
Fu et al. BMC Bioinformatics (2020) 21:109
https://doi.org/10.1186/s12859-020-3428-7

SOFTWARE Open Access

LCQS: an efficient lossless compression
tool of quality scores with random access
functionality
Jiabing Fu1,2, Bixin Ke1,2 and Shoubin Dong1,2*

Abstract

Background: Advanced sequencing machines dramatically speed up the generation of genomic data, which makes
the demand of efficient compression of sequencing data extremely urgent and significant. As the most difficult part of
the standard sequencing data format FASTQ, compression of the quality score has become a conundrum in the
development of FASTQ compression. Existing lossless compressors of quality scores mainly utilize specific patterns
generated by specific sequencer and complex context modeling techniques to solve the problem of low
compression ratio. However, the main drawbacks of these compressors are the problem of weak robustness which
means unstable or even unavailable results of sequencing files and the problem of slow compression speed.
Meanwhile, some compressors attempt to construct a fine-grained index structure to solve the problem of slow
random access decompression speed. However, they solve the problem at the sacrifice of compression speed and at
the expense of large index files, which makes them inefficient and impractical. Therefore, an efficient lossless
compressor of quality scores with strong robustness, high compression ratio, fast compression and random access
decompression speed is urgently needed and of great significance.

Results: In this paper, based on the idea of maximizing the use of hardware resources, LCQS, a lossless compression
tool specialized for quality scores, was proposed. It consists of four sequential processing steps: partitioning, indexing,
packing and parallelizing. Experimental results reveal that LCQS outperforms all the other state-of-the-art compressors
on all criteria except for the compression speed on the dataset SRR1284073. Furthermore, LCQS presents strong
robustness on all the test datasets, with its acceleration ratios of compression speed increasing by up to 29.1x, its file
size reducing by up to 28.78%, and its random access decompression speed increasing by up to 2.1x. Additionally,
LCQS also exhibits strong scalability. That is, the compression speed increases almost linearly as the size of input
dataset increases.

Conclusion: The ability to handle all different kinds of quality scores and superiority in compression ratio and
compression speed make LCQS a high-efficient and advanced lossless quality score compressor, along with its
strength of fast random access decompression. Our tool LCQS can be downloaded from https://github.com/SCUT-
CCNL/LCQS and freely available for non-commercial usage.

Keywords: Quality score, Lossless compression, Random access, Robust, Efficient, Parallelization, ZPAQ

*Correspondence: sbdong@scut.edu.cn
1School of Computer Science & Engineering, South China University of
Technology, Wushan Road, 510006 Guangzhou, China
2Communication & Computer Network Lab of Guangdong, South China
University of Technology, Wushan Road, 510006 Guangzhou, China

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-3428-7&domain=pdf
https://github.com/SCUT-CCNL/LCQS
https://github.com/SCUT-CCNL/LCQS
mailto: sbdong@scut.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Fu et al. BMC Bioinformatics (2020) 21:109 Page 2 of 12

Background
Driven by the enormous scientific success of world-wide
HGP (Human Genome Project), NGS (Next Generation
Sequencing) has made tremendous progress in recent
decades and thus enables high throughput of the produc-
tion of the FASTQ files [1] at a low cost. Data storage and
transmission become themain bottleneck of genomic data
related analysis. As the affiliated sequencing error mea-
surement of genomic sequence read, quality scores occupy
at least 70% storage space of lossless compressed FASTQ
file [2]. The high randomness caused by the noise of the
quality score have made the compression of FASTQ low-
efficient. However, quality scores in the FASTQ file play
an indispensable role in many subsequent analyses (such
as sequence alignment and variant calling) and thus can-
not be discarded directly [3]. Therefore, the demand for
a specialized and efficient lossless compressor for quality
score becomes urgent and significant.
The dominant view of the current challenge of com-

pression tools lies in that they should be able to compress
large files in a short time and with a limit amount of mem-
ory. Therefore, the performance of a lossless compressor
is determined by the following four criteria:

1) Compression Ratio: the less bits it uses to restore the
original file, the better ratio it has;

2) Compression Speed: the less time it uses to
transform the original file into compressed form, the
better speed it has;

3) Decompression Speed: the less time it uses to restore
the original file from its compressed form, the better
speed it has;

4) Memory Usage: the less memory it uses to compress
or decompress the original file, the better
performance it has.

Consequently, improving these four criteria to the
utmost becomes critical to developing an outstanding
lossless compressor. However, these four criteria are not
independent but mutually restrictive. Most existing loss-
less quality score compressors [4–6] adopt the design
pattern of “sacrificing one for another” in the classic
evaluating paradigm of “Compression Ratio, Compres-
sion Speed, Decompression Speed, and Memory usage”.
For instance, some compressors try to sacrifice the com-
pression ratio by applying a simple probability model to
compress or decompress at a very high speed. Many com-
pressors try to sacrifice the robustness by fixing the length
of quality scores to improve the compression ratio. How-
ever, varied length quality scores are an essential part
of many critical intermediate files (e.g., SAM format file
[7]) generated during the variant calling procedure. The
complicated probability model is applied to model quality
scores accurately to improve the compression ratio at the
sacrifice of compression speed. It is challenging to balance

the four criteria, which makes the design of an efficient
compressor almost impossible.
However, the current challenge proposed by the major-

ity is a general challenge for any data compression prob-
lems and is only one kind of existing challenges. This
broad understanding of the current challenge might not
apply to the compression of specific data since challenge
should vary from scene to scene in the context of qual-
ity scores which is the focus of our research. Quality
score, as the measurement of the level of confidence of
an individual sequenced base call, has its particular way
of usage and is commonly used to act as backups in store
for future’s specific look-up. Therefore, random access
decompression of quality scores is more important than
complete decompression. A new evaluating paradigm of
“Compression Ratio, Compression Speed, RandomAccess
Decompression Speed, andMemory usage” could bemore
appropriate for the lossless compression algorithm of
quality score. This exclusive property of quality score
compression makes it relatively easy to improve all the
four criteria together due to sharply weakened impact of
decompression speed, and more attention paid to opti-
mize the other three criteria. A recent excellent lossless
quality score compressor AQUa [8] adopts the new eval-
uating paradigm above and provides fast random access
decompression support. However, huge sacrifices of com-
pression speed and extra size of index files prevent it
from practical usage. Meanwhile, AQUa can only han-
dle quality score lines with the same length and has
the drawback to dealing with the quality score with
varied lengths. However, an advanced compression tool
should possess the ability to compress any different forms
of quality scores. The more input sources it can han-
dle, the better robustness it has. Hence, a new evalua-
tive criterion Robustness is fleshed out in the evaluative
paradigm.
However, theoretically speaking, for an unknown

genomic dataset, it is impossible to balance the five cri-
teria of the new evaluative paradigm of “Robustness,
Compression ratio, Compression speed, Random Access
Decompression speed and Memory usage” at the same
time since there is no free lunch. That is, reducing more
redundancy on more various forms of quality score nat-
urally needs more searching time and more memory in
finding data redundancy. Therefore, we do not follow the
line of the majority who focus on achieving better results
based on as fewer memory resources as possible. That is,
memory usage should not be as less as possible. On the
contrary, memory usage should be utilized to the most as
long as it does not become a performance bottleneck of
other hardware resources. In the same vein, CPU should
be utilized to the most to achieve higher parallelization.
That is, we utilize the hardware resource to the utmost to
improve compression performance to take full advantage

Fu et al. BMC Bioinformatics (2020) 21:109 Page 3 of 12

of easy-access and well-developed hardware resources to
deal with the “No Free Lunch” dilemma.
Based on the analysis above, we remove the memory

usage criteria and propose an new lossless quality score
compression algorithm evaluating paradigm of “Robust-
ness, Compression Ratio, Compression Speed and Ran-
dom Access Decompression Speed”. This paradigm is
motivated by the idea of utilizing the hardware resource
to the utmost. In this paper, we use the ratio of memory
usage and CPU usage to guide the utilization of hardware
resources. To sum up, under the condition that the ratio of
memory usage and CPU usage is controlled to be less than
a proper value, the current goal and challenge for quality
score compression are to satisfy the following four criteria:

1) High Robustness: Whether the quality score’s length
is varied or not, the quality score’s coding standard is
varied or not, quality score’s species is human or not,
the compression tool can compress any of them and
obtain a stable compressed result;

2) High Compression Ratio: For any different kinds of
quality scores, the compression tool can provide a
competitive compression ratio;

3) High Compression Speed: For quality score file of
small size (usually non-human genomic data), the
compression tool can provide a competitive
compression speed when compared with a state-of-
the-art compression tool using an ordinary computer.
For medium and large size quality score file, the
compression tool possesses the property of high
scalability and can provide a much more competitive
compression speed when compared with other
state-of-the-art compression tools through utilizing
the more advanced hardware resource to the utmost;

4) High Random Access Decompression Speed: For
compressed results of any size, fast and stable
line-wise random access decompression and
look-ups should be supported.

In this paper, we aim at optimizing all the four criteria in
the new evaluating paradigm at the same time as we can
and designing an efficient lossless quality score compres-
sor with random access decompression functionality. Our
compressor LCQS includes four sequential processing
steps: partitioning, indexing, packing, and parallelizing.
Our framework is illustrated in Fig. 1. Regarding robust-
ness, Fig. 1 shows that we proposed and applied several
general prior observations but prohibited any specific pri-
ors. Regarding compression ratio, a robust data partition
method (see step 1 in Fig. 1) based on general prior is
proposed to capture different patterns of quality score
content within a file. Furthermore, a complicated con-
text mixing probabilistic modeling algorithm (see step 4 in
Fig. 1) is used to capture the underlined pattern accurately
to the utmost. Regarding compression speed, an adaptive

quality score packing algorithm (see step 3 in Fig. 1) is
proposed to reduce the content needed to be modeled.
Furthermore, a parallelization strategy based on SIMD
technique (see step 4 in Fig. 1) is used to optimize exist-
ing classical compression library libzpaq to speed up the
modeling procedure of each piece of content. Regarding
random access decompression speed, a light-weight index
design (see step 2 in Fig. 1) is proposed to support fast and
stable line-wise quality score random access decompres-
sion. More details about the four steps are discussed in the
next section.

Implementation
In this paper, robustness is the primary objective and
is emphasized at the very beginning phase of algorithm
design since we aim to design a practical and general
compressor. The robustness of compressors lays based
on general prior and thus the selection of general prior
becomes crucial. This paper holds the idea that a good
selection of general priors should be dated back to its ori-
gin. Back to the generation process of quality scores, we
find that the content of the quality score is determined by
two factors:

1) the original probability confidence level generated by
different sequencing machines;

2) the storage format standard established by different
communities;

Therefore, general priors should exhibit invariability
among different sequencing machines and different com-
munities. Based on the above analyses, this paper selects
three general priors:

1) The ASCII values of quality score lie in the interval
ranging from 33 to 104 due to the data format
standard;

2) Quality score value follows very uneven distribution
due to the effectiveness of sequencing machine;

3) Quality scores are generated by a mixture of different
source distributions due to the inevitable disturbance
produced during the process of sequencing machines
estimating the sequence base’s confidence [6].

As is shown in Fig. 1, data compression can be viewed
as a combination of various transformations, probabilis-
tic modeling techniques and encoding strategies [9]. Data
transformations and probabilistic modeling become the
key to the optimization of compression methods since
encoding techniques are mature and perform very well
with theoretical guarantee. In this paper, all the data trans-
formations and models proposed are designed based on
only the three general priors and are discussed in detail
in Fig. 1. “Quality score line partition method” section is
designed to improve the compression ratio. “Light-Weight
index design method” section is incorporated to support

Fu et al. BMC Bioinformatics (2020) 21:109 Page 4 of 12

Fig. 1 The framework of Proposed Lossless Compressor LCQS

random access decompression functionality. “Adaptive
k-mer packing method” and “Parallelization method for
libzpaq using SIMD technique” sections are two opti-
mized procedures for compression speed.

Quality score line partition method
As is shown in Fig. 1, quality score lines within one qual-
ity score file might exhibit differences, which validates
the third general prior mentioned before. Some lossless
compressors [6, 10] attempt to apply different clustering
methods to split the original fixed length quality score into
several blocks. However, there are two main drawbacks:

1) Weak robustness. It does not work on varied length
quality scores. Strong specific assumption is made to

cluster better, which reduces the compressors’
robustness;

2) Low compression/decompression speed. Too much
time is used to cluster the quality scores as accurately
as possible. However, it might not be a wise trade-off
to achieve slight improvements in the compression
ratio by wasting too much time. As is noted by
AQUa [8], multi-pass quality score compression
method is not suitable for real-time quality score
compression. Furthermore, single-pass compressors
can minimize the latency between sequencing and
genomic data analysis. Therefore, a robust and coarse
partition method is appropriate.

In this paper, quality score line is represented by k-mers
(refer to the substrings of length k) to ensure compres-

Fu et al. BMC Bioinformatics (2020) 21:109 Page 5 of 12

sion ratio and robustness since k-mer contains high-order
context information and can be used to represent varied-
length quality score line. With a view to both simple and
validity, quality score lines here are represented by k-mers.
Meanwhile, quality score lines tend to be similar when
they share high-frequency k-mers and vice versa. There-
fore, higher weight should be assigned to high-frequency
k-mers and low-frequency k-mers should be assigned
lower weight. To speed up the weight assignment pro-
cess, we do weight assignments by utilizing only a subset
of the dataset since we assume that the subset and whole
dataset follow the same distribution. Specifically, the first
M lines (Default 105 lines) of the dataset were analyzed.
The information of each k-mer’s occurrences and the total
occurrences of all k-mers are then collected. The weight
of one k-mer is assigned as the ratio of its occurrences
to the total occurrences of all k-mers. The weight of each
quality score line equals to the ratio of the sum of all
its k-mers’ weights to the number of the k-mers within
it. The maximum weight among the M sampling quality
score line is obtained and is used to normalize all the other
quality score line weights. Finally, quality score would be
partitioned into several parts according to their different
line weights. In this paper, only two clusters are gener-
ated since it is good enough to achieve a better balance
between time and space. Step 1 (see Fig. 1) is the quality
score line partition method and is illustrated in Algorithm
1 in Additional file 1.

Light-Weight index design method
As is shown in Fig. 2, once data streams 0 and 1 are

obtained, data blocks to be compressed would be gener-
ated. The construction work of the index should be made
and completed before feeding them into the next step to
support line-wise random access decompression function.
Two fixed-size buffers (A and B) are maintained to parti-
tion the two data streams into data blocks. For buffer A,
the content of one quality score line would be copied into
buffer A if it belongs to data stream 0. Meanwhile, a new-
line would be copied into buffer A to keep track of the
order information if it belongs to data stream 1. For buffer
B, the content of one quality score line would be copied
into buffer B if it belongs to data stream 1. Furthermore,
the content of one quality score line would be discarded if
it belongs to data stream 0.
In order to achieve load balance, the buffer would be

emptied and fed into the next step only when the size of
the buffer exceeds a predefined threshold. Meanwhile, in
order to keep the performance of random access decom-
pression much more stable, buffer A would be forced to
be emptied when buffer B is emptied for consecutive three
times. Once two buffers are emptied for the next packing
phase, the index information would be recorded. Regard-
ing buffer A, the start position, the end position and the
number of newline before A are recorded one by one in
the sequential order of data stream 0. Regarding buffer B,
only the start position and end position are recorded one
by one in the sequential order of data stream 1 since the
third entry can be inferred from the index information of
A. Given a line-wise random access range such as [a, b],
all the compressed data blocks of stream 0 and 1 whose
range is overlapped with [a, b] would be extracted through

Fig. 2 The Procedure of Light-weight Index Method: Step 2

Fu et al. BMC Bioinformatics (2020) 21:109 Page 6 of 12

looking up the index range information of the compressed
data block. Once all needed compressed data blocks are
decompressed and merged, the result content of range [a,
b] is obtained. Normally, most of the range interval of the
random access operation would not exceed the range of
one data block and the number of data blocks needed to be
decompressed would not exceed four (one A and three B).
In the worst situation, the number of data blocks needed
to be decompressed would not exceed eight (two A and
six B) when the range interval of random access operation
contains the boundary of two continuous block A.

Adaptive k-mer packing method
As is mentioned in the introduction section, a compli-
cated context mixing probabilistic modeling algorithm
ZPAQ would be applied to capture the underlined pattern
of quality score accurately. To reduce the negative effect of
compression speed, we need to improve the compression
speed to the best of our ability. In a nutshell, two solutions
are proposed:

1) reducing the content that needs to be modeled;
2) reducing the time used to model each unit of the

content.

As is shown in Fig. 1, the first one discussed in this
section is usually completed in the data transformation
phase while the second one as the focus of next section
is usually optimized in the probabilistic modeling phase.

Inspired by Bonfield and Mahoney [4] and the first gen-
eral prior, packing techniques are applied to reduce the
content that needs to be accurately modeled. Specifically,
quality score k-mers in which each quality score value
ranges from 33 to 104 are losslessly transformed into
a single-digit number ranging from 1 to 255 through a
one-to-one mapping rule. Nevertheless, this paper adap-
tively packs k-mer based on real distribution of quality
score value. It is different from Mahoney’s method which
applies the same fixed mapping rule to all different kinds
of quality score datasets exhibiting different distributions.
Adaptive k-mer packing is shown in Fig. 3 and is imple-
mented as follows:

1) Obtaining the quality score value which has the
highest occurrences and denoting it as C. As is
shown in Fig. 3, the mapping rule is fixed once C is
obtained. The reason why we choose the quality
score with the highest occurrences as the boundary
of transformation interval lies in that it possesses the
highest possibility of forming k-mer as many as
possible through combination with other quality
score values. The more k-mer satisfies the
transformation conditions, the more content it can
reduce;

2) Grouping and mapping of the quality score. As is
shown in Fig. 3, for each quality score, the priority of
grouping and mapping of k-mers increases from left
to right (1 ⇒255). Details about the packing

Fig. 3 The Procedure of Adaptive k-mer Packing Method: Step 3

Fu et al. BMC Bioinformatics (2020) 21:109 Page 7 of 12

procedure of Fig. 3 can be seen in the
implementation details of the adaptive k-mer
packing method which is presented in the Additional
file 2. The whole mapping procedures are visualized
in detail in Fig. 3. Meanwhile, an example is provided
to understand the adaptive k-mer mapping method
better. The mapping is one-to-one so quality score
value can be easily unpacked in a reverse way.

Parallelization method for libzpaq using SIMD technique
Complicated probabilistic modeling means slow model-
ing speed. To further improve the modeling speed and
reduce the modeled content discussed in “Adaptive k-mer
packingmethod” section, this paper attempts to use SIMD
and Multithreading techniques to shorten the time of
modeling each unit content.
Libzpaq [11] was born in 2009 and written by Matt

Mahoney. It is a state-of-the-art backend open-source
compression library and is widely used all around the
world. It possesses excellent performance on the com-
pression ratio at the expense of slow compression speed.
Therefore, code optimization is always the focus of libzpaq
compression community. Libzpaq’s compression speed
has been highly optimized and dramatically improved
in continuously iterated versions by utilizing different
kinds of accelerating techniques. However, there is still
some distance away from practical usage. Once its com-
pression speed becomes acceptable in practical usage,
existing excellent quality score compressors (not limited
to quality score compression) would become acceptable
since many compressors [4, 5, 10, 12] use libzpaq as
their backend compressor. Thus, it is of great impor-
tance to optimize libzpaq’s performance of compression
speed.
This paper analyzes all the points which have the poten-

tial to speed up to optimize libzpaq. From the perspective
of theoretical analysis, the predictor of libzpaq should
be very time-consuming since libzpaq’s main work is to
accurately predict the compressed source using highly
complex context mixing probabilistic model to achieve
excellent performance on compression ratio. From the
perspective of experimental analysis, the libzpaq library’s
predictor module is always time-consuming, which vali-
dates our assumption. After further investigating the pre-
dictor module, this paper finally selects two submodules
(Update and Predict Module of Predictor) of libzpaq as
our primary optimized points and uses SIMD techniques
to rewrite the libzpaq using C++ programing language.
Currently, libzpaq compression library has JIT and NON-
JIT versions. Although only JIT version of libzpaq is used
in our compressor LCQS, we optimize libzpaq library for
both versions to make it much more universal for uses
for other purposes by other compressors. Furthermore,
we not only incorporate the optimized libzpaq code into

LCQS but also pack it into an independent component
which can be easily called in other compressors.

Results
This section describes experimental setups in detail
and validates the effectiveness of our proposed loss-
less quality score compressor LCQS. We compare our
tool with three state-of-the-art compressors on recog-
nized benchmark datasets in terms of the following
four new criteria of efficiency: Robustness, Compression
Ratio, Compression Speed and Random Access Decom-
pression Speed. Meanwhile, as an independent com-
ponent, compression library libzpaq is also tested and
compared.

Benchmark datasets selection
Datasets with different statistical properties would result
in a strong bias on the performance of the compres-
sors. Thus, much attention should be paid to choose test
datasets to evaluate the effectiveness of proposed com-
pressors. With huge demand and rapid development of
genomic information compression, the standardization
of genomic data benchmark becomes urgent. Currently,
the MPEG HTS compression working group, is aware of
the urgency and is building up the genomic data bench-
mark. Nevertheless, as is noted by Numanagic et al. [9],
the size of the datasets compiled by MPEG HTS com-
pression working group consists of approximately 4 TB
and is expecting a rise in the future. Numanagc et al. [9]
establishes a new acceptable and reasonable benchmark
from the MPEG datasets. We choose it as our test bench-
mark. Besides, to test the performance of compressing
large genomic files, we also collect high coverage reads
for NA12878 from the public website [13]. Only the qual-
ity score part of the benchmark FASTQ datasets samples
[13, 14] is extracted, and thus their sizes are different
from their original FASTQ files. For the datasets from
1_01 to 5_02, quality scores are extracted directly from the
corresponding FASTQ file. Besides, we extract the qual-
ity scores of the eight large datasets (ERR091571_1.fastq
47 GB, ERR091571_2.fastq 47 GB, ERR091572_1.fastq 47
GB, ERR091572_2.fastq 47GB, ERR091573_1.fastq 47GB,
ERR091573_2.fastq 47 GB, ERR091574_1.fastq 49 GB,
ERR091574_2.fastq 49 GB) from the public website [13].
Then we preprocess the eight large datasets into the qual-
ity score dataset ERR09157 and denotes ERR09157 as
6_01. Detailed information about the obtained quality
score datasets is presented in Table 1. It is clear from
Table 1 that the test datasets have good diversity since
they consist of datasets with different species, differ-
ent technologies, different sequencing depths, different
lengths and different sizes. Therefore, comparing results
tested on that benchmark would be representative and
convincing.

Fu et al. BMC Bioinformatics (2020) 21:109 Page 8 of 12

Table 1 Detailed Descriptions of Test Quality Score Datasets

Code Filename(quality score only) Organism Technology Coverage Length Size(MB)

1_01 SRR554369_1 P.Aeruginosa Illumina GAIIx 50x 100 160

1_02 SRR554369_2 P.Aeruginosa Illumina GAIIx 50x 100 160

2_01 MH0001_081026_clean.1 H.Sapiensgut Illumina GAII Unknown 44 500

2_02 MH0001_081026_clean.2 H.Sapiensgut Illumina GAII Unknown 44 500

3_01 SRR1284073 E.Coli PacBio 140x Varied 620

4_01 SRR327342_1 S.Cerevisiae Illumina GAII 175x 75 918

4_02 SRR327342_2 S.Cerevisiae Illumina GAII 175x 75 1090

5_02 SRR870667_2 T.Cacao Illumina GAIIx 35x 74 4952

5_01 SRR870667_1 T.Cacao Illumina GAIIx 35x 74 7197

6_01 ERR09157 Human Illumina Unknown 101 166,142

Benchmark compressors selection
To better evaluate the performance of our proposed loss-
less quality score compressor LCQS, both general and
specialized lossless benchmark compressors are selected.
Concerning general benchmark compressors, it is easy
to make choices and two excellent compressors (7-zip
and Gzip) are selected. Concerning specialized bench-
mark compressors, it is difficult to make choices. Since
our compressor is in a lossless manner, the related tool on
specialized quality score compression is rare, whichmakes
the work of choosing benchmark compressors difficult.
Fortunately, quality score is one part of FASTQ file and
many FASTQ compressors integrated the functionality of
quality score compression in recent decades. However,
without a deep understanding of the source code of the
compressor, a simple calculation of separate and visible
compressed results (e.g. Fastqz [4], Scalce [15]) would
produce a wrong or bias compression ratio. Besides, the
results of compression speed of quality score in FASTQ
cannot be collected. Based on the above considerations,
all FASTQ compressors are excluded. This paper chooses
AQUa [8] as the specialized benchmark compressor to
better evaluate the compression performance and random
access decompression functionality under the new eval-
uating paradigm since AQUa is state-of-the-art and the
only one that can provide random access decompression
support.
Detailed information about the comparison compres-

sors can be seen in Table 2. All experiments are tested on
the same Linux server (Intel(R) CPU E5-2670 @ 2.60GHz,

16 CPU cores). The cache is cleared before every experi-
ment test to avoid the effect caused the caching technique
of the operating system.

Benchmark criteria selection
To evaluate the performance of our proposed lossless
compressor LCQSmore comprehensively, as is mentioned
in the introduction part, four criteria named Robustness,
Compression Ratio, Compression Speed and Random
Access Decompression Speed are chosen as the bench-
mark criteria in this paper. To accurately quantify the
criteria, we redefine these four criteria clearly as follows:

1) Robustness is calculated using the ratio of the
number of the datasets that compressor can both
compress and random access decompress to the
number of benchmark datasets.

2) Compression Ratio is calculated using the ratio of the
size of megabytes of the compressed datasets (With
the index used for random access excluded) to the
size of megabytes of the original benchmark dataset.
Since Gzip and 7-zip do not support random access
operation and the index is used only when random
access decompression operation is carried out, the
size of the metadata index used for random access
decompression is excluded when calculating
compression ratio. The size of the metadata index is
excluded here and would be in store for assisting the
evaluation of the performance of random access
decompression to evaluate the performance of

Table 2 Detailed Descriptions of Benchmark Compressors

Compressors Parameters Source URLs

LCQS k=4, α= 0.1 (they are defined in step 1) https://github.com/SCUT-CCNL/LCQS

AQUa windowsize=1, cabacgrouping=10485760 https://github.com/tparidae/AQUa

7-zip -mx9 https://www.7-zip.org/

Gzip -9 https://www.gnu.org/software/gzip/

https://github.com/SCUT-CCNL/LCQS
https://github.com/tparidae/AQUa
https://www.7-zip.org/
https://www.gnu.org/software/gzip/

Fu et al. BMC Bioinformatics (2020) 21:109 Page 9 of 12

benchmark compressors much more general and
fairer.

3) Compression Speed is calculated using the ratio of the
size of megabytes of the original benchmark dataset
to the time of seconds used to compress the dataset.

4) Random Access Decompression Speed is calculated
using the ratio of the number of thousand lines of the
given random access range interval to the time of
seconds used to random access decompress it.

Comparison results among benchmark compressors
The four criteria mentioned in “Benchmark criteria selec-
tion” section are evaluated in detail one by one in this
section. The best compression results for each dataset
in all the following tables are bolded and “-” mean that
this file cannot be compressed or random access decom-
pressed by that compressor.

Performance of robustness and compression ratio
Table 3 shows the compression ratio results which com-
pared LCQS with the other three compressors. Regard-
ing robustness, AQUa [8] performs the worst. LCQS,
together with Gzip and 7-zip, perform the best and can
compress all the benchmark datasets. Regarding the com-
pression ratio, LCQS outperforms all the datasets with
an obvious advantage and file sizes have reduced by up
to 18.92%, 16.68% and 28.78% respectively when bench-
marking LCQS against AQUa, 7-zip at best compression
mode and Gzip at best compression mode. Therefore,
LCQS performs the best on both robustness and compres-
sion ratio and thus its effectiveness is validated. Detailed
comparison results are presented in Table 3.

Performance of compression speed
Table 4 shows the compression speed results which com-
pared LCQS with the other three compressors. Regard-
ing the compression speed, LCQS outperforms almost
all benchmark datasets except the result on dataset

3_01 compressed by Gzip. The acceleration ratios have
increased by up to 29.1x, 8.4x, and 4.3x when benchmark-
ing LCQS against AQUa, 7-zip at best compression mode
and Gzip at best compression mode respectively. Besides,
LCQS’s compression speed tends to scale linearly with
the increasing datasets to be compressed due to its high
parallelization characteristic. Our test computer has 16
hyper-threaded cores and LCQS can occupy almost all the
whole 3200% CPU. To be concluded, LCQS has superior
advantages over compression speed and is expected to be
applied in real practical scenarios of large datasets due to
its high scalability.
Table 5 shows that all the ratio of Memory Usage(GB)

to CPUUsage(Thread) (hereinafter calledM/C in Table 5)
of LCQS can be controlled to be less than 0.54 and about
0.45 on average, which can be satisfied by almost all ordi-
nary computers. That is, memory usage of LCQS will not
influence LCQS’s high scalability and thus makes LCQS
a practical quality score compression tool for almost all
computing platforms. Although the high scalability of
LCQS has already outperformed all other compressors, it
has not yet shown its best performance due to the hard-
ware limit. The compression speed of LCQS would be
boosted when more CPU cores are available. On the con-
trary, the other three compared compressors exhibit rel-
atively low efficiency of utilizing the hardware resources
(here, CPU and memory) when compared with LCQS,
especially for Gzip, which results in the fall of compression
performance.

Performance of random access decompression speed
Table 6 shows the results of random decompression speed
and the extra size of the metadata index of the original
file. The specific interval for each dataset is randomly gen-
erated for interval sizes ranging from 40000 to 160000.
Then, random access decompression operation is applied
on the specific interval.

Table 3 Comparison Results of Compression Ratio

Datasets
Compression Ratio LCQS File Size Reduction Versus (%)

LCQS AQUa 7-zip best Gzip best AQUa 7-zip best Gzip best

1_01 3.4388 2.9726 2.9351 2.5884 13.56 14.65 24.73

1_02 3.3241 2.9296 2.8668 2.5365 11.87 13.76 23.69

2_01 3.5023 3.1762 3.1570 2.8401 9.31 9.86 18.91

2_02 2.4592 2.1817 2.2387 2.0756 11.29 8.97 15.60

3_01 2.5911 - 2.3159 2.1041 - 10.62 18.80

4_01 2.7909 2.5730 2.5093 2.2453 7.81 10.09 19.55

4_02 2.5749 2.3483 2.3099 2.0933 8.80 10.29 18.70

5_02 2.8598 2.5795 2.5400 2.2735 9.80 11.18 20.50

5_01 3.2533 2.8602 2.8276 2.4974 12.08 13.09 23.23

6_01 3.9660 3.2156 3.3046 2.8245 18.92 16.68 28.78

Fu et al. BMC Bioinformatics (2020) 21:109 Page 10 of 12

Table 4 Comparison Results of Compression Speed

Datasets
Compression Speed (MB/s) LCQS Accelerating Ratio Versus%

LCQS AQUa 7-zip best Gzip best AQUa 7-zip best Gzip best

1_01 2.32 0.31 1.09 2.25 648% 113% 3%

1_02 2.29 0.31 1.04 1.79 639% 120% 28%

2_01 5.15 0.30 1.35 1.58 1617% 281% 226%

2_02 4.55 0.26 1.34 1.88 1650% 240% 142%

3_01 4.63 - 0.98 5.84 - 372% -21%

4_01 5.92 0.31 0.99 2.39 1810% 498% 148%

4_02 6.12 0.31 0.88 3.84 1874% 595% 59%

5_02 6.33 0.31 1.00 2.03 1942% 533% 212%

5_01 9.29 0.31 0.99 1.75 2897% 838% 431%

6_01 9.63 0.32 1.09 2.28 2909% 783% 322%

Table 5 Comparison Results of CPU Usage and MEMORY Usage

Datasets
AVERAGE CPU USAGE(%) AVERAGE MEMORY USAGE(GB) M/C

LCQS AQUa 7-zip best Gzip best LCQS AQUa 7-zip best Gzip best LCQS

1_01 400 104 176 99 1.32 0.57 0.58 0.0016 0.33

1_02 382 104 175 99 1.26 0.57 0.56 0.0017 0.33

2_01 900 105 180 100 3.82 0.6 0.63 0.0016 0.42

2_02 1036 105 175 99 4.6 0.61 0.64 0.0016 0.44

3_01 1298 - 157 99 6.12 - 0.65 0.0017 0.47

4_01 1635 105 168 99 7.52 0.63 0.65 0.0016 0.46

4_02 2030 105 165 99 9.26 0.63 0.66 0.0016 0.46

5_02 2932 104 173 100 15.6 0.63 0.67 0.0016 0.53

5_01 2932 105 177 100 14.37 0.66 0.67 0.0016 0.49

6_01 3161 105 172 100 16.99 0.66 0.67 0.0016 0.54

Table 6 Comparison of Random Access Decompression Functionality

Datasets

Random Access Decompression Speed (Thousand lines / s) Extra index size (%)

LCQS AQUa
LCQS AQUa

40000 80000 160000 40000 80000 160000

1_01 0.65 1.27 2.67 - - - 0 40.73

1_02 0.63 1.21 2.42 - - - 0 40.73

2_01 0.55 1.07 2.11 0.53 0.83 - 0 92.94

2_02 0.53 1.03 2.05 0.24 0.47 - 0 93.46

3_01 0.59 1.00 1.63 - - - 0 -

4_01 0.67 1.31 2.29 0.33 0.75 - 0 65.85

4_02 0.61 1.16 2.32 0.47 0.61 - 0 55.7

5_02 0.45 0.94 1.90 0.35 0.78 - 0 56.62

5_01 0.63 1.23 2.29 0.26 0.40 - 0 39.18

6_01 0.52 1.05 1.44 0.40 0.65 - 0 41.79

Average 0.58 1.13 2.11 0.37 0.64 - 0 58.56

Fu et al. BMC Bioinformatics (2020) 21:109 Page 11 of 12

Table 7 Optimization Result of Libzpaq Library Using SIMD

Datasets
Improvements (%)

JIT NON-JIT

1_01 22.35 18.63

1_02 20.33 21.55

2_01 16.15 16.43

2_02 16.35 16.17

3_01 16.17 19.17

4_01 16.75 19.96

4_02 16.52 19.16

5_02 12.27 19.47

5_01 15.96 22.95

Concerning the time needed to random access to the
given lines, our proposed LCQS outperforms all the ten
benchmark datasets and exhibits high and stable perfor-
mance when compared with AQUa. Regarding the ran-
dom access decompression speed of thousand lines per
second, our LCQS outperforms all the ten benchmark
datasets and the acceleration ratios have increased by up
to 1.4x and 2.1x when benchmarking LCQS against AQUa
at the range interval of 40000 and 80000 respectively.
Furthermore, LCQS exhibits strong scalability since the
speed tends to scale almost linearly with the increasing
range interval. Regarding the extra file size introduced by
achieving random access decompression function, LCQS
does not need any extra index size since the light-weight
index occupies only several bytes’ space and has already
been packed into the compressed file.
On the contrary, AQUa designs a fine-grained and

uncompressed index structure to enable ultrafast random
access to the compressed file. Therefore, AQUa needs a
large index file whose size ranges from 58.56% (average)
to 93.46% (worst case) of the size of its uncompressed file.
Concerning the robustness of random access decompres-
sion, different from AQUa which fails to apply operations
with some range intervals and some benchmark datasets,
LCQS can complete all random access operations with any
range intervals on all benchmark datasets.

Optimization of libzpaq library using sIMD technique
Table 7 shows the result which compared optimized libz-
paq using SIMD technique LCQS with the original libz-
paq. As is mentioned in “Parallelization method for libz-
paq using SIMD technique” section, two main versions
of JIT and NON-JIT are both optimized using the same
SIMD technique. Our optimized library libzpaq outper-
forms both original JIT and NON-JIT version and makes
some big improvements on the compression speed by up
to 22.35% and 22.95% respectively. Detailed information
can be seen in Table 7.

Conclusions
Tremendous progress of NGS in recent decades enables
high throughput of the production of the FASTQ files.
However, it also poses a big challenge to the existing loss-
less quality score compression tools. Therefore, LCQS,
as an efficient lossless compression method of quality
scores with random access functionality, is proposed in
this paper.
The performance of LCQS was evaluated on ten bench-

mark real-world quality score datasets. Experimental
results reveal that our compressor LCQS outperforms all
compared compressors on all criteria except for the com-
pression speed on the dataset SRR1284073. LCQS also
exhibits the strongest scalability and thus is an efficient
lossless compressor for practical usage. Meanwhile, an
independent optimized backend compression library is
developed and can be easily applied to boost the exist-
ing compression tools of quality score or bioinformatics-
related data.
For future work, we attempt to improve the compression

ratio by incorporating the existing deep learning tech-
niques to capture the complex context information of
quality scores and investigate the possibility of speed-up
of libzpaq by utilizing GPU hardware. Besides, we would
try to redesign and apply our quality score (In FASTQ for-
mat files) compressor LCQS for the varied length quality
scores in SAM format file.

Availability and requirements
Project name: LCQS
Project website: https://github.com/SCUT-CCNL/LCQS
Operating systems: Linux
Programming language: C/C++
Other requirements: GCC compiler (Version 4.9+ is bet-
ter)
License: The MIT License
Any restrictions to use by non-academics: For commercial
use, please contact the authors.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-020-3428-7.

Additional file 1: The procedure of quality score line partition: step 1.

Additional file 2: Implementation details of adaptive k-mer packing
method.

Abbreviations
CPU : Central Processing Unit; GB : GigaByte; GPU : Graphic Processing Unit;
HGP : Human Genome Project; HTS : High-throughput Sequencing; JIT :
Just-In-Time; MB : MegaByte; MPEG : Moving Picture Experts Group; NGS : Next
Generation Sequencing; SAM : Sequence Alignment Map; SIMD : Single
instruction, multiple data

Acknowledgments
We would like to thank the Editor and the Reviewers for their precious
comments on this work which helped improve the quality of this paper. We

https://github.com/SCUT-CCNL/LCQS
https://doi.org/10.1186/s12859-020-3428-7

Fu et al. BMC Bioinformatics (2020) 21:109 Page 12 of 12

would like to thank Mr. Yong Zhang and Yuxin Chen of Beijing Genomics
Institute (BGI) for great help and guidance in the processing of genomic data
in our research.

Authors’ contributions
JF and SD conceived the algorithm. BK and JF developed the program. JF, SD
and BK designed and performed the experiments. JF and SD wrote, reviewed
and revised the manuscript. SD guided the project. The author(s) read and
approved the manuscript.

Funding
This work is funded by Natural Science Foundation of Guangdong Province
(2015A03030817), National Natural Science Foundation of China (61976239)
and Innovation Foundation of High-end Scientific Research Institutions of
Zhongshan City of China (2019AG031). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Availability of data andmaterials
The datasets supporting the conclusions of this paper are publicly available
from https://trace.ncbi.nlm.nih.gov/Traces/sra/ (Identifiers: SRR554369,
SRR1284073,SRR327342 and SRR870667) and http://smash.cs.berkeley.edu/
datasets.html (Identifiers: ERR091571). Our software LCQS are available from
https://github.com/SCUT-CCNL/LCQS.

Ethics approval and consent to participate
The datasets used in the experiment are publicly available on the website
https://trace.ncbi.nlm.nih.gov/Traces/sra/ and
http://smash.cs.berkeley.edu/datasets.html, so the ethics approval is not
required.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 29 December 2018 Accepted: 24 February 2020

References
1. FASTQ File Format. https://en.wikipedia.org/wiki/FASTQ_format.

Accessed 10 Sept 2018.
2. Hernaez M, Ochoa I, Weissman T. A cluster-based approach to

compression of quality scores. In: Bilgin A, et al., editors. Proceedings of
Data Compression Conference. Snowbird: IEEE; 2016. p. 261–70.

3. Ochoa I, Hernaez M, Goldfeder R, Weissman T, Ashley E. Effect of lossy
compression of quality scores on variant calling. Brief Bioinform.
2017;18(2):183–94.

4. Bonfield JK, Mahoney MV. Compression of fastq and sam format
sequencing data. PloS ONE. 2013;8(3):59190.

5. Nicolae M, Pathak S, Rajasekaran S. Lfqc: a lossless compression
algorithm for fastq files. Bioinformatics. 2015;31(20):3276–81.

6. Hernaez M, Ochoa I, Rao M, Ganesan K, Weissmans T. Qvz: lossy
compression of quality values. Bioinformatics. 2015;31(19):3122–9.

7. SAM file format. https://en.wikipedia.org/wiki/SAM_(file_format).
Accessed 10 Sept 2018.

8. Paridaens T, Van Wallendael G, De Neve W, Lambert P. Aqua: an
adaptive framework for compression of sequencing quality scores with
random access functionality. Bioinformatics. 2018;34(3):425–33.

9. Numanagić I, Bonfield JK, Hach F, et al. Comparison of high-throughput
sequencing data compression tools. Nat Methods. 2016;13(12):1005.

10. Fu JB, Ma YC, Ke BX, Dong SB. Proceedings of Bioinformatics and
Biomedicine. In: Bilgin A, et al., editors. Shenzhen: IEEE; 2016. p. 864–9.

11. ZPAQ. http://mattmahoney.net/dc/zpaq.html. Accessed 10 Sept 2018.
12. Huang ZA, Wen Z, Deng Q, Chu Y, Sun Y, Zhu Z. Lw-fqzip 2: a

parallelized reference-based compression of fastq files. BMC
Bioinformatics. 2017;18(1):179.

13. Dataset Description. http://smash.cs.berkeley.edu/datasets.html.
Accessed 10 Sept 2018.

14. Dataset Description. https://github.com/sfu-compbio/compression-
benchmark/blob/master/samples.md. Accessed 10 Sept 2018.

15. Faraz H, Ibrahim N, Can A, S Cenk S. Scalce: boosting sequence
compression algorithms using locally consistent encoding.
Bioinformatics. 2012;28(23):3051–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://trace.ncbi.nlm.nih.gov/Traces/sra/
http://smash.cs.berkeley.edu/datasets.html
http://smash.cs.berkeley.edu/datasets.html
https://github.com/SCUT-CCNL/LCQS
https://en.wikipedia.org/wiki/FASTQ_format
https://en.wikipedia.org/wiki/SAM_(file_format)
http://mattmahoney.net/dc/zpaq.html
http://smash.cs.berkeley.edu/datasets.html
https://github.com/sfu-compbio/compression-benchmark/blob/master/samples.md
https://github.com/sfu-compbio/compression-benchmark/blob/master/samples.md

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Implementation
	Quality score line partition method
	Light-Weight index design method
	Adaptive k-mer packing method
	Parallelization method for libzpaq using SIMD technique

	Results
	Benchmark datasets selection
	Benchmark compressors selection
	Benchmark criteria selection
	Comparison results among benchmark compressors
	Performance of robustness and compression ratio
	Performance of compression speed
	Performance of random access decompression speed

	Optimization of libzpaq library using sIMD technique

	Conclusions
	Availability and requirements
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-3428-7.
	Additional file 1
	Additional file 2

	Abbreviations
	Acknowledgments
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

