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Abstract

Background: Predicting networks of chemical compounds is one of the fundamental tasks in bioinformatics and
chemoinformatics, because it contributes to various applications in metabolic engineering and drug discovery. The
recent rapid growth of the amount of available data has enabled applications of computational approaches such as
statistical modeling and machine learning method. Both a set of chemical interactions and chemical compound
structures are represented as graphs, and various graph-based approaches including graph convolutional neural
networks have been successfully applied to chemical network prediction. However, there was no efficient method
that can consider the two different types of graphs in an end-to-end manner.

Results: We give a new formulation of the chemical network prediction problem as a link prediction problem in a
graph of graphs (GoG) which can represent the hierarchical structure consisting of compound graphs and an
inter-compound graph. We propose a new graph convolutional neural network architecture called dual graph
convolutional network that learns compound representations from both the compound graphs and the
inter-compound network in an end-to-end manner.

Conclusions: Experiments using four chemical networks with different sparsity levels and degree distributions shows
that our dual graph convolution approach achieves high prediction performance in relatively dense networks, while
the performance becomes inferior on extremely-sparse networks.
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Background
Predicting chemical networks, consisting of a set of inter-
actions among chemical compounds, is one of the fun-
damental tasks in bioinformatics and chemoinformatics,
as well as predicting chemical properties of each com-
pound. Large-scale analysis of chemical networks is useful
for metabolic engineering [1–5] and various applications
in drug discovery [6–12]. The rapid growth of the amount
of available data including chemical structures and net-
works has enabled applications of data-driven approaches
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such as statistical modeling and machine learning meth-
ods [13]. Chemical compounds and chemical networks are
often modeled as graphs which are general and powerful
data representations of complex real-world phenomena.
In a molecular compound graph, the nodes correspond to
atoms and the edges correspond to chemical bonds among
them. A chemical network is also described as a graph
over compounds, where the nodes correspond to com-
pounds and the edges correspond to chemical interactions
between them.

Molecular fingerprinting [14] is a widely used way
for molecular graph representation, where each com-
pound is represented as a fixed-dimensional feature
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vector. Each element of a molecular fingerprint cor-
responds to a substructure (e.g., benzene ring) and
a chemical property (e.g., aromatic). Examples include
PubChem fingerprint [15], Extended-connectivity finger-
print [16], E-State fingerprint [17], and MACCS finger-
print [18]. They have been used for predicting various
chemical properties, but the performance depends heav-
ily on the choice of fingerprints. Statistical machine
learning methods such as kernel methods have also
been successfully applied to chemical property predic-
tion [19–21]. In addition, statistical machine learning
methods have been applied to predicting chemical net-
works such as metabolic reactions [22–27], drug-drug
interactions [28–31] and beneficial drug combinations
[32, 33] by taking a pair of compounds as an input to
a classifier.

Most of the above mentioned studies are based on off-
the-shelf feature representation of chemical compounds
such as the molecular finger printings and tailored sim-
ilarity functions such as kernel functions. More recently,
driven by the significant advances of deep neural net-
works, researchers are moving to automatic extraction
of flexible and expressive compound features from data,
which succeed in improving the predictive performance
[34]. Typical studies consider chemical property predic-
tion formulated as classification or regression problems
based on representation learning of compounds such as
graph convolutional neural networks [35–39]. Some stud-
ies predict chemical networks by taking compound pairs
as inputs [40]. Although not necessarily being specific
to chemical network prediction, representation learning
from chemical networks is mainly based on network
embedding methods [41–43].

Most of the previously mentioned studies represent
both chemical compounds and their interaction networks
as graph structured data. Despite the wide ranging and
rapidly spreading applications of deep learning in the
chemical domain, chemical compound graphs and their
interaction networks have been studied rather indepen-
dently. Such different-level structures in a chemical net-
work are unified as a hierarchically-structured graph,
namely, a graph of graphs (GoG) (Fig. 1). This hierarchi-
cally structured graph has two types of graph structures:
the internal graph structure inside a single compound and
the external graph structure among a set of compounds.

In this paper we develop an effective modeling method
for the GoG which has a more general and complex
graph structure than a single graph, and to consider the
link prediction task on a GoG. We extends the existing
graph convolutional neural network to GoGs by intro-
ducing a new architecture called dual graph convolu-
tional neural network, which allows us to (i) seamlessly
handle both internal and external graph structures in
an end-to-end manner using backpropagation [44] and

(ii) efficiently learn low-dimensional representations of
the GoG nodes. We conduct experiments of the link
prediction task using four chemical network datasets,
that are, drug-drug interaction network, drug indication
network, drug function network, and metabolic reac-
tion network. They have different levels of sparsity and
different tail weights of degree distributions, and we
use them for evaluating applicability of the proposed
approach.

Method
We formulate the chemical network prediction problem
as a link prediction problem in a graph of graphs (GoG).
Our solution which we call dual graph convolution is an
extension of the graph convolutional neural networks that
enables us end-to-end modeling of chemical networks
using two kinds of graph convolution layers: internal
graph convolution layers and external graph convolution
layers.

Problem formulation
Throughout the paper, we denote vectors by bold lower-
case letters (e.g., v ∈ R

d), matrices by bold uppercase
letters (e.g., M ∈ R

m×n), and scalars and discrete sym-
bols (such as graphs and nodes) by non-bold letters (e.g., G
and n).

A GoG is a hierarchically structured graph G = (V ,A),
where V is the set of nodes, A is the adjacency list. Each
node in the GoG is also a graph, which we denote by
G = (V , A) ∈ V , where V is the set of nodes, and A
is the adjacency list. We refer to G as an external graph
and G as an internal graph. Generally, a GoG can have
more than two levels. In this paper, we only consider two
levels for simplicity, and refer to them by internal graph
and external graph; however, our fundamental idea itself
is easily generalized to GoGs with more levels. A chemi-
cal network is represented as a GoG G, whose nodes V are
the set of compounds, and whose edges referred to by its
adjacency list A are the set of binary relations (e.g., inter-
act or not) among the compounds. For each compound
G = (V , A) ∈ V , V is the set of the atoms included in
the compound, and A indicates the set of chemical bonds
among the atoms.

Given a GoG, our goal is to obtain a feature represen-
tation of each internal graph G ∈ V and to predict the
probability of the existence of a (hidden) link between
arbitrary two internal graphs Gi, Gj ∈ V .

Proposed method: dual graph convolutional neural
network
We propose the dual graph convolutional neural
network for a GoG that consists of three compo-
nents (Fig. 2): the internal graph convolution layer
(“Internal graph convolution” section), the external graph
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Fig. 1 Chemical network. A chemical network is represented as a graph of graphs consisting of an external graph and a set of internal graphs. Each
node of the external graph corresponds to a chemical compound, and each compound has its own internal graph structure representing chemical
bonds among its atoms

convolution layer (“External graph convolution” section),
and the link prediction layer (“End-to-end training of the
link prediction function”).

Internal graph convolution
The internal convolution layer takes a chemical com-
pound represented as an internal graph G = (V , A) as its
input, and outputs a fixed-dimensional vector represen-
tation for the compound. At the bottom of the internal
convolution layer, the low-dimensional real-valued vec-
tor representation vk ∈ R

d for the k-th atom vk ∈
V is randomly initialized, where d is the dimension
of the vector. Each vk is initialized differently depend-
ing on the types of atoms (e.g., hydrogen or oxygen),
and trained using back-propagation as well as the sub-
sequent external convolution and link prediction layers
in an end-to-end manner (“Drug indication network”
section).

Given the initialized atom feature vk for each atome vk ,
starting from v(0)

k = vk , we update v(t)
k to v(t+1)

k by the
internal convolution operation:

v(t+1)

k = fG

⎛
⎝Wv(t)

k +
∑

vm∈Ak

Mv(t)
m

⎞
⎠ , (1)

where fG is the non-linear activation function such as
ReLU. Ak is the list of the adjacency atoms of vk , and

W ∈ R
d×d and M ∈ R

d×d are the weight matrices to
be learned. As with the graph convolution of Duvenaud
et al. [35], each atom gradually incorporate global infor-
mation of the compound graph into its representation by
iterating the internal convolution step using the represen-
tations of its adjacent atoms. We make T iterations to
obtain v(1)

k , v(2)

k , . . . , v(T)

k .
Finally, summing all of the atom features over all of

the internal convolution steps to obtain the compound
representation as

g(T) =
∑

vk∈V
σG

( T∑
t=0

v(t)
k

)
, (2)

where σG is a non-linear function such as the softmax
function. We denote by g(T)

i the representation of com-
pound graph Gi ∈ V , which will be the initial feature
vector in the external graph convolution introduced in
“External graph convolution” section.

We have freedom of choices for the nonlinear activa-
tion functions and parameter initialization. In the exper-
iments, we use the ReLU function as activation function
fG. We use different W and M for different degrees (|Ak|
and |Am|) and convolutional steps. We ignored the chem-
ical bond types mainly for computational efficiency; the
data size is increased by encoding the bond informa-
tion as adjacency matrices. This is compensated to some
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Fig. 2 Dual graph convolutional neural network. The internal convolution layer extracts features from the molecular compound graphs, which are
followed by the external convolutions layer to incorporate structural information of the inter-compound network
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extent by introducing the different parameter matrices
for different node degrees by following Duvenaud et al.
([35]). The representation vk of atom k is randomly ini-
tialized using a Gaussian distribution depending on the
atom type, the valence, the number of hydrogen, the
number of degrees, and the aromatic sign as with the neu-
ral finger print [35]. We use the softmax function as σG
in Eq. (2).

External graph convolution
The set of representations for all the compound graphs
{g(T)

i }Gi∈V are further updated with the external convolu-
tion to incorporate structural information of the external
chemical network. Starting from � = 0, we make L
updates using the external convolution operation given as

g(T+�+1)
i = fG

⎛
⎝Ug(T+�)

i +
∑

Gm∈Ai

Vg(T+�)
m

⎞
⎠ , (3)

where fG is a non-linear activation function, Ai is the
adjacency list of compound Gi in the external chemical
network, and U ∈ R

d×d and V ∈ R
d×d are the weight

matrices to be learned. We obtain the final chemical graph
representation h(T+L)

i considering all of the L external
convolution steps as

h(T+L)
i = σG

( L∑
�=0

g(T+�)
i

)
, (4)

where σG is a non-linear activation function; we use the
softmax function in our experiments. Note that dual con-
volution does not aim to obtain a single representation of
the external chemical network, but to obtain the repre-
sentation of each compound considering both the internal
and external graph structures, which will be used in the
following link prediction layer.

We use the softmax function as fG , and use different U
and V for different convolutional steps. we do not distin-
guish different degrees because the interaction networks
have much larger degrees than molecular graphs.

End-to-end training of the link prediction function
The link between two compounds Gi and Gj is predicted
using their final representations h(T+L)

i and h(T+L)
j . A

multi-layer neural network p outputs a two-dimensional
vector y ∈ R

2:

y = p
(

h(T+L)
i , h(T+L)

j

)
, (5)

and the softmax function gives the final link probability:

pt = exp(yt)∑
k exp(yk)

, (6)

where t ∈ {0, 1} is the binary label (i.e., link or no-link).

We use the two-layer neural network as the link predic-
tion network (5) whose input is given as

(
h(T+L)

i + h(T+L)
j

)
⊕

(
h(T+L)

i � h(T+L)
j

)
, (7)

where ⊕ is the concatenation of two vectors and � is
the Hadamard product (i.e., element-wise product). Note
that the symmetry of p with respect to its two inputs is
ensured because the above construction is symmetric with
respect to h(T+L)

i and h(T+L)
j . We use ReLU for all of the

non-linear activation functions.
Given a set of all compound graphs and some observed

links among them as the training dataset, we minimize the
cross-entropy loss function:

L(�) = −
N∑

i=1
log pti (8)

with respect to the model parameters � including the
set of all weight matrices in the dual graph convolutional
network and the atom features (that are initialized ran-
domly). N is the total number of internal graph pairs in the
training dataset, and ti is the i-th label (link or no-link).

Result
We evaluate the proposed dual graph convolution that
combines the structural information of both internal and
external graphs in a GoG. We compare the link prediction
accuracy of the proposed method and several baselines
using four chemical networks. The experimental results
show the proposed method works well for moderately
dense chemical networks with heavy-tailed degree distri-
butions. In an extremely sparse and light-tailed network,
inter-compound links are almost useless, and the domain
specific features (i.e., Morgan indices) perform the best.
The internal convolution also suffers from the lack of
inter-compound links used as the training data.

Datasets
We prepare four different chemical GoGs with different
levels of sparsity and different weights of the tails of the
degree distributions (Figs. 3, 4, 5, and 6). Among the
four chemical networks we describe below, the first two
have heavy-tailed degree distributions, while the others
have relatively light-tailed. One of our main interests is
to obtain insights about the conditions of chemical net-
works in which our proposed neural network architecture
is effective.

Drug–drug interaction network
The first dataset is a drug–drug interaction network that
is a network of drug compounds where two compounds
are connected with a link if they are known to interact,
interfere, or cause adverse reactions when taken together.
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Fig. 3 Node degree distribution of the drug-drug interaction network. The network is dense and very heavy-tailed

We used 1,993 approved drugs that have at most 64
atoms in DrugBank database (https://www.drugbank.ca/
releases/latest), version 5.0.9 (as of October 2, 2017) [45]).
Out of all possible

(1993
2

) = 1, 985, 028 compound pairs,
186,555 have edges; the link density is 0.0940 which means
it is a relatively dense network.

We have only positive links in this dataset; this situation
is sometimes dealt with positive-and-unlabeled learning
[46]; however, we just regard sampled no-links as the
negative links for simplicity [47]. We randomly choose n
positive links and n no-links (i.e., negative links) as the
training dataset. We vary n from 1k to 10k to investigate
the importance of incorporating the information of the
external graph by the external convolution. As the test

dataset, we randomly extract positive and negative links
from the same data distribution as the original network
to preserve the data imbalance, which results in 9,398
positive links and 90,601 negative links.

Drug indication network
The drug indication dataset is a network of drug com-
pounds where two compounds are linked if they have
similar indications. Our dataset is extracted from SIDER2,
version 4.1 (as of October 21, 2015, http://git.dhimmel.
com/SIDER2/), which includes 938 drugs that have fewer
than 64 atoms. Out of all possible

(938
2

) = 439,453
compound pairs, we define 48,679 positive links whose
indication values are positive. As well as the drug-drug

Fig. 4 Node degree distribution of the drug indication network. The network is dense and heavy-tailed

https://www.drugbank.ca/releases/latest
https://www.drugbank.ca/releases/latest
http://git.dhimmel.com/SIDER2/
http://git.dhimmel.com/SIDER2/
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Fig. 5 Node degree distribution of the drug function network. The network is sparse and light-tailed

interaction network, we sample no-links as the negative
links. We use 2,215 positive links and 17,785 negative links
as the test set.

Drug–function network
The Drug function network dataset is a network of drug
compounds where two compounds are linked if they share
a same target protein. From the original dataset [48] which
uses the DrugBank database, version 2.5 (as of January 29,
2009), we used 3,918 compounds that have fewer than 64
atoms. Out of all possible

(3918
2

) = 7, 673, 403 compound
pairs, 35,562 have edges; the link density is 0.0046 which
means it is a sparse network.

As well as the drug-drug interaction dataset, this net-
work also has only positive links; therefore, we sample
no-links as the negative links. We have 1,390 positive links
and 298,609 negative links in the test set.

Metabolite reaction network
The last dataset is the metabolic reaction network dataset
that is a network of metabolite compounds where two
compounds are linked if they are the substrate-product
pair in an enzymatic reaction on metabolic pathways [26].
Enzymatic reactions and the associated chemical com-
pounds were obtained from the KEGG LIGAND database,
Release 62.0 [49]. In this study we collected 5,920 com-

Fig. 6 Node degree distribution of the metabolic reaction network. The network is extremely sparse and light-tailed
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pounds that have fewer than 64 atoms. Out of all possible(5920
2

) = 17, 520, 240 compound pairs, only 5,041 have
edges; the link density is 0.0003 which means it is an
extremely sparse network. These edges are regarded as
positive links, and the other compound-compound pairs
are regarded as negative links.

Different from the other datasets, this network has both
5,041 positive links and 220,096 negative links; the test set
consists of 223 positive links 9,777 negative links.

Specific implementation of the proposed model
We implement the proposed dual graph convolutional
network using Chainer [50] and use ADAM [51] as the
optimizer. The learning rate is set to 0.001. We use held-
out development datasets to choose d, the number of
dimension of the internal graph representations, from
{32, 62, 128}, and the numbers of convolution steps T and
L from {1, 3, 5}. Similarly, the batch size is selected from
{64, 128, 256}. Generally, especially in dense external net-
works, the number of external convolution seems more
important than that of the internal convolution. We also
set the dropout rate 0.2 in Eq. (1). The sizes of the two lay-
ers in the link prediction function are set to 128 and 64,
respectively.

Baseline methods
We compare the dual graph convolutional network with
several baselines, namely, (i) a model using only inter-
nal graph convolution, (ii) models based only on external
graph structures, (iii) a model based on hashed Morgan
fingerprints instead of the internal graph convolution, and
(iv) several similarity indices for link prediction.

Internal graph convolution
Internal graph convolution obtains 64-dimensional rep-
resentations of molecular graphs. We do not use the
inter-compound network, and we create a feature vec-
tor for each molecule by the internal convolution and
directly use it as an input to the link prediction net-
work. We use the same convolution formula as that by
Duvenaud et al. [35].

External graph embedding
External graph embedding is a standard approach to link
prediction using only the inter-compound network (i.e.,
the external graph). We test DeepWalk [41] that is one
of the well-known embedding methods, and also test the
general relational embedding model proposed by Yan et
al. [52] where the latent representation for each molecule
is initialized to a 64-dimensional random vector. The link
prediction network (5) is applied to a pair of molecules.

Hashed morgan fingerprints
We use the hashed Morgan fingerprints, which is well-
known off-the-shelf chemical features based on chemical

Table 1 Definitions of several similarity indices between two
nodes (Gi , Gj) in a GoG G
Similarity index Definition

Common neighbours | N (Gi) ∩ N (Gj) |
Jaccard’s coefficient |N (Gi)∩N (Gj)|

|N (Gi)∪N (Gj)|
Katz (I − βA)−1 − I

N (G) indicates the neighbor set of node G. I is the identity matrix and A is the
adjacency matrix of G . β is the constant parameter that controls path weights
depending on their lengths, and we set β = 0.001

substructures. We use 2048-dimensional Morgan finger-
prints as a feature vector of a molecule. The link predic-
tion network (5) is applied to a pair of molecules.

Similarity indices
A similarity index gives the similarity of arbitrary two
nodes in a graph. Typical similarity indices include com-
mon neighbors index (CN), Jaccard’s coefficient index
(Jaccard), and the Katz index (Katz). Table 1 summarizes
their definitions. Despite their simplicity, they are quite
powerful for biological network prediction [53]. Links are
predicted in descending order of their similarity scores.

Results
All the datasets we use have imbalance nature in terms
of the number of positive and negative links; therefore we
measure the predictive performance of each method using
(i) ROC-AUC which is not affected by the label imbal-
ance and (ii) PR-AUC which can suitably evaluate the
performance on imbalanced datasets.

Figures 7, 8, 9, and 10 show the comparison of the
proposed method and the four baselines in terms of
ROC-AUC and PR-AUC with different training set sizes.
In Fig. 7 and Fig. 8, the dual graph convolution net-
work achieves consistently better ROC-AUC and PR-AUC
scores over the baselines in the drug-drug interaction net-
work and the drug indication network. This is probably
due to the high density and the heavy-tailed degree distri-
bution of its external graph (i.e., inter-compound graph).
In such networks, the external links are likely to efficiently
connect many nodes with short paths, and therefore, the
dual convolution successfully extracts structural features
in the external graph.

Figure 9 shows the result for the drug function network.
The advantage of the dual convolution is rather lim-
ited in the relatively sparse light-tailed network, because
the efficiency of external node connections is lower than
the previous networks. Interestingly the performance of
DeepWalk and the similarity indices, especially, the Katz
index, improves as the size of the training set increases;
this implies that DeepWalk and the Katz index success-
fully extracts structural features from longer paths. Given
that DeepWalk the similarity indices do not consider
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Fig. 7 Prediction performance for the drug-drug interaction network. The performance is given in both ROC-AUC (left) and PR-AUC (right). The
proposed dual graph convolution method performs well for this dense network with the very heavy-tailed degree distribution

the internal graph structure at all, information of the
inter-compound network seems more crucial than the
compound graphs in the drug-function network.

In contrast to the other networks, the metabolite
network is an extremely sparse that has very few inter-
compound links and a very light-tailed degree distribu-
tion. The inter-compound links are almost useless in this
network, and therefore the relational embedding method,
DeepWalk and the similarity indices that solely depend
on inter-compound links perform poorly (Fig. 10). Espe-
cially, the performance of DeepWalk and the Katz index
significantly degrades in terms of both ROC-AUC and
PR-AUC, because both are based on paths on a graph,
and they cannot “walk" over the inter-compound links in
such a sparse network. Similarly, the proposed method
cannot even benefit from the external convolution, and

it suffers from the sparsity of the network. The lack
of the external links as the training dataset is also a
severe limitation for extracting features from the internal
graphs. In such a sparse data domain, traditional off-the-
shelf features such as Morgan indices are still reliable
choices.

In summary, our experimental results suggest that
the dual convolution architecture is effective for rela-
tively dense networks, especially when both the internal
and external structures must be considered in an inte-
grated manner. Among the networks, the links of the
drug-drug interaction network represent direct chemi-
cal interactions between two compounds. In such net-
works, non-trivial combination of different chemical sub-
structures of both ends of a link contributes to the
interaction.

Fig. 8 Prediction performance for the drug indication network. The performance is given in both ROC-AUC (left) and PR-AUC (right). The proposed
dual graph convolution method performs well for this dense network with the heavy-tailed degree distribution



Harada et al. BMC Bioinformatics 2020, 21(Suppl 3):94 Page 10 of 13

Fig. 9 Prediction performance for the drug function network. The performance is given in both ROC-AUC (left) and PR-AUC (right). The advantage of
the proposed method is limited for this sparse network with the light-tailed degree distribution

Discussion
We discuss the computational efficiency and extendability
of the proposed model.

We compare the complexity and scalability of our dual
convolution model and the existing graph neural net-
work using only the internal graph convolution. Table 2
shows the comparison of complexity in terms of time and
space required for one update of mini-batch backprop-
agation training. In terms of time complexity, while the
internal graph convolution requires the linear complex-
ity with respect to the number of nonzero elements |A|
in the adjacency matrix of internal graph, our method
suffers from the (linear) complexity depending on the

numbers of nodes involved in the external graph con-
volution and the complexity of internal graph convo-
lutions. In terms of space complexity, in addition to
storing the external embeddings, we need to store the
internal graph embeddings which are associated with
each external node. Taking the overlapping of different
nodes into account, both complexity can be less than the
worst case BDL. However, this still leads to computational
problems in terms of both time and space complexity.
This is a limitation of the proposed method especially
when we consider deeper convolutional network architec-
tures, which is an important problem to be addressed in
future work.

Fig. 10 Prediction performance for the metabolic reaction network. The performance is given in both ROC-AUC (left) and PR-AUC (right). The
proposed method shows the limited performance for this extremely sparse network with the light-tailed degree distribution. Inter-compound links
are almost useless as features, and therefore the domain specific features (i.e., Morgan indices) perform the best. The internal convolution also
suffers from the lack of the links as the training data
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Table 2 Comparison of the time and space complexity of backpropagation training of the standard graph convolutional network
(Internal convolution) and the proposed model (Dual convolution)

Method Time complexity Space complexity

Internal convolution [35] BT |A|d + BTNind2 BTNind + Td2

Dual convolution (proposed) BDL
exd2 + DL

ex(BT |A|d + BTNind2) BDL
exd + Ld2 + DL

exBTNind + Td2

We denote the dimension of each layer by d, which is fixed for all layers for simplicity. Nin are the average number of the nodes in the internal graphs, respectively. B is the
batch size. Dex is the average degree of an external graph. A is the adjacency matrix of G. |A| is the number of nonzero elements in A. We omit the complexity related to the
multi-layer neural network and the memory of storing the graph for simplicity because the multi-layer neural network is common to the two models and storing the graph is
basically not the crucial issue

We finally discuss the extendability of the proposed dual
graph convolution model. What we proposed in this paper
is a general graph neural network architecture for GoGs,
and our proposed dual graph convolution is based on
one of the simplest convolution operators [35]. Recent
advances in graph neural networks have introduced var-
ious effective techniques such as graph attention [54],
message passing [38], and neighbor sampling [55]. Most
of these new techniques are independent of our proposed
architecture and can be integrated into our architecture.

In this paper, we focused only on the link prediction
problem on an inter-compound network, and we partic-
ularly designed the output layer for the specific problem.
However, other tasks such as compound classification or
clustering can also be addressed by replacing the final
layer specialized for each specific task, which will be an
interesting future work.

Conclusion
We proposed a new formulation of the chemical net-
work prediction problem as a link prediction problem
in a GoG which can represent the hierarchical structure
consisting of compound graphs and an inter-compound
graph. We proposed a new graph convolutional neural
network architecture called dual graph convolutional net-
work that learns compound representations from both
the compound graphs and the inter-compound network
in an end-to-end manner. We demonstrated the effective-
ness of the proposed method for predicting interactions
among molecules by using four chemical GoGs. Our dual
convolution approach achieved high prediction perfor-
mance even though the features were lower-dimensional
compared to the off-the-shelf features in relatively dense
networks, while the performance becomes inferior on
extremely-sparse external networks because of the dif-
ficulty of exploiting the information about the external
networks.
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