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Abstract

Background: Automatic segmentation and localization of lesions in mammogram
(MG) images are challenging even with employing advanced methods such as deep
learning (DL) methods. We developed a new model based on the architecture of the
semantic segmentation U-Net model to precisely segment mass lesions in MG images.
The proposed end-to-end convolutional neural network (CNN) based model extracts
contextual information by combining low-level and high-level features. We trained the
proposed model using huge publicly available databases, (CBIS-DDSM, BCDR-01, and
INbreast), and a private database from the University of Connecticut Health Center
(UCHC).

Results: We compared the performance of the proposed model with those of the
state-of-the-art DL models including the fully convolutional network (FCN), SegNet,
Dilated-Net, original U-Net, and Faster R-CNN models and the conventional region
growing (RG) method. The proposed Vanilla U-Net model outperforms the Faster
R-CNN model significantly in terms of the runtime and the Intersection over Union
metric (IOU). Training with digitized film-based and fully digitized MG images, the
proposed Vanilla U-Net model achieves a mean test accuracy of 92.6%. The proposed
model achieves a mean Dice coefficient index (DI) of 0.951 and a mean IOU of 0.909
that show how close the output segments are to the corresponding lesions in the
ground truth maps. Data augmentation has been very effective in our experiments
resulting in an increase in the mean DI and the mean IOU from 0.922 to 0.951 and 0.856
to 0.909, respectively.

Conclusions: The proposed Vanilla U-Net based model can be used for precise
segmentation of masses in MG images. This is because the segmentation process
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incorporates more multi-scale spatial context, and captures more local and global
context to predict a precise pixel-wise segmentation map of an input full MG image.
These detected maps can help radiologists in differentiating benign and malignant
lesions depend on the lesion shapes. We show that using transfer learning, introducing
augmentation, and modifying the architecture of the original model results in better
performance in terms of the mean accuracy, the mean DI, and the mean IOU in
detecting mass lesion compared to the other DL and the conventional models.

Keywords: Mammograms (MGs), Breast cancer, Deep learning (DL), Convolutional
neural networks (CNNs), Machine learning (ML), Computer-aided detection (CAD),
U-Net, Vanilla U-Net, SegNet, Ground truth maps (GTMs), Detection, Semantic
pixel-wise segmentation, Localization, Pre-processing, Region growing

Background
Breast cancer is the second most common cause of cancer death among women in the
United States [1]. According to the American cancer society, the female breast cancer
death rate declined by 38% from its maximum in 1989 to 2014 (avoiding about 300,000
deaths) [1]. In 2012, the estimated number of deaths among females in the USA is 43,909
out of 293,353 of all cancer deaths. Moreover, in 2017, it is estimated that there will be
40,610 breast cancer deaths in the USA [1, 2]. This decline in mortality is partially due
to the advances in mammography screening and conventional computer-aided diagnosis
models (CAD) [3, 4]. In the last few years, deep learning (DL) models and, in particu-
lar, convolutional neural networks (CNNs) have achieved state-of-the-art performance
for image classification, lesion detection for mammography [5–7], and for medical appli-
cations in general [8]. Various approaches have been proposed to further improve the
accuracy of deep CNNs [6, 7].
In a recent survey [9] on conventional CAD models and DL classification models for

mammograms (MGs) images, it has been shown that conventional models have limita-
tions in classifying MG images. Recent research studies in [4, 10–12] present different
conventional models to detect lesions in MG images. Most of the conventional models
depend on a pre-requisite set of local hand-crafted features that cannot be generalized to
work on a new data-set. Conventional CAD models consider limited feature types (e.g.
texture features, shape features, and grey level intensity features), which require expert
knowledge for selecting them [4, 9, 11, 12]. Poor feature extraction and selection cause
challenge to build a successful classifier [4, 6, 7, 9–12]. However, the state-of-the-art
CNNs, extract global features from MG images [6, 7, 13]. In CNNs, the first layers of the
network capture basic coarse features such as oriented edges, corners, textures, and lines
while subsequent layers construct complex structures or global features [5].
Despite the initial success of DL models for the segmentation of lesions in medical

images as general, the segmentation of lesions in mammography using DL methods has
not been studied thoroughly. A few studies have used a CNN-based model for lesion seg-
mentation [14, 15] in MGs and more research need to be done in this topic [6–8]. Few
studies have employed CNN-based models for lesion detection and localization [14, 16–
28]. These detectors provide bounding boxes (BBs) indicating regions of interests (ROIs),
not real lesion segments. The region-based CNN (R-CNN)models [29] and its faster vari-
ants, Fast R-CNN [30], and Faster R-CNN [31] have recently become more popular for
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localization tasks in mammography [18–22]. Although these detectors offer compelling
advantages, training R-CNN is time-consuming and memory expensive. In R-CNN [29],
the whole process involves training three independent models separately without much-
shared computation: 1- the CNN for feature extraction, 2- the top SVM classifier for
identifying ROIs’ and 3- the regression model for tightening region BBs. The R-CNN [29]
uses the Selective Search method [32] to first generate initial sub-segmentations and gen-
erate candidate regions, then it uses the greedy algorithm to recursively combine similar
regions into larger ones, and lastly uses the generated regions to produce the final can-
didate region proposals. These region proposals lower down the number of the potential
BBs [18, 19].
Instead of extracting CNN feature vectors independently for each region proposal, the

Fast R-CNN [30] aggregates them into one CNN forward pass over the entire image and
the region proposals share this feature matrix. Then the same feature matrix is used for
learning the object classifier and the BB regressor. In R-CNN and Fast R-CNN, the region
proposals are created using the Selective Search method, which is a slow process that
is found to be the bottleneck of the overall detection and the localization process. The
Faster R-CNN [31] is a better approach that constructs a single unified model composed
of region proposal network (RPN) and Fast R-CNNwith shared convolutional feature lay-
ers. The RPN is a fully convolutional network (FCN) that is trained to generate region
proposals, which are then used by the Fast R-CNN for detection. The time cost of gen-
erating region proposals is much smaller in the case of RPN than Selective Search, as
RPN shares the most computation with the object detection network using the shared
convolution layers [30, 31].
The mask R-CNN for simultaneously detecting and segmenting object instances in an

image is proposed in [33]. This model extends the Faster R-CNN model by adding a
branch which is a FCN for predicting an object mask in parallel with the existing branch
for BB recognition. A mass detector has been refined using a cascade of R-CNN and RF
classifiers and an additional stage to eliminate false positives [21].
Patch-based CNNs [16, 17, 23, 34] were also proposed to detect masses. In [16], every

breast image is divided into patches, and each patch is tested with the CNN model indi-
vidually. The final detection of lesions in each case is based on the overall scores of all the
patches. In [25–27] the famous YOLO CNN (You Only Look Once) [35] is used for breast
mass classification and localization. YOLO [35] is a single end-to-end CNN that predicts
BBs and class probabilities directly from full images in one evaluation.
Recently, the FCN and its variant improved models as U-Net [36], SegNet [37], Dilated-

Net [38], have yielded outstanding results for semantic segmentation of bio-medical
images and natural images [6, 13, 14]. These semantic segmentation networks are based
on encoding (convolutional) and decoding (de-convolutional) layers. These approaches
avoid using the fully connected layers (FCLs) of CNNs to convert the image classification
networks into image semantic segmentation networks.
In this study, we developed a new model based on the architecture of the semantic

segmentation U-Net model [36] to precisely segment mass lesions in MG images. In the
proposed architecture, we used a pre-trained encoder layers and we added batch normal-
ization layers (BN) [39], and dropout layers [40]. U-Net [36] is an end-to-end model that
takes an image, find automated features in each layer, detects, and segments breast lesion
using a single model and a unified training process. We trained the proposed Vanilla U-
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Net model using large public data-sets (CBIS-DDSM [41], BCDR-01 [42], and INbreast
[43]). We applied data augmentation (Aug.) to the training images to present the lesions
in many different sizes, positions, angles. To enhance the contrast of the MGs, we applied
image pre-processing before training the proposedmodel.We compared the performance
of the proposed segmentation model in detecting lesions with those of the state-of-the-
art Faster R-CNN [18], the conventional region growing (RG) [44], FCN [45], Dilated-Net
[38], original U-Net [36], and SegNet [37] models.

Material andmethods
Databases

We conducted our experiments on four databases, CBIS-DDSM [41], INbreast [43],
UCHCDM [46], and the BCDR-01 [42]. CBIS-DDSM [41] is a digitized screen-filmmam-
mography (SFM) database that is a subset of the digitized DDSM database [47] with
updated lesion segmentation and BBs, and verified pathology.We used 1,696 images from
the CBIS-DDSM database that have mass lesions. BCDR-D01 is an SFM repository with
64 patients and 246MGs [42]. In total, we used 136mass segmentation from this database
to conduct our experiments. The INbreast is another public database forMGswhich com-
prises fully field digital mammography (FFDM) images [43]. It has a total of 410 images,
and we used 116 MGs that are annotated for masses. UCHCDM is a private database of
FFDM images collected from the University of Connecticut health center (UCHC) [46,
48]. In total, the UCHCDM database consists of 173 patients with 1,340 FFDM images.
We selected 59 cases out of the 173 that have mass lesions, with a total of 118 MGs with
mass annotations. The CBIS-DDSM, INbreast, and UCHCDM data-sets include separate
files that show region of interest (ROI) annotations for the abnormalities, provided by
radiologists [6, 7].
We combined these databases and generated a new data-set containing MGs with dif-

ferent resolutions (see supplementary Fig.1, Additional file 1). This new data-set provides
mass lesions of different sizes, shapes, and margins. All images containing suspicious
areas have associated pixel-level ground truth maps (GTMs) indicating the true loca-
tions of suspicious regions (see supplementary Fig.2, Additional file 1). The total number
of images used in this combined data-set is 2,066 and each image has its corresponding
GTM. We divided the images into a training data-set of 1,714 images, validation data-set
of 204 images, and test data-set of 148 images. Images reserved for testing were not used
in the training and the validation data-set. Images that come from the same patient were
not split across the training and test data-sets.

Pre-processing

Pre-processing of MGs is an essential step before applying DL methods. Its main goal is
to enhance the characteristics of MGs by applying a set of filters to improve the perfor-
mance of the downstream analysis. First, we detect the breast boundary for removing a
big portion of the black background [49, 50]. After that, we apply the adaptive median
filter (AMF) [51] to remove any existing noises. Then, we employ the contrast limited
adaptive histogram equalization (CLAHE) [52] to enhance the contrast of the MGs [6, 49,
50], see supplementary Pre-processing subsection, Additional file 1. The superior perfor-
mance of the CLAHE filter compared to other filters are shown in [6, 53]. All full MGs
are converted into png format and re-sized to 512×512.
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Data augmentation

In this study, we adopted augmentation techniques to increase the size of our training
data-set to avoid overfitting the model. We adopted the augmentation techniques used in
[54–56]. We generated augmented images by image rotation in a range of ± 10 degrees,
left-right flips, translate images left and right by 10%, translate images up and down by
10%, and zoom in and out by 20%. Themass segmentationmaps are represented by binary
images that are cropped, re-sized and augmented in the same way as their corresponding
MGs. All pixels in the GTMs are labeled as belonging to background or breast lesion
classes. The size of the generated augmented data-set is ten times larger than the size of
the original data-set.

Semantic segmentation using U-Net

The U-Net is a popular end-to-end encoder-decoder network for semantic segmenta-
tion that is originally invented for bio-medical image segmentation tasks [36]. U-Net [36]
extends the FCN [45] with a U-shape architecture, which allows features from shallower
layers to combine with those from deeper layers. U-Net consists of a contracting path to
capture features and an asymmetric expanding path that enables precise localization and
segmentation of pixels. This architecture has a U shaped skipping connections that con-
nect the high-resolution features from the contracting path to the up-sampled outputs of
expanding path. After collecting the required features in the encoding path, the decoding
path performs nonlinear up-sampling of the feature maps before merging with the skip
connections from the encoding path followed by two 3×3 convolutions, each followed by
an element-wise rectified linear unit (ReLU). The skip concatenation allows the decoder
at each stage to learn back relevant features that are lost when pooled in the encoder. The
final output is obtained by passing the result through a pixel-wise Softmax classifier after
the last convolution layer, which independently assigns a probability to each pixel.

Architectural modifications

We have modified the original U-Net model [36] to improve its performance for the task
of segmenting lesions. We added BN layers [39], dropout layers [40], and increased the
number of convolution layers. We also trained the proposed model with augmented data-
set. In our implementation, we used a pre-trained VGG-16 model [57] on ImageNet as
the encoder portion of the proposed Vanilla U-Net model and thus can benefit from the
features created in the encoder. Studies have shown that transfer learning techniques from
one domain to another are very effective to boost the performance of the current task [6,
7]. VGG-16 [57] consists of seven convolutional layers, each followed by a ReLU activation
function, and five max-polling operations. The first convolutional layer of the VGG-16
model produces 64 channels and then, as the network deepens, the number of channels
doubles after eachmax pooling operation until it reaches 512. On the following layers, the
number of channels does not change. To construct the encoder part of the Vanilla U-Net,
we removed the last FCLs of the VGG-16 model and replace themwith two convolutional
layers of 512 channels that serves as a bottleneck part of the network, connecting the
encoder with the decoder.
Figure 1 shows our modified model. The encoding path consists of five convolutional

layers which perform convolution with a filter bank to produce a set of feature maps. A
BN layer is added between the convolution layer and the ReLU layer. Batch normalization
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Fig. 1 The U-Net architecture consists of convolutional encoding and decoding units that take an image as
input and produce the segmentation feature maps with respective pixel classes. The yellow arrows show the
skip connections between the layers

[39] prevents internal covariate shifts as data are filtered through the network, and it
reduces the training time, prevents data overfitting, helps stack more layers, and generally
increases the performance of deep CNNs.We added drop-out layers of 0.5 after each con-
volutional layer to help regularize the networks [40]. Following that, max-pooling with
a 2×2 window and stride 2 is performed and the resulting output is sub-sampled by a
factor of 2. The max-pooling layer reduces the dimensionality of the resulting output,
enabling the further collection of features. To construct the decoder, we used transposed
convolutions layers that doubles the size of the feature maps while reducing the number
of channels by half. The output of a transposed convolution at each level is then concate-
nated with an output of the corresponding part of the decoder at the same level. Also, to
keep the size of the output map the same as the size of the original input MGs, a padded
convolution is applied to keep the dimensions consistent across concatenation levels.
Our data-set has imbalanced data representation. In an imbalanced representation,

classes are represented by significantly different numbers of pixels, which makes the
learning algorithm biased towards the dominating class (i.e. breast tissues and/or back-
ground).We address this problem by introducing class weights into the Dice loss function
[58]. The class weight is the ratio of the median of class frequencies computed on the
entire training set divided by the class frequency [58]. This implies that the breast tis-
sues and background class in the training set have weights smaller than the weights of
the lesion class. Moreover, we applied the augmentation techniques explained in the pre-
vious sub-section, instead of applying elastic deformations as done in the original U-Net
model [36].
For training, the Dice loss function was minimized using Adam optimizer [59] with a

decreasing learning rate (LR) initialized to 1e−2 and a momentum of 0.9. We used the
famous early stopping technique to avoid over-fitting the model by monitoring the DI
value of the validation data-set. The training of the models stops when DI is not improved
every 20 epochs. Before each epoch, the training set is shuffled and every 4 mini-batch
images are then picked thus ensuring that each image is used only once in an epoch. We
used input MGs re-sized to 512×512. We developed, trained, and tested the DL models

2020, 21(Suppl 1):192



Abdelhafiz et al. BMC Bioinformatics Page 7 of 19

using MATLAB version 2019b. Training and testing the models were done on a Tesla
K40m Nvidia graphics processing unit.

Evaluation metrics

To evaluate the performance of the DLmodels, the Dice index coefficient (DI), also known
as the F1 score, and the Intersection over Union (IOU), also known as the Jaccard index,
metrics are used to compare the automated predicted maps with the GTMs [60–62]. We
mapped the class probabilities from the Softmax output to discrete class labels and used
it to calculate the commonly used DI and IOU metrics, Eqs. 1 and 2, respectively.

DI = 2TP
2TP + FP + FN

, (1)

where TP is the number of true positive pixels, FP is the number of false positives and FN
is the number of false negatives.

IOU = TP
TP + FP + FN

. (2)

Dice index measures the similarity between the segmented lesions, that have irregular
boundaries, and the annotated ground truth maps. IOU measures the intersection ratio
between the obtained segmentation BBs and the ground truths BBs. Thus, IOU is used
for localization of lesions and is best with rectangular boundaries. The output of differ-
ent segmentation models might have similar IOU (lesion well localized) but with slightly
different DI value that show how precise the lesions within the MG image are segmented.
The DI score gives more weight to TPs than FPs and FNs (Eq. 1). While IOU score gives

more weight to TPs, FPs, and FNs (Eq. 2). Similar to DI, the IOU score ranges from 0:
1, with 0 signifying no overlap and 1 signifying perfectly overlapping segmentation [62].
Also, for each class, IOU can be calculated using the ratio of correctly classified pixels to
the total number of ground truth and predicted pixels in that class (Eq. 2). The mean IOU
of each class is weighted by the number of pixels in that class.
As mentioned in the “Background” section, most of the lesion detectionmodels provide

BBs for an indication of a region with an abnormality. To compare the performance of the
proposed Vanilla U-Net model with detection models providing BBs such as the Faster
R-CNN, a BB is generated around every detected lesion. The BBs are generated based on
a minimum and maximum points of x and y coordinates, which indicate the locations of
masses. We calculated the accuracy of localization by considering the detected segment
and BB as TP if the center of the segment or the BB overlaps with the ground truth by
more than 50%. For each class, the accuracymetric is the ratio of correctly classified pixels
to the total number of pixels in that class, according to the GTMs (Eq. 3). Mean accuracy
is the average accuracy of all classes in all images.

Accuracy = TP
TP + FN

. (3)

We also calculated the Boundary F1 contour matching score (BF-score) for each image,
which indicates howwell the predicted boundary of each class aligns with the true bound-
ary. For each class, the mean BF-score shows the average BF-score of all classes in all
images. Values near 1 means perfect boundary.
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Results
Comparison with state-of-the-art methods

We adopted the Faster R-CNN model [18], original U-Net [36], VGG16-based FCN-8s
model [45], VGG16-based SegNet model [37], Dilated-Net [38] model, and the conven-
tional RG CAD model [4, 44] to apply to MGs for comparing their performances with
that of our model in terms of mean accuracy, mean DI, mean IOU, mean BF-score, and
the inference time in seconds per image (see Table 1). The architecture of these models in
more detail is given in the Additional file 1. We trained the Faster R-CNN detector pro-
posed in [18] to detect breast cancer lesions on MGs using our augmented data-set. We
also implemented the RG method proposed in [44] and apply it to our MG images.
The test data-set consists of SFM and FFDMMG images. Figure 2b shows the SFMMG

images from the DDSM database. Figures 3b and 4b show the original FFDMMG images
from the INbreast database. Where the red BBs in Figs. 2b, 3b and 4b show the ground
truth given by radiologists. The calculated DI and/or IOU for each detection is shown
under each image.
Table 1 shows the evaluation metrics of all the networks included in this study in terms

of mean accuracy, mean DI, mean IOU, mean, mean BF-score, and mean inference time
(second)/image. In Table 1, the performance of the models is shown for the detected seg-
ments/tight BBs in comparison with the GTMs. The mean DI and the mean IOU of the
proposed Vanilla U-Net are 0.951 and 0.909, respectively, which are higher compared to
other models (Table 1). The BF-score of the proposed Vanilla U-Net model is 0.964 which
exceeds the other segmentation models.
The architecture of the SegNet model is much closer to that of the U-Net model com-

pared to the other segmentation models. However, the boundary of the detected regions
of SegNet model is not aligned with the true boundary (Figs. 2f, 3f and 4f). The SegNet
model has a BF-score of 0.822. The SegNet model performs better when detecting lesions
in FFDM MGs compared to SFM MGs. In contrast, the proposed Vanilla U-Net model
performs very well for both kinds of images (Figs. 2j, 3j and 4j). The proposed Vanilla U-
Net shows better performance compared to SegNet. U-Net transfers the entire feature
maps to the corresponding decoders and concatenates them to the up-sampled decoder
feature maps, which gives precise segmentation. SegNet has much fewer trainable param-
eters compared to the U-Net model since the decoder layers use max-pooling indices

Table 1 The performance of the proposed Vanilla U-Net model, original U-Net, Faster R-CNN,
SegNet, Dilated-Net, FCN, and RG

Model Mean
accuracy

Mean
DI

Mean
IOU

Mean
BFscore

Mean
inference time
(second)/image

-Proposed Vanilla U-Net, with Aug. 0.926 0.951 0.909 0.964 0.115

-Proposed Vanilla U-Net, without Aug. 0.910 0.922 0.856 0.940 0.115

-Original U-Net, with Aug. 0.842 0.818 0.693 0.800 0.118

-Original U-Net, without Aug. 0.821 0.801 0.668 0.776 0.118

-Faster R-CNN, with Aug. 0.702 - 0.601 - 0.454

-SegNet, with Aug. 0.853 0.824 0.701 0.822 0.098

-Dilated-Net, with Aug. 0.832 0.799 0.665 0.701 0.094

-FCN, with Aug. 0.843 0.802 0.669 0.752 0.091

-RG 0.801 0.602 0.401 0.603 0.320
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Fig. 2 a Image index, b the original SFM MG images from the DDSM database (the red rectangles show the
location or the BBs of the ground truth lesions), c the GTMs given by radiologists, d the FCN model, e the
Dilated-Net model, f the SegNet model, g the RG method, h U-Net model trained with the augmented data-
set, i the proposed Vanilla U-Net model without augmentation, j the proposed Vanilla U-Net model trained
with the augmented data-set, and finally k the Faster R-CNN model trained with the augmented data-set

from corresponding encoder layers to perform sparse upsampling. This reduces the infer-
ence time at the decoder expanding path since the generated encoder feature maps are
not involved in the upsampling. Thus, the SegNet model reveals a trade-off between the
memory versus accuracy involved in achieving good segmentation performance (Table 1).
The mean DI and the IOU of the trained SegNet model on augmented data-set are 0.824
and 0.701, respectively, compared to 0.952 and 0.909 of the U-Net model.
The trained Dilated-Net has a mean DI of 0.799, a mean IOU of 0.665, respectively.

Moreover, its BF-score is 0.701 that is lower than that of the proposed Vanilla U-Net
model and the SegNet model BF-score. Also, the performance of the Dilated-Net model
is worse in the case of SFM images (Fig. 2e). Even-though some images in Figs. 2e, 3e and
4e show slightly better DI than that of SegNet, the performance of the model on all the
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Fig. 3 a Image index, b the original FFDM MG images from the INbreast database (the red rectangles show
the location or the BBs of the ground truth lesions), c the GTMs given by radiologists, d the FCN model, e the
Dilated-Net model, f the SegNet model, g the RG method, h U-Net model trained with the augmented data-
set, i the proposed Vanilla U-Net model without augmentation, j the proposed Vanilla U-Net model trained
with the augmented data-set, and finally k the Faster R-CNN model trained with the augmented data-set

test data-set is lower than that of the SegNet model. In contrast to U-Net and SegNet,
down-sampling layers are not required in the Dilated-Net to obtain large receptive fields
and hence, high-resolution maps can be directly predicted by the model. Down-sampling
layers are widely used for maintaining invariance and controlling overfitting of the model,
however it reduces the spatial resolution. To retrieve the lost spatial information, the Up-
sampling layers in U-Net and SegNet are used, but with additional memory and time
constraints.
We also adapted the FCN-8s VGG16 based network [45] to compare its performance

with that of the proposed Vanilla U-Net model. FCN-8s up-samples the final feature map
by a factor of 8 after fusing feature maps from the third and fourth max-pooling lay-
ers, thus having better segmentation than its variants. The FCN in our study has a mean
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Fig. 4 a Image index, b the original FFDM MG images from the INbreast database (the red rectangles show
the location or the BBs of the ground truth lesions), c the GTMs given by radiologists, d the FCN model, e the
Dilated-Net model, f the SegNet model, g the RG method, h U-Net model trained with the augmented data-
set, i the proposed Vanilla U-Net model without augmentation, j the proposed Vanilla U-Net model trained
with the augmented data-set, and finally k the Faster R-CNN model trained with the augmented data-set

DI of 0.802 and a mean IOU of 0.669, respectively. Moreover, the BF-score of the best
trained FCN is 0.752 which is lower than that of the proposed Vanilla U-Net by 0.212. The
mean DI scores of the Dilated-Net and the FCN model are close for some of the images,
however, the FCN give the lowest scores among all the segmentation DL models.
As wementioned in the “Method” section, we generated tight BBs surrounding detected

segments to compare the performance of the proposed model with that the BB-based
models such as Faster R-CNN. The proposed Vanilla U-Net model shows better perfor-
mance in detecting true segments compared to the Faster R-CNN model as shown in
Figs. 2i: k, 3i: k and 4i: k. In Fig. 2, the Faster R-CNN model introduces FPs in the SFM
images as in rows (1, 2, and 4 (k)). In Fig. 4k, the Faster R-CNN model introduces some
FPs as in row (2k and 4k), as an example. The proposed Vanilla U-Net model shows better
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performance with both FFDM and SFM images than the Faster R-CNN model. To have a
better understanding of the performance of the proposed Vanilla U-Net and other mod-
els, we included the DI and/or the IOU under every image. We also show the detection of
the proposed Vanilla U-Net for every CC and MLO view of the same patient. The IOU of
the proposed model exceeds the IOU of the Faster R-CNN by 0.308, as shown in Table 1.
We considered the detected BBs as TP if the center of the detected BB overlaps with the
ground truth BB with greater than 50%.
The accurate automated seed selection process is very important for lesion segmen-

tation. As RG segmentation’s results are sensitive to the initial seed pixels, the final
segmentation results would be incorrect if the seeds are not properly selected by the
automated process. The RG method works better when it is used with patches of images
that contain the ROI because the initial seed pixels are close to the center of the ROI.
Figures 2g, 3g and 4g show the detection using the RG method. Figures 2g, 3g and 4g
show that the DL models outperform the conventional CADmodels in terms of DI in the
segmentation of tumors in whole images. The mean DI and mean IOU of the RG method
are 0.602 and 0.401, respectively.
We also explored the current state-of-the-art DL models for segmentation or localiza-

tion of lesions in MG images through a literature survey [6]. The reported performance
metrics of several models are shown in Supplementary Table 1, Additional file 1. The
researchers used various metrics to report their work, which makes a direct comparison
between these different approaches difficult. Moreover, the number of training data-
set and the size of training images vary from a study to another one. However, it gives
us some insights into the strategies used in these studies. Researchers who applied the
transfer learning (TL) strategy to train their DL models reported that the TL approach
helped them to report better detection accuracy, see supplementary Table 1, Additional
file 1. Moreover, the size of the training date-set and the resolution of the MGs play an
important role in increasing the model’ accuracy [63].

Effect of augmentation

In our experiments, we observed that the mean DI of the proposed Vanilla U-Net model
increased slightly from that of the original U-Net model when we added BN layers or used
dropout layers or increased the number of convolution layers, one at a time. Moreover,
we observed that the proposed modifications, together, have increased the mean DI of
the proposed Vanilla U-Net model in comparison with that of the original U-Net model
from 0.801 to 0.951. But mostly the augmentation of the data-set had a great impact on
the performance of the proposed Vanilla model in terms of mean DI. And because of that,
we investigated the effect of augmentation in the performance of the proposed Vanilla
U-Net model.
The augmented training data-set results in 17,140 images. Figures 2i: j, 3i: j, and 4i: j,

illustrate the effect of augmentation on the proposed Vanilla U-Net model. For example,
the values of the DI of the augmented model, as shown in (j), are higher than the ones of
the trained model without augmentation, as shown in (i). Table 2 shows the improvement
in terms of DI for both training and validation data-sets when using augmented data-set
compared to when using the original one. The DI improves from 0.910 (training), and
0.842 (validation) to 0.972 (training), and 0.942 (validation). The augmented data-set also
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Table 2 The performance of the proposed Vanilla U-Net model

Model Training Validation Test

Dice Loss Dice Loss Dice

-Proposed Vanilla U-Net, with Aug. 0.972 0.016 0.942 0.024 0.951

-Proposed Vanilla U-Net, no Aug. 0.910 0.064 0.842 0.144 0.922

affect the localization precision significantly (Table 1). The BF-score improves from 0.940
to 0.964 in the case of the proposed augmented U-Net model.
Figure 5 shows that the histogram of themean of IOU value for the test images increases

using the proposed Vanilla U-Net model after data augmentation. The mean of IOUs of
the proposed Vanilla U-Net improves from 0.856 to 0.909 when training with the aug-
mented data-set (Fig. 5 and Table 1). In general, the performance of the DL techniques
improves as the size of the training data-set increases [6, 7]. Figures 2i: j, 3i: j, and 4i: j,
show that the DI per image increases when the proposed model is trained with the aug-
mented mixed data-set. The FP pixels decreased in the case of the augmented model, as
shown in rows (1, 2, and 4) in Fig. 2i: j.

Effect of image size and data-set size

One of the factors that make a localization model or a semantic segmentation model
superior to other models, is its ability to help the radiologists to detect small lesions that
can be missed with the naked eye. A recent study in [63] on MGs shows that the resolu-
tion of the training images affects the performance of the CNN model. Recent studies, as
shown in Table 1, Additional file 1, use MGs of small sizes as 40×40 and 227×227. The
standard image sizes of 224×224, and 227×227 are used excessively for training CNNs to
detect objects in natural images [61]. However, the requirement to find small mass lesions
in aggressively down-sampled high-resolution images is unlikely to be successful for MGs
[6, 63].
In our initial work in [14], we trained the proposed model with images of size 256×256

and found that the proposed model failed to find small lesions in images of high density.
As a result, we changed our training strategy to include MGs of size 512×512 instead of
256×256. Figure 6 shows some FFDM test images that have small lesions that are detected
with DI greater than 50%.

Fig. 5 Histogram of the mean of IOU value for the test images using the proposed Vanilla U-Net model
before Aug. (a) and after Aug. (b)
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Fig. 6 Test cases with small lesions

Because of the architecture of the proposed Vanilla model, images with a side divisible
by 32 (e.g. 1024×1024) can be used as an input to the current network implementation.
In the future, we will conduct our experiments on high-resolution images to get a com-
petitive performance to recent state-of-the-art models as the size of MG images in the
clinical settings are generally larger than 1024×1024 [7].

Improvements of the proposedmodel over the original U-Net model

The proposed model yields an improvement of 16.32% in the mean DI and 31.16% in the
mean IOU, respectively, relative to that of the original U-Netmodel (Table 1). The original
U-Net model is trained from scratch. Moreover, increasing the data-set size by using the
proposed augmentation technique improves the segmentation’s quality (BF-score yields
an increase of 20.5% relative to that of the original U-Net model). The original U-Net did
not use the BN technique. Original U-Net did not use the BN technique. Batch normaliza-
tion helps the proposedmodel avoiding vanishing gradient problem, stackingmore layers,
accelerating training, and using less number of epochs. In the proposed model, we went
deeper into the number of layers from four to five convolution layers. By increasing the
number of convolution layers, the segmentation process incorporates more multi-scale
spatial context and captures more local and global context.
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Timing performance

To assess the runtime performance of these models, we measured the mean inference
time per image taken by each model to detect lesions in the test data-set, as shown in
Table 1. The proposed Vanilla U-Net model is faster by 0.34 seconds than the Faster R-
CNNmodel [18]. The inference time of the SegNet, Dilated-Net, and FCN is less than the
proposed Vanilla U-Net by a fraction of second. Even though the inference time of the RG
method is of about 0.3 seconds, it introduces a lot of FPs when tested on whole images as
shown in Figs. 2g, 3g, and 4g, and the statistics of Table 1. The proposed Vanilla U-Net
model is faster than the Faster R-CNN proposed in [19] and [20], the R-CNN proposed
in [21] and [22], and the YOLO model proposed in [27], while proving a high DI, see
supplementary Table 1, Additional file 1. We have to emphasize that for radiologists, the
accuracy of the proposed CAD or DL model in detecting lesions is the most important
feature in the mammography analysis, and the inference time is secondary. An inference
time of a fraction of second or even several seconds is not as important as the accuracy of
the given model.

Discussion
We tested our proposed model on SFM and FFDM data-sets for the semantic seg-
mentation of mass lesions in MGs. For our future work, we will consider training
the proposed Vanilla U-Net model to detect both the micro-calcification and the
mass lesions. We will focus on reducing FP pixels by collecting more data-sets and
use higher resolution mammogram images. Finally, we want to use the proposed
Vanilla U-Net model to distinguish between benign and malignant breast tumors in
mammography images by studying the features of the tumors’ segmented regions
only.

Conclusions
We developed a new deep learning (DL) model called Vanilla U-Net, based on the archi-
tecture of the semantic segmentation U-Net model to precisely segment mass lesions
in mammogram (MG) images. The proposed end-to-end model extracts low-level and
high-level features from MG images. The proposed Vanilla U-Net model efficiently pre-
dicts a pixel-wise segmentation map of an input full MG due to its modified architecture.
We tested our proposed Vanilla U-Net model using film-based and fully-digital MGs.
We compared the performance of our proposed model with state-of-the-art DL models
namely Faster R-CNN, SegNet, FCN, and Dilated-CNN. We also compared the per-
formance of the proposed model with the conventional region growing method. The
proposed Vanilla U-Net model is superior to the segmentation models under study. The
proposed Vanilla U-Net model gives a mean intersection over union (IOU) of 0.909 and
a mean accuracy of 0.926 while the Faster R-CNN model gives IOU of 0.601 and a mean
accuracy of 0.702, respectively. Similar to the Faster R-CNN model, the Vanilla U-Net
model is trained on the full MGs. However, the proposed Vanilla U-Net model is faster
and runs 0.337 seconds less than the Faster R-CNN model. We show that the proposed
model show improvement in the Dice index (DI) and the IOU by 16.3% and 31.16%,
respectively, relative to the original model. The proposed models can be further trained
to detect micro-calcification in the future. The presented work is a step towards a precise
segmentation of mass lesions in mammography. As medical data-sets are increasing and
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becoming publicly available, future architectures may be trained end-to-end, removing
the need for pre-training on non-medical data-sets.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-3521-y.

Additional file 1: Supplementary materials (semantic segmentation using FCN, semantic segmentation using
SegNet, semantic segmentation using Dilated-Net, localization using Faster R-CNN, comparison between
state-of-the-art DL models, Supplementary Table 1, Supplementary Figures 1–4).
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