis, labeling, hybridization, and micro-

array processing were performed according to manufacturer’s protocol “One-Color

Microarray-Based Gene Expression Analysis” (version 1.0). In brief, the Agilent

One-Color Spike Mix (part number 5188–5282) was diluted 5000-fold and 5 μl of

solution mixed with 1 μg RNA samples prior to labeling reactions which were per-

formed using the Agilent Low RNA lnput Linear Amplification Kit in the presence

of cyanine3-CTP. And then the labeled cRNA was hybridized to individual arrays

at 65 °C for 17 h using Agilent’s Gene Expression Hybridization Kit. After washing,

the arrays were scanned at PMT levels 350 setting using GenePix 4200AL Scanner

(Molecular Device lnc.), the Agilent Feature extraction software (V.9.5.1) was used

to automatically find and place microarray grids, reject outlier pixels, accurately de-

termine feature intensities and ratios, flag outlier pixels, and calculate statistical

confidences.

Microarray data analysis

The raw data was processed with GeneSpring version 7.0 and 10.0 (Agilent). The sam-

ple quality control was based on the Pearson Correlation. The sample was excluded

when its average correlation with other samples less than 0.8. If the scanned intensity

was less than 5.0 for a probe, it was transformed to 5.0. A per chip (within) array

normalization was performed using 50 percentile values of all the probe values in the

array. Per gene (between) array normalization was conducted using either the median

value of a gene across all samples (median based normalization) or relative control

samples (control based normalization) in the experiment. Probe features were first fil-

tered by “present” or “absent” flags using the Agilent Feature Extraction 9.5.1 software.

Probes were included for further analyses when they present in more than 80% samples

of all the arrays. Data were subsequently Log (base 2) transformed for statistical ana-

lyses. Initial feature filtering was conducted by One-Way ANOVA unequal variance

with two-tail P < 0.05.

Feature selection

Base on the comparation results of different feature selection methods in our previous

study [12], Support Vector Machine - Recursive Feature Elimination (SVM-RFE) [13]

and InfoGain were used for feature selection. SVM-RFE is an algorithm for feature se-

lection by using SVM in a wrapper-style which is much more robust to data overfitting

than other methods [8]. Weka program was used for the rest of methods [14].

Classification algorithms and error estimation

LibSVM algorithm was performed to do classification. The more details about the dif-

ferent classification algorithms described elsewhere [12]. Ten-fold cross-validation with

10 iterations was conducted to estimate the cross-validation error. The classification

and prediction accuracy was also caculated for all the classes and samples.
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Results
Development of predicitve models for distinguishing metals from non-metal toxicants

In order to build predictive models to distinguish metals from non-metal toxi-

cants, microarray experiements were developed using Agilent Rat Whole Genome

Array (4X44k). Cultured primary rat hepatocytes were treated in triplicate with

distinctive 105 compounds including 9 metals as well as respective vehicle con-

trols for 24 h, subsequently RNAs were isolated for array hybridization. At least

four biological replicates for each compound were used and a total of 531 array

samples were generated. The experiments were conducted in2 years. In year

2007, total 168 array samples were produced, and 363 array samples were hybrid-

ized in year 2008. For each dataset, all the compounds were included. The 2007

dataset (Dataset 1) contained 12 metal samples and 156 non-metal samples, and

the 2008 dataset (Dataset 2) contained 30 metals samples and 333 non-metal

samples. To construct reliable models, we have trained on 2007 dataset and built

predictive models to distinguish metal samples from non-metal samples in 2008

dataset and vice versa.

A total of 25 probe sets (features) were selected for predictive model building.

Features were first filtered by comparing metal samples and non-metal samples

as well as comparing metal samples and metal related control samples using 1.5

fold change and a T-test with a cutoff p-value less than 0.05 for both datasets as

well as combined datasets. Only overlapped filtering passing both comparisons

were further for model constructions. So, three sets of probes (features) were

produced: features based on Dataset 1 (Feature 1), features based on dataset 2

(Featue 2) and features based on combined dataset (Combined features). Feature

1 and 2 were used to train on Dataset1 and Dataset 2 repectively and combined

fetures were employed to train both Dataset 1 and Dataset 2 separately. These

features were subjected to two further feature selection methods: Support Vector

Machine Recursive Feature Selection (SVM-RFE) and InfoGain algorithms. A

libSVM classification algrothm was then used to build predict models based on

two classes: metal and non-metal classes and 10 fold cross- validation was used

to evaluate the model accuracy. As illustrated in Fig. 1, the overall cross valid-

ation accuracy for three sets of features at both datasets could reach over 96%.

No matter what type of datasets and features were used, the feature selection

method SVM-RFE usually achieved higher accuracy than InfoGain method, and

this has been validated elsewhere [8, 15, 16]. The feature sizes varied to obtain

the highest accuracy depending on the feature types, feature selection methods as

well as training datasets. For instance, for training Dataset 1 using Feature 1,

SVM-RFE and InfoGain methods reached their highest accuracy at the feature

size 50 and 150 respectively (Fig. 1a), whereas the numbers were 25 and 100 for

SVM-RFE and InfoGain (Fig. 1b). By comparing the averaged accrucy between

two training datasets, the accuracy of Dataset 2 was slightly higher than Dataset

1. By averaged accuracy using Feature 1 or combined features to training the

same Dataset 1 or 2 was comparable. The highest accuracies were more than 99.00% for

both training datasets using three sets of features, indicating the gene expression profiles

possess the protential ability to distinguish metal from non-metal toxciants.
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Prediction of metal from non-metal toxicants using independent datasets

We applied our training models to predict metal samples and non-metal samples. To test

the reliability of our models, the training datasets and prediction datasets were different.

We used Dataset 1 trained model to predict Dataset 2 or vice versa. Since higher training

accuracy might not always result in higher prediction accurcy, we built a series of models

to perform the prediction. As shown in Fig. 2, whaterver training models or datasets were

used for prediction, the feature selection method SVM-FRE was overall better prediction

accuracy than InfoGain, which was consistent with the training accuracy. Using Feature 2

trained Dataset 2 as model to predict Dataset 1, a obviously higher prediciton ac-

curacy was shown in Fig. 2a with an accuracy at least 98.00% for the SVM-RFE

feature selection method, and the highest accuracy could reach over 99.00% using

150 features resulted from SVM-RFE. Similarly, we also observed a surprisingly

higher prediciton accuracy when using combined features trained model to predict

Dataset 1, and the smallest prediction accuracy present in Fig. 2b was 98.81% and

the highest accuracy was 99.40% with only one sample miss-classified based on the

SVM-RFE feaure selection.

The averaged prediction accuracy using Dataset 1 trained model to predict Dataset 2

was much lower than using Dataset 2 trained model to predict Dataset 1. Nevetheless,

we still saw a reasonable high predcition accuracy for predicting Dataset 2 using either

Feature 1 (Fig. 2c) or combined features (Fig. 2d). The highest accuracy using combined

feaures trained Dataset 1 model to predict Dataset 2 could reach over 98.90% (Fig. 2d).

Our results suggest that our extablished models can be used to predict indpendent

datasets and yield a convincing accuracy.

Fig. 1 Development of predicitve models for distinguishing metals from non-metal toxicants. a. SVM-
RFE and InfoGain methods reached their highest accuracy at the feature size 50 and 150 respectively
in 2007 dataset (Dataset 1). b SVM-RFE and InfoGain methods reached their highest accuracy at the
feature size 25 and 100 respectively in 2007 dataset (Dataset 1). c SVM-RFE and InfoGain methods
reached their highest accuracy at the feature size 25 and 10 respectively in 2008 dataset (Dataset 2).
D Both SVM-RFE and InfoGain methods reached their highest accuracy at the feature size 25 in 2008
dataset (Dataset 2)
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The best predictive model and gene signature for discrimination of metal from non-

metal toxicants

To search for the best predcitive model using minimum probe sets, we conducted fur-

ther training and predcitions based on our above comparisons. We only focused on

using combined features trained Dataset 2 to predict Dataset 1, because its averaged

prediction accuracy was higher than that of trained Dataset 1. Also, using combined

features resulted from more samples should be more reliable and better for the future

application to predict unknown samples. Since only one sample was misclassified using

the 25 probe sets based on combined features trained Dataset 2 to predict dataset1 after

SVM-RFE feature selection, we then thought whether we could find less than 25 probe

sets for the prediction. As shown in Table 1, the feature number from 14 to 16 showed 0

error for classifing Dataset 2, and at most 1 error for predicting Dataset 1. Meanwhile, a

cross validation for the combined dataset was proceeded to see if we could correctly clas-

sify the samples in the dataset. Interesingly, using 15 probe sets based on SVM-RFE, the

cross validation error for both Dataset 2 and combined dataset were 0, and the prediction

error for Dataset 1 was also 0. However, if increasing probe set number to 16 or more,

they were not all 0, thus these 15 probe sets could be considered as a efficient signature

(Table 1) to descriminate metal from non-metal toxicants.

Gene expression pattern and functional analysis of the gene signature that discriminates

metal from non-metal toxicants

We then tried to understand the underlying mechanism of how these 15 probe sets

(genes) could distinguish metal from non-metal toxicants. To achieve this goal, we

Fig. 2 Prediction of metal from non-metal toxicants using independent datasets. a SVM-RFE feature
selection method was overall better prediction accuracy than InfoGain in 2007 dataset (Dataset 1). b A
higher prediciton accuracy was observed when using combined features trained model to predict 2007
dataset (Dataset 1). c A higher predcition accuracy was observed for predicting 2008 dataset (Dataset 2)
using Feature 1. d A higher predcition accuracy was observed for predicting 2008 dataset (Dataset 2) using
combined feaures
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performed a two-way hierarchical analysis using averaged metal and metal specific con-

trol samples based on the 15 genes.

From vertically view, as what we expected, the dendrogram (Fig. 3) divided into two

big clusters: the control formed one cluster and all the metals formed the other cluster.

In the metal cluster, Tungsten alone was in a separated group and all the other metals

were in another group. Arsenic, Copper and Zinc fell into a subgroup, indicating that

these three metals have more similar gene expression patterns. Cadmium and Chro-

mium clustered together to form a subgroup (Fig. 3).

From horizontally view, the genes were clearly clustered into two groups (Fig. 3).

Six genes formed one cluster (Cluster 1), including adenosine A2b receptor

(ADORA2B), family with sequence similarity 70, member B (FAM70B), family with

sequence similarity 174, member B (FAM174B), KH domain containing, RNA bind-

ing, signal transduction associated 3 (KHDRBS3), Type 3 iodothyronine deiodinase

(DIO3) and solute carrier family 1 (neutral amino acid transporter) member 5

(SLC1A5). The other 9 genes formed another cluster (Cluster 2), including

TC632928, reticulon 2 (RTN2), cadmium-inducible gene (CDIG2), family with se-

quence similarity 12, member B (epididymal) (FAM12B), aryl hydrocarbon receptor

nuclear translocator (ARNT), immunoglobulin heavy chain 6 (heavy chain of IgM)

(IGH-6), AHNAK nucleoprotein 2 (AHNAK2), TC596871 and S100 calcium binding

protein G (S100G). Interestingly, the 6 genes in Cluster1 were commonly down-

regulated by all the metals versus control. For instance, the gene FAM70B was

downregulated by all the metals, ADORA2B was downregulated by all the metals

except Lead, KHDRBS3 was almost repressed by all the metals except Selenium,

and DIO3 was downregulated by all the metals except it was induced by Tungsten.

In contrast, the 9 genes in Cluster 2 were largerly upregulated by all the metals.

For example, the gene TC632928 was upregulated by all the metals. RTN2 and

SG100G whose expression was elevated by all the metals except they were

Table 1 The best predictive model and gene signature for discrimination of metal from non-metal
toxicants

No. of
probe sets

Cross validation error Prediction error
(D2 to D1)

Probe set ID

D2 C

1 8 8 9 A_44_P915194(FAM174B)

5 4 5 8 + A_42_P546708(KHDRBS3), A_44_P1034910(RTN2),
A_42_P537091(FAM12B), A_43_P11261(AHNAK2)

7 3 4 5 + A_44_P593735(TC632928), A_42_P829301(SLC1A5)

8 3 3 4 + A_44_P427814(IGH-6)

10 2 3 2 + A_42_P537051(FAM70B), A_44_P1005988(CDIG2)

14 0 1 1 + A_43_P11561(ARNT), A_44_P1011716(ADORA2B),
A_43_P11444(S100G), A_44_P608892(TC596871)

15 0 0 0 + A_43_P11861(DIO3)

16 0 1 1 + A_44_P175654

18 2 1 1 + A_44_P1040207, A_44_P426107

25 2 2 1 + A_43_P21000, A_44_P299835,A_44_P1040926
A_44_P751206
A_44_P961496
A_44_P471440
A_43_P21816
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repressed by Tungsten. AHNAK2 was induced by all the metals except Chromium,

and IGH-6 was alomst upregulated by all the metals except Cadmium. Our results

indicated that the metals shared an interesting mechanism through commonly

regulating a list of genes, which might explain why the metals could be distin-

guished from non-metal toxicants. One gene called cadmium-inducible gene

(CDIG2) was indeed to be induced by Cadmium, but also induced by almost all

other metals except Nickel and Selenium. The confirmation of early finding indi-

cated that the microarray data quality is good.

According to Gene Ontology analysis, eight genes including included ADRA2B,

DIO3, SLC1A5, FAM70B, FAM174B, FAM12B, RTN2 and S100G out of these 15

markers belong to membrane part. This very high enrichment of membrane pro-

teins encoded genes in the markers, indicating that the metals was distinguished

from non-metal toxicants by mainly targeting membrane proteins. Canonical path-

way analysis turned out a couple of genes invovled in multiple pathways (Table 2).

The upregaulted gene ARNT is invovled in Hypoxia Signaling in the Cardiovascular

System, Renal Cell Carcinoma Signaling, VEGF Signaling, HIF1α Signaling, Aryl

Hydrocarbon Receptor Signaling and Xenobiotic Metabolism Signaling pathways.

The upregulated gene S100G particiapaptes in VDR/RXR Activation pathway. The

downregulated gene ADORA2B plays a role in cAMP-mediated Signaling and G-

Protein Coupled Receptor Signaling. The downregulated gene S100G contributes to

TR/RXR Activation pathway. Through the analysis of Ingenuity Physiological Sys-

tem Development and Function, the above four genes: ADORA2B, ARNT, DIO3

Fig. 3 Heatmap shows the gene expression pattern and functional analysis of the gene signature that
discriminates metal from non-metal toxicants
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and S100G have been well studied and found to be involved in different physio-

logical processes and the details were summerized in Table 3.

Identification of gene markers to separate individual metals

Since we could successfully discriminate metal from non-metal toxicants, whether indi-

vidual metals could be separated from each other by gene expression profiles. For this

purpose, we used the SVM-FRE feature selection method to train only metal samples in

Dataset 2 to predict metal samples in Dataset 1 based on libSVM classification algorithm.

The training accuracy and predicton accuracy were tested using the most 25 highly

ranked features. As shown in Fig. 4, When the feature number was increased, both the

training accuracy and prediction accuracy for Dataset 1 were increased. When the feature

number was up to 7 and above, the training accuracy reached 100%. When the feaure

number grew to 10 and above, the prediction accuracy also reached 100%, and there was

no single sample that was mis-predicted. Therefore, it was comfirmed that using the 10

probe sets could accurately predict 9 individual metals.

Table 2 Pathway analysis of 15 gene markers

Ingenuity Canonical Pathways -Log(P-value) Ratio Molecules

Hypoxia Signaling in the Cardiovascular System 1.45E00 1.43E-02 ARNT

Renal Cell Carcinoma Signaling 1.41E00 1.37E-02 ARNT

VDR/RXR Activation 1.36E00 1.25E-02 S100G

TR/RXR Activation 1.33E00 1.06E-02 DIO3

VEGF Signaling 1.33E00 1.03E-02 ARNT

HIF1α Signaling 1.28E00 9.52E-03 ARNT

Aryl Hydrocarbon Receptor Signaling 1.12E00 6.37E-03 ARNT

cAMP mediated Signaling 1.07E00 6.1E-03 ORA2B

G-Protein Coupled Receptor Signaling 9.61E-01 4.59E-03 ORA2B

Xenobiotic Metabolism Signaling 8.56E-01 3.4E-03 ARNT

Table 3 Physiological functional anlaysis of 15 gene markers

Category P-value Molecules

Cardiovascular System Development and Function 5.75E-04-2.57E-02 ADORA2B, ARNT

Tissue Morphology 5.75E-04-1.15E-03 ADORA2B, ARNT

Embryonic Development 1.15E-03-5.17E-03 S100G, ARNT

Hematological System Development and Function 2.3E-03-2.3E-03 ADORA2B

Organ Morphology 2.3E-03-7.46E-03 ARNT

Reproductive System Development and Function 2.87E-03-3.9E-02 S100G, ARNT

Endocrine System Development and Function 3.45E-03-3.35E-02 DIO3, ARNT

Tissue Development 5.17E-03-5.17E-03 ARNT

Skeletal and Muscular System Development and Function 6.89E-03-6.89E-03 ADORA2B

Digestive System Development and Function 7.46E-03-7.46E-03 ARNT

Hepatic System Development and Function 7.46E-03-3.12E-02 ARNT

Organismal Survival 1.95E-02-1.95E-02 DIO3, ARNT

Organismal Development 3.4E-02-3.4E-02 DIO3

Organ Development 3.9E-02-3.9E-02 ARNT

Yu et al. BMC Bioinformatics 2020, 21(Suppl 9):239 Page 9 of 14



Gene expression pattern and functional analysis of the gene markers that distinguish

individual metals

To check how these two probe sets behaved in these 9 metals, we performed hierarch-

ical clustering on both rows and columns across averaged metal and metal related con-

trol samples. As demonstrated in Fig. 5, the gene expression pattern of these 10 genes

regulated by Tungsten was significantly different from other metals. Tungsten was the

strongest regulator for the 10 gene markers. All these 10 markers’ expression was

Fig. 4 Identification of gene markers to separate individual metals. Both the training accuracy and
prediction accuracy for 2007 dataset (Dataset 1) were increased with the the feature number increase.
When the feature number was up to 7 and above, the training accuracy reached 100%

Fig. 5 Heatmap shows the gene expression pattern and functional analysis of the gene markers that
distinguish individual metals
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evidently affected by Tungsten. Compared to control, half genes were significanly up-

regulated and half genes were significantly downregulated by Tungsten.

Interestingly, it looked that we could find specific gene markers for almost all the

metals. The gene zinc finger protein 467 (ZNF467) was downregaulted much more by

Copper than any other metals. The gene chromosome 10 open reading frame

11(C10ORF11) was only significantly downregulated by Chromium but was up or mar-

ginally downregulated or remained no change by other metals. TC6340110’s expression

was elevated the highest by Lead. WD40 and FYVE domain containing 1 (WDF1)‘s ex-

pression was repressed the highest by Cadmium. Hydroxysteroid (11-beta) dehydrogen-

ase 2 (HSD11B2) was induced the strongest by Zinc. Glutathione S-transferase mu 2

(GSTM2) was only strongly downregulated by Tungsten. C0569686 was only signifi-

cantly upregulated by Nickel. The gene amphiregulin (AREG) was strongly repressed by

Arsenic and Lead, and Arsenic was stronger than Lead. Selenium had an overall weak

regulation for these 10 gene markers, and it clustered in a subgroup with control. It

was hard to find a specific marker for Selenium.

Well studied genes in the 10 gene marker list included GSTM2, HSD11B, AREG, C8B

etc. Their functions are summarized in Tables 3 and 5. For instance, the gene GSTM2

has been found to be involved in multiple pathways, such as Glutathione Metabolism,

PXR/RXR Activation, Metabolism of Xenobiotics by Cytochrome P450, Aryl Hydrocar-

bon Receptor Signaling, NRF2-mediated Oxidative Stress Response, LPS/IL-1 Mediated

Inhibition of RXR Function and Xenobiotic Metabolism Signaling pathways (Table 4).

HSD11B participates in C21-Steroid Hormone Metabolism, and Androgen and Estro-

gen Metabolism pathways (Table 4), as well as in the physiological processes such as

Connective Tissue Development and Function, Endocrine System Development and

Function, Organ Morphology, Tissue Development, Skeletal and Muscular System De-

velopment and Function, Tissue Morphology, Cardiovascular System Development and

Function and Nervous System Development and Function (Table 5).

Discussion
Previous study has used toxic genomics strategies to predict the toxicity of various

compounds based on possible similar toxicity and potential molecular mechanisms of

various chemicals [17]. For example, gene expression profiling has been successfully

Table 4 Pathway analysis of 15 gene markers

Ingenuity Canonical Pathways -Log(P-value) Ratio Molecules

C21-Steroid Hormone Metabolism 2.07E00 1.41E-02 HSD11B2

Complement System 1.84E00 2.78E-02 C8B

Glutathione Metabolism 1.65E00 1.02E-02 GSTM2

PXR/RXR Activation 1.54E00 1.16E-02 GSTM2

Androgen and Estrogen Metabolism 1.51E00 6.99E-03 HSD11B2

Neuregulin Signaling 1.43E00 1E-02 AREG

Metabolism of Xenobiotics by Cytochrome P450 1.27E00 4.76E-03 GSTM2

Aryl Hydrocarbon Receptor Signaling 1.24E00 6.37E-03 GSTM2

NRF2-mediated Oxidative Stress Response 1.14E00 5.41E-03 GSTM2

LPS/IL-1 Mediated Inhibition of RXR Function 1.1E00 4.88E-03 GSTM2

Xenobiotic Metabolism Signaling 9.73E-01 3.4E-03 GSTM2
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applied to the classification of rodent poisons and to distinguish between hepatotoxic

and non-hepatotoxic compounds. Similarly, transcriptional profiles have also been used

to predict environmental safety and industrial chemicals associated with cancer [18]. In

this study, we established models to predict non-metal and metal contamination by

identifying gene markers based on gene expression profiles.

In vitro cultured cells are widely used because of their clear background, consistent

source, easy culture, easy control of culture conditions, and good reproducibility. Chip

technology can quickly and efficiently screen differential genes. Non-metal and metal

compounds can cause different gene expression profiles in cells. In this study, we

spent2 years to create two datasets, as two models, using probes to generate three fea-

ture sets that are mutually validated.

We applied two selection methods: SVM-RFE and InfoGain, and then used libSVM’s

classification algorithm to build predictive models: metal and non-metal. Cross-

validation to assess their accuracy is quite high, indicating that gene expression profiles

can distinguish metals from non-metallic poisons.

By cross validating the sample classification of the corrected data sets, we found that

based on the 15 probe sets, the cross-validation error for Dataset 2 and the joint dataset

is 0. The prediction error of Dataset 1 is also 0. Therefore, these 15 probe sets can be a

good signature to descriminate metal from non-metal toxicants.

In this study, we analyzed the expression profiles of metal and non-metal genes. The

metal gene expression profile has 8 genes belonging to the membrane, indicating the

metal is mainly targeted to membrane proteins which is different from non-metals.

Then, we analyzed each gene expression profile of a metal, in addition to Selenium,

specific gene markers were identified for another 8 metals. Based on the libSVM classi-

fication algorithm, the SVM-FRE feature selection method was chose to separate indi-

vidual metal, and this method has been confirmed with better performance than other

method [8, 15, 16].

Based on the classification system and gene expression profiling, these 10 genes have

potential applicability in predicting what class a new compound belongs to when a gene

expression profile is available with the probe sets. In general, genes selected as

Table 5 Physiological functional anlaysis of 15 gene markers

Category P-value Molecules

Connective Tissue Development and Function 4.32E-04-3.53E-02 HSD11B2, AREG

Endocrine System Development and Function 4.32E-04-4.31E-03 HSD11B2

Organ Morphology 4.32E-04-2.59E-03 HSD11B2, AREG

Reproductive System Development and Function 4.32E-04-1.8E-02 AREG

Tissue Development 4.32E-04-3.53E-02 HSD11B2, AREG

Organ Development 8.63E-04-7.74E-03 AREG

Skeletal and Muscular System Development and Function 1.29E-03-3.53E-02 HSD11B2, AREG

Tissue Morphology 1.29E-03-4.74E-03 HSD11B2, AREG

Embryonic Development 3.02E-03-3.02E-03 AREG

Tumor Morphology 2.69E-02-4.61E-02 AREG

Cardiovascular System Development and Function 2.73E-02-2.73E-02 HSD11B2

Nervous System Development and Function 2.86E-02-4.41E-02 HSD11B2, AREG

Hair and Skin Development and Function 2.98E-02-2.98E-02 AREG
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biomarkers show similar expression patterns [19]. The gene expression pattern of these

10 genes regulated by Tungsten was significantly different from other metals. All these

10 genes’ expression was evidently affected by Tungsten, which significantly unregu-

lated half of the genes and significantly down regulated the other half. Recently years,

emerging studies show that tungsten is an environment toxicant, not only alone but

also in combination; however, its potential risk of exposure on human is still unclear

[20]. So, our findings support further investigation into the toxicities of tungsten and

its potential molecular mechanism.

Our experiments results indicated that the 10 genes could be used to accurately pre-

dict 9 individual metals. Moreover, we identified some pathways were involved in the

association with the exposures to toxic metals. However, the precise role of these genes

in most pathways is still unclear and warrants further investigation, our findings also

need to be verified by other well-designed cohort studies.

Conclusions
This study demonstrates that using a microarray classifier analysis, not only can create

diagnostic classifiers for predicting an exact metal contaminant from a large scale of

contaminant pool with high prediction accuracy, but also can identify valuable bio-

markers to help understand the common and underlying toxic mechanisms induced by

metals. Our findings highlight a potential utility of gene markers of toxic metals for

public health assessment, prevention, and precision health in the future.
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