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Abstract 

Background: In genomics, we often assume that continuous data, such as gene 
expression, follow a specific kind of distribution. However we rarely stop to ques-
tion the validity of this assumption, or consider how broadly applicable it may be to 
all genes that are in the transcriptome. Our study investigated the prevalence of a 
range of gene expression distributions in three different tumor types from the Cancer 
Genome Atlas (TCGA).

Results: Surprisingly, the expression of less than 50% of all genes was Normally-
distributed, with other distributions including Gamma, Bimodal, Cauchy, and Lognor-
mal also represented. Most of the distribution categories contained genes that were 
significantly enriched for unique biological processes. Different assumptions based on 
the shape of the expression profile were used to identify genes that could discriminate 
between patients with good versus poor survival. The prognostic marker genes that 
were identified when the shape of the distribution was accounted for reflected func-
tional insights into cancer biology that were not observed when standard assumptions 
were applied. We showed that when multiple types of distributions were permitted, i.e. 
the shape of the expression profile was used, the statistical classifiers had greater pre-
dictive accuracy for determining the prognosis of a patient versus those that assumed 
only one type of gene expression distribution.

Conclusions: Our results highlight the value of studying a gene’s distribution shape 
to model heterogeneity of transcriptomic data and the impact on using analyses that 
permit more than one type of gene expression distribution. These insights would have 
been overlooked when using standard approaches that assume all genes follow the 
same type of distribution in a patient cohort.
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Background
A fundamental tenet of applied statistics states that under certain conditions, data 
can be modeled by a probability distribution like a Normal or a Poisson. If appropri-
ately applied, then this assumption is powerful because it allows for well-established 
statistical methods to be used to answer questions about the data. The most com-
mon statistical methods, such as the t-test and ANOVA models, are all predicated 
on this assumption that the data follows a Normal distribution. As we begin to learn 
more about the diversity of gene expression in human populations, we call into ques-
tion the relevance of assuming that the transcriptome can be uniformly modeled by 
just one distribution. At the heart of our study is a straightforward question—how 
prevalent are genes with non-Normal expression, and what new information for 
understanding transcriptional regulation can we learn from them? We raise this ques-
tion not to invalidate previous findings that have used assumptions of Normality, but 
instead to draw attention to genes that may have otherwise been overlooked and the 
insights that they bring, especially in the context of disease processes. Using the Can-
cer Genome Atlas (TCGA) as a platform to investigate this question, we show that 
more than half of genes in the cancer transcriptome are non-Normally distributed 
for multiple tumor types. Most significantly, we show that accounting for the distri-
bution shape improved the accuracy of patient survival time predictions. Our study 
demonstrates that the assumption of Normality did not apply uniformly to all genes 
in the cancer transcriptome. Importantly, incorporating assumptions based on multi-
ple distribution categories into the analysis of gene expression revealed information 
for understanding the transcriptional control of cancer that would have been missed 
using standard approaches.

To investigate the prevalence of Normally-distributed genes in the transcriptome, 
we assembled a panel of six statistical distributions. Each of these distributions has its 
own set of properties and collectively capture a diversity of density shapes (Fig. 1). We 
included two symmetric distributions, the Normal and Cauchy distributions, where 
the latter has heavy tails and is more peaked than the Normal distribution. The Log-
normal, Pareto, and Gamma distributions all have skewed, asymmetric shapes. The 
Lognormal is an asymmetric distribution but on a log scale, so Normality assump-
tions are still applicable for this distribution. In contrast, the Pareto is a heavy-tailed 
distribution and the most skewed in our distribution panel. The Gamma is a distribu-
tion whose values can span more or less skewness depending on the parameters, and 
overall its shape is not as extreme as the Pareto. The Bimodal distribution models 
an alternative kind of heterogeneity where two distinct sub-groups exist in the data. 
We applied this panel to three different TCGA data sets, the acute myeloid leukemia 
(AML) [1], ovarian cancer (OV) [2], and Glioblastoma multiforme (GBM) [3] patient 
cohorts.
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Results
Over 50% of the cancer transcriptome does not follow a Normal distribution.

Each gene was classified based on the proximity of its gene expression distribu-
tion to one of the six probability density distributions described in Fig. 2. The clas-
sification scheme was designed to first evaluate the statistical likelihood of whether 
a gene’s expression profile matched a Bimodal distribution, and if this was not the 
case, to then assess whether any of the remaining five unimodal distributions were 
a more appropriate fit (see Methods for a description of the classification scheme). 
If an adequate fit could not be determined from these six options, the gene was dis-
carded from further analysis. Under this classification scheme, the Normal distri-
bution captured 13 to 15% of genes in the three microarray cancer datasets in this 
study (13.73% for AML, 13.52% for GBM, 15.13% for OV, Fig. 3a) and less than 45% of 
genes in the RNA-seq datasets for the same tumor types (30.29% for AML, 41.8% for 
GBM, 43.18% for OV, Fig. 3c). The Gamma distribution was the largest non-Normal 
category of genes for both microarray and RNA-seq datasets (representing 21–32%). 
Gene counts for all distributions are listed in Additional file 1: Table S1. Since differ-
ent microarray platforms were used to generate the data, we investigated whether this 
affected any of the distribution counts observed (Fig. 3a). Because the two Affymetrix 
microarray platforms that were used, U133A and U133 Plus 2.0, share a set of genes 
in common, the presence of a platform-specific effect could be tested. When focusing 
only on the set of genes that were common across all array platforms, it could be seen 
that the proportion of genes assigned to each of the distributions remained the same, 
indicating that this effect is more likely to be biological rather than technical (Fig. 3b).

Fig. 1. Panel of six statistical distributions that capture a diversity of different probability density shapes. a 
Normal, b Cauchy, c Lognormal, d Pareto, e Gamma, f Bimodal
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Fig. 2 Pipeline to classify genes according to their distribution shape. If a gene is classified as bimodal, it is 
removed from the list and the algorithm continues on the remaining genes. The category sets are mutually 
exclusive. Genes falling in neither category are classified as unknown and removed from further analysis

Fig. 3 Representation of genes in each distribution category for the microarray, microarray Plus2a, RNA-seq 
data. a Number of genes classified in each distribution for the three microarray datasets. b Number of 
genes classified in each distribution when exclusively looking at the genes in the Plus2a platform c Number 
of genes classified in each distribution for the three RNA-seq datasets. Colors correspond to different 
distributions; Gamma (purple), bimodal (bimodal), Cauchy (green), Lognormal (orange), Normal (gray), 
unknown (black). Note that no genes in the Pareto distribution were identified for any of the datasets
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Incorporating assumptions that permit more than one distribution type identifies different 

sets of genes that discriminate between good versus poor patient survival outcomes

In a cancer patient cohort, gene expression is commonly used to identify genes that can 
discriminate between patients with good versus poor survival. Typically, the methods 
employed for this purpose assume that all genes follow the same underlying distribution. 
This may be limited because the task of identifying meaningful sub-groups is affected 
by the shape of a gene’s expression profile in the patient cohort. For example, if a gene is 
assumed to have Normally-distributed data (or any symmetric distribution), we usually 
compare the patients that have expression of a gene in the extreme tails of the distribu-
tion, against those with gene expression in the non-tail region (Fig.  4a). For symmet-
rically-distributed data, like the Normal distribution, this is a sensible sub-grouping to 

Fig. 4 Decision rules for identifying extreme and non-extreme patient groups that take into account the 
specific shape of the gene expression distribution. a For symmetric distributions, the extreme patient group 
is represented by the samples falling in either the upper or lower percentile of the distribution as shown by 
the purple tails (in our analysis, the tenth percentile is used). The non-extreme patient group corresponds to 
the samples falling between these two percentile cut-offs as shown by the green region. b. For asymmetric 
distributions, the extreme patient group corresponds to samples only in the first or last percentile depending 
on the shape of the asymmetry, as shown by the one-sided purple tail. The remaining region of the 
distribution represents the non-extreme patient group. c For bimodal distributions, the split is determined by 
a clustering algorithm applied to the expression data to identify which patients belong to one group (mode) 
versus another. For genes in the bimodal expression category, the definition of extreme and non-extreme 
patient groups is not relevant, and instead we identify two patient groups for comparison, as shown by the 
purple and green regions. d Theoretical example of two survival curves constructed for patients in Groups 1 
and 2 as defined in a, b or c
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adopt. However, for non-Normal distributions, such as those with asymmetry or are 
bimodal, it is clear that an alternative, more intuitive choice of sub-grouping is available 
(Fig. 4b, c) for contrasting survival curves (Fig. 4d).

We term those genes whose expression distinguishes significant differences in patient 
survival time as prognostic marker genes. We found that when the distribution shape 
is taken into account, a set of prognostic marker genes was identified (log-rank test, p 
value < 0.05, see Additional file 1: Table S2). The intersection between the genes that were 
found when the distribution shape information was used, and those when the assump-
tion of symmetry was applied uniformly (i.e. assumption of only one distribution), was 
minimal for the three cancers (for the non-symmetric genes, the overlap was eight genes 
for AML, and zero for GBM and OV). This small overlap indicates that a different set of 
prognostic markers are identified, depending on whether the distribution shape is fac-
tored in, or a single distribution type is assumed.

The second largest type of non-Normal distribution represented amongst the genes 
that were identified based on the distribution shape information was the Bimodal distri-
bution. This result highlights the existence of Bimodally-expressed genes that have dis-
tinct modes corresponding to statistically significant differences in survival time. Genes 
that were found to be significant in patient survival time using the shape of the expres-
sion distribution are listed in Additional file  1: Table  S3 (summary of survival times 
listed in Additional file 1: Table S4). To determine the degree of robustness of our result, 
we also looked at how many genes were significant in survival time when patients were 
randomly assigned to the two groups (corresponding to the green and purple regions in 
Fig. 4). No genes were significant under this assumption, indicating that the genes found 
using the distribution shape information were unlikely to be detected purely by chance 
(Additional file 1: Table S2).

Identifying prognostic marker genes using the expression distribution shape information 

provides functional insights into cancer biology that were not found using standard 

symmetric assumptions

For AML, functional terms and biological pathways from MSigDB were significantly 
over-represented in the non-Normal prognostic marker genes, and not in the set of Nor-
mally-expressed prognostic marker genes, indicating that these gene sets correspond to 
different pathways (Additional file 1: Table S5–S7). The non-Normal prognostic marker 
genes for AML were enriched for the KEGG inositol phosphate metabolism pathway. 
Previous studies have demonstrated a link between this pathway and cancer, where com-
mon germline variation in this pathway has been shown to serve as a susceptibility factor 
[4, 5]. Another KEGG pathway that was enriched was related to Fc gamma R-mediated 
phagocytosis, a pathway that has previously been shown to be upregulated in HL-60 
cells, which is a leukemia cell line [6]. The non-Normal prognostic marker genes in AML 
were also enriched for an oncogenic signature based on human leukemia cells from a 
HOXA9 knockdown (Additional file  1: Table  S5). We investigated whether any of our 
non-Normal genes that were identified using the distribution shape information had 
been detected in seven previous studies of AML gene expression [7–12]. Of all the seven 
signatures tested, we observed at most two genes out of 561 in the signature, suggesting 
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that the non-Normal genes we have identified may be prognostic markers of AML that 
have largely been missed by existing analyses (Additional file 1: Table S8).

For OV, the pathways that were exclusively over-represented in the non-Normally 
expressed genes were enriched for the MicroRNA biogenesis REACTOME pathway. 
It has been shown that gene sets related to RNase III DROSHA and DICER1 were 
decreased in ovarian cancer [13]. The non-Normal prognostic marker genes were also 
enriched in genes defining epithelial-mesenchymal transition which is a critical step for 
cancer cell invasion and metastasis [14] (Additional file 1: Table S7).

For GBM, the non-Normal prognostic marker genes were enriched for the immune 
system and neuronal system pathways from REACTOME, and more broadly for gene 
sets involved in the regulation of cellular and biological processes (Additional file  1: 
Table S6). Overall, for this particular tumor type, the pathways over-represented in the 
list of non-Normal prognostic marker genes were less specialized and with less of a clear 
link to cancer compared to the other two tumor types.

Incorporating the shape of the gene expression distribution improved the performance 

of a classifier’s ability to predict survival of individual patients in different types of cancers

Prognostic marker genes can be combined to construct a gene expression-based clas-
sifier to predict the survival time of new patients. We investigated whether leveraging 
information about the expression distribution shape resulted in more accurate predic-
tions of patient survival time compared to classifiers that assumed all genes followed a 
symmetric distribution. To compare the performance of these two sets of predictors, 
we used a non-parametric classification method, a random survival forest, on genes 
that were selected based on whether they were significantly different in gene expression 
under the two sets of assumptions.

Because of its ability to distinguish relevant features from irrelevant ones, the random 
survival forest method [15] is well-suited for high-dimensional problems. It is an effi-
cient computational method that can handle non-linear or complex higher-order inter-
action effects. Under the algorithm framework, a tree represents a graphical construct 
that describes the hierarchical relationship between genes. Individual genes are prior-
itized in the hierarchy based on how well their expression profiles are able to discrimi-
nate between patient survival times. A collection of trees, termed a forest, is grown by 
the algorithm using independent bootstrapping of the original data set. For each tumor 
type, we designated two-thirds of the data for classifier training, and the random sur-
vival forest method was applied to this training set using 1000 bootstraps. The remaining 
one-third of the data was used for testing the accuracy of the classifier by predicting the 
survival status of each patient that the classifier had not yet seen.

Classifiers were constructed under the two assumptions that differed in how the 
patient subgroups were identified. For the first assumption, the shape of the gene 
expression distribution was taken into consideration so that the subgroups were 
defined as in Fig. 4b. For the second assumption, all genes were assumed to have sym-
metric expression distributions (Fig. 4a). To test the robustness of the results, a third 
set of classifiers was also constructed based on a random selection of genes that was 
equal in size to the number of genes obtained under the shape-based assumption. To 
ensure that our results were not biased toward a specific combination of patients in 
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the training and test data sets, we randomly divided the data into training and test 
sets 100 times with a 2/3 split of the data set for the training set and 1/3 for the test 
set. The classification of genes in each distribution was restricted to the training set 
only. The classification procedure was repeated under the three sets of assumptions 
for the three different tumor types for each of the 100 unique training/test data sets. 
Performance of the three classifiers was assessed based on misclassification rates 
observed for the 100 repeats of each tumor type using the test data set. A prediction 
was considered misclassified if a patient was predicted to have good survival when in 
actual fact the patient’s survival status was poor, or vice versa (Fig. 5).

Classifiers derived under the shape-based assumption surpassed the performance 
of the symmetric-based ones for the microarray and RNA-seq datasets of the three 
cancer types, AML, GBM and OV (Fig.  6). Performance of the classifiers can also 
be assessed by counting how many times the shape-based classifier outperformed 
the symmetric-based classifier in the 100 repeats performed. Using this metric, the 
shape-based classifier performed as well or better than the symmetric-based one in at 
least 60 of the 100 repeats (Table 1). In AML, 63 out of 100 times for microarray and 
60 out of 100 times, the shape-based classifier had an equal or better misclassifica-
tion rate than the symmetric one. The two classifiers had even better performance for 
GBM and OV with a 66 and 69 out of 100 times for microarray and a 71 and 70 out 
of 100 times for RNA-seq, respectively. In summary, building the shape of the gene 

Fig. 5 Pipeline to test the performance of the shape-based assumption in patient survival prediction. This 
pipeline is used once for each assumption: shape, symmetric and random where the difference occurs in 
step 2. For the shape assumption, we will separate the samples using the shape (Fig. 4a–c) and then compute 
the p value with a log-rank test. For the symmetric assumption, we will separate the samples into two groups 
using the same splitting rule for all the genes (Fig. 4a) and then compute the p value with a log-rank test. For 
the random assumption, the 100 genes are just chosen at random from the dataset and then compute the p 
value with a log-rank test
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expression distribution results into classifiers that predict a patient’s survival time 
increased performance.

Box‑Cox transformations did not alter the number of Normally‑distributed genes 

in RNA‑sequencing data

Our results demonstrated an overwhelming proportion of non-Normal distributions, 
with the range of non-Normally expressed genes being 56.82 to 69.71% in the RNA-
seq datasets for all three tumors. In applied statistics, a common procedure to induce 
Normality for seemingly non-Normal data is a Box-Cox transformation, and one could 
argue that applying these standard adjustments would restore Normality in the data. 

Fig. 6 Comparing prediction accuracy using classifiers that incorporate the expression shape versus 
assuming a symmetric distribution for all genes. We used random survival forests to predict the prognosis 
of patients and tested the performance of classifiers derived three ways; first, incorporating information 
from the distribution shape, second, assuming symmetry for all genes, and third, for a random set of genes. 
Classifiers were trained on 2/3 of the data, tested on 1/3, and repeated 100 times a AML Microarray, b GBM 
Microarray, c OV Microarray, d AML RNA-seq, e GBM RNA-seq, f OV RNA-seq. Stars indicate datasets where the 
shape-based approach produced lower misclassification rates that were statistically significant (Wilcoxon test, 
* = p value < 0.05, ** = p value < 0.01, NS = Not Significant). The notch in each boxplot displays a confidence 
interval based on median misclassification rate ± 1.58 × IQR/√n where n = 100, notches that do not overlap 
reflect statistically significant comparisons

Table 1 Number of  times  where the  shape assumption is  better than  the  symmetric one 
for Microarray and RNA-seq datasets

The number in parenthesis represents the number of equality between both misclassification rates

AML
Microarray

GBM
Microarray

OV
Microarray

AML
RNA‑seq

GBM
RNA‑seq

OV
RNA‑seq

Misclassification rate of shape 
assumption ≤ misclassification rate 
of symmetric assumption

63 (7) 66 (2) 69 (16) 60 (7) 71 (13) 70 (14)
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To investigate this, we applied the Box-Cox transformation with varying parameters 
� = −10, · · · , 10 to both sets of gene expression data. For all three RNA-seq datasets, 
the maximum number of Normally-distributed genes was observed when the Box-Cox 
transformation was not applied. In other words, application of the Box-Cox transforma-
tion was not successful in converting the non-Normally-distributed genes into Normal 
ones across the parameter space that was used (Fig. 7). For the microarray datasets, the 
number of Normally-distributed genes did increase due to the Box-Cox transformation; 
however, the difference observed was small (Fig. 7a–c).

Tumor purity does not influence variation in gene expression shape for the overall cancer 

transcriptome

To assess the influence of tumor purity, we used the information provided by TCGA 
that represented the pathologist’s estimate of purity for each patient sample and cor-
related this measure with gene expression. While it is possible to estimate tumor purity 
from gene expression data, in this case, we used the estimates that were calculated 
by the pathologist that were provided in the clinical data associated with each TCGA 
tumor sample. In general, minimal correlation was observed between the microarray, 
RNA-seq datasets and the tumor purity (Additional file  1: Figure S1). For the GBM 
RNA-seq dataset, no correlations between genes were statistically significant (adjusted 
p values < 0.001). For the remaining datasets, the number of significant correlations 
remained small relative to the total number of genes; where 377, 384 and 441 genes were 
statistically significant for GBM microarray, OV microarray and OV RNA-seq datasets 
respectively.

Fig. 7 Box-Cox transformation applied to Microarray and RNA-seq datasets. The Box-Cox transformation 
x
�
−1
�

 with � = −10, · · · , 10 was applied to the three microarray and RNa-seq datasets to see if the number 
of Normally distributed genes was changing. The blue star corresponds to untransformed dataset and the 
purple rectangle to the transformed ones
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For the datasets where significant correlations were detected, we investigated these 
genes further to understand whether non-Normal distributions were likely to have 
an association with tumor purity. Specifically, for GBM microarray and OV microar-
ray, the majority of the genes with a statistically significant correlation between tumor 
purity and gene expression were not categorized as Normal but were instead Gamma 
and bimodal respectively (see Additional file 1: Table S9A). For OV RNA-seq, the major-
ity of these statistically significant genes were categorized as Normally-distributed in 
their gene expression profiles (see Additional file 1: Table S9A). We tested the associa-
tion between Normally-distributed genes and their influence on tumor purity using 
Fisher’s exact tests. For the GBM microarray dataset, this association was not signifi-
cant (p value > 0.05, see Additional file 1: Table S9B), but for both OV microarray and 
OV RNA-seq datasets, a statistical association was observed (p value = 0.0197, 0.00101, 
respectively). Interestingly, for the OV microarray dataset, this result points to non-Nor-
mally distributed genes having higher odds of also being influenced by tumor purity (i.e. 
they were also genes that were statistically significant between tumor purity and gene 
expression) (see Additional file 1: Table S9C). In contrast, for the OV RNA-seq dataset, 
this result showed the opposite—that Normally-distributed genes had a higher odds of 
also being influenced by tumor purity (see Additional file 1: Table S9D). Whether these 
results reflect different regulatory relationships that are tumor or platform-specific 
requires further investigation. It is important to recognize though that the gene numbers 
under analysis are relatively small, e.g. for the OV microarray dataset, 49 genes are Nor-
mally distributed and significant for tumor purity, and for the OV RNA-seq dataset, 226 
genes are in this category. Therefore, it is challenging to draw trends from these small 
numbers about influence of tumor purity and distribution shape.

Most distributions demonstrate significant enrichment for unique biological processes

To investigate any underlying trends in regulation, we also inspected whether genes 
belonging to a specific distribution category were enriched for unique biological pro-
cesses. For each patient cohort dataset, over-representation analysis using Gene Ontol-
ogy (GO) biological processes (BP) was applied to the list of genes assigned to each 
distribution (see Methods). There was a wide variety in the numbers of significant 
terms that were returned for each distribution and tumor type (see Additional file  1: 
Table  S10). This was unsurprising, given that the number of genes assigned to each 
distribution was also quite variable (see Additional file  1: Table  S1). Interestingly, we 
saw that some distribution categories had GO:BP terms that were unique and not sig-
nificantly represented in other categories for a given tumor type (see Additional file 1: 
Table  S10). Given the wide spread in the number of unique significant GO:BP terms, 
ranging from zero to 282, we chose to visualize these terms by reporting the top five 
most significant GO:BP terms for each distribution category in each patient cohort data-
set (see Additional file  1: Table  S11). For some distribution categories, no significant 
GO:BP terms that were unique were reported. However, each datasets had at least one 
distribution category that had significant GO:BP terms that were uniquely represented. 
Of note, we did not observe any clear overlap in the GO:BP terms for the same tumor 
type across different technology platforms e.g. the AML microarray results (Additional 
file 1: Table S11A) versus the AML RNA-seq results (Additional file 1: Table S11D). This 
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likely reflects  the that fact that different sets of genes were quantified and assigned to 
these distribution categories for the microarray and RNA-seq datasets.

Discussion
Our study illustrates just how diverse distributions can be in cancer transcriptomes. 
We often take for granted that genes follow the same expression distribution and that 
it is their population-level summary statistics, like the average gene expression, that will 
identify key regulators of a phenotype or disease. While these summary statistics are 
indeed important, we showed that modeling other features of the expression distribu-
tion can also provide regulatory information. Fundamentally, the results of our study are 
significant because they force us to confront the fact that a gene’s expression profile can-
not simply be summarized by a single statistical distribution. We showed how incorpo-
rating the shape of the expression distribution provided a means to identify genes with 
prognostic value for patient survival status that were not detected using conventional 
approaches that assume all genes are symmetrically distributed in a patient cohort. 
Moreover, we showed that using this shape information of the expression distribution 
resulted in a more accurate classification of patient survival time.

Throughout the history of science, the Normal distribution has been a ubiquitous fea-
ture in many forms of data analysis. Part of this ubiquity can be attributed to the central 
limit theorem (CLT), which explains how the average value of a variable will approxi-
mately follow a Normal distribution, regardless of the underlying data distribution. 
Validity of the CLT is dependent upon the design of the data being sufficiently large and 
the data points having been sampled independently from the same population. Because 
of the CLT, standard statistical methods typically have some degree of inbuilt robustness 
so that they are generally able to produce valid inferences even in the presence of some 
non-Normal data but this does not apply to all situations. In reality, deviations from Nor-
mality do exist in the data, but the extent of these deviations is not commonly assessed. 
For the entire transcriptome, this means that genes with expression profiles that more 
closely resemble a Normal distribution will be more easily detectable by standard statis-
tical methods compared to genes that have a different expression distribution. This kind 
of bias means many genes may be being overlooked or down-weighted because we are 
not stopping to first evaluate the prevalence of different distributions [16].

Attention to non-Normality in gene expression has so far yielded some valuable 
insights in cancer biology. For instance, in a patient cohort, genes with distinct on 
and off transcriptional states followed a Bimodal distribution and have been detected 
in a variety of different tumor types [17]. These switch-like genes have been shown to 
identify patients subgroups with different rates of survival [18] or distinguish between 
extremely aggressive forms of tumors [19]. More recently, Piqué et  al. [20] demon-
strated how bimodal distributions in TCGA breast cancer data identified potential 
oncogenes for patient subgroups, including the gene CBX2 which was shown to pro-
mote cancer cell growth in MCF-7 breast cancer cells. During the early development 
of statistical models for cDNA microarrays, Newton et al. [21] adopted a Gamma dis-
tribution to estimate significance of gene expression ratios. Despite the mathematical 
advantages of using the Gamma distribution, this study observed that the overall fit of 
the Gamma distribution to the entire transcriptome was relatively poor and the use 
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of the distribution was discarded in favor of other more tractable distributions. If we 
interpret this finding from a different perspective, it is interesting to note that some 
genes that Newton et al. [21] surveyed had expression profiles that showed a good fit 
to a Gamma distribution, while others did not.

The search for other non-Normal distributions in the transcriptome remains lim-
ited despite the fact that these distributions have the potential to model rare regula-
tory events in large patient cohorts with more flexibility than a Normal distribution. 
Non-Normal distributions that are asymmetric and skewed can more accurately 
model genes spanning a range of aberrant expression for an extreme group of individ-
uals than a symmetric distribution can [22]. Such long-tailed aberrations could reflect 
DNA sequence or copy number variation, different isoforms or alternative splicing 
patterns. Non-genetic factors at the environmental or epigenetic level may also drive 
the appearance of different sub-groupings of gene expression in the patient cohort.

The classification of genes into their respective expression distribution shapes may 
provide an avenue to integrate data of different genomic types such that regulatory 
mechanisms can be studied more fruitfully. For example, in the promoter region 
upstream of a gene with a bimodal gene expression distribution, a polymorphism may 
exist such that patients in one expression mode have this mutation, while patients in 
the other expression mode do not. Similarly, genes with asymmetric expression dis-
tributions may be a product of patients who share largely the same genomic features 
with a separate minority of patients whose outlier gene expression values reflect dif-
ferences in methylation, alternative splicing or other regulatory events. Integration of 
clinical patient data with other genomic data types based on the shape of the distri-
bution, whether it be for gene expression or DNA methylation, may be a more real-
istic way to identify significant relationships. This is because summary statistics are 
derived from the total population, i.e. an average expression assumes that all patients 
will have approximately, a specified level of gene expression.

A major focus of this study was to understand the prevalence of different distri-
butions that were represented in a cancer transcriptome, of which the Normal dis-
tribution is one of the six distributions that was under consideration. While gene 
expression as measured by RNA-seq is usually represented by a negative binomial 
distribution, the broader question is whether the negative binomial distribution is rel-
evant for all genes in the RNA-seq dataset as opposed to other possible distributions 
being prevalent amongst all genes too. To make our study as comprehensive as pos-
sible, we included data from at least two technology platforms. Since both RNA-seq 
and microarray datasets were profiled for the same set of TCGA patients, this was 
an elegant design to capitalize on for this study. Because gene expression as meas-
ured by microarrays is typically modelled as continuous data (and sometimes thought 
to be Normally-distributed), we nominated a diverse panel of six distributions that 
were applied to both RNA-sequencing and microarray datasets for consistency. We 
also only chose tumor types where a large number of patient samples were available. 
This larger sample size helps to improve the validity of approximating count data with 
continuous distributions. It is interesting to note that for the RNA-sequencing data-
sets, the percentage of genes with a Normal distribution increased for all three tumor 
types compared to the microarray datasets (Fig. 3c).
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One aspect of this study was to investigate how assumptions based on the gene expres-
sion distribution shape impacted the performance of survival analysis models. It is 
worthwhile recognizing that the use of thresholds to evaluate survival analysis differ-
ences is inherently arbitrary. A previous study took a broader view into investigating how 
threshold-based cut-offs versus more robust, less arbitrary approaches such as the con-
cordance index (C-index), D-index, and K-means performed for survival analysis models 
based on gene expression data sets from TCGA [23]. Raman et al. also contrasted per-
formance of these metrics against the distribution-based ones that were included in this 
study. Results from these comparisons showed that the C-index, D-index, and k-means 
had the strongest performance overall. The splits determined by the distribution-based 
assumptions were not amongst the best performers. This result suggests that for the 
most robust performance, survival analysis models should use metrics that identify the 
most appropriate data-specific split like the C-index, rather than rely on population-spe-
cific, pre-determined thresholds like quartiles.

The assumptions of gene expression distribution shape that were tested in this study 
are inherently tied to assumptions that are made about Normality. For example, the 
shape assumption permits distributions to be Normal (see Fig. 4a) or any of the non-
Normal options (Bimodal, see Fig. 4c or asymmetric like the Gamma or Lognormal, see 
Fig. 4b) and adjusts the cut-offs required to build the statistical classifiers depending on 
the distribution shape of the gene. Implicitly built into the symmetric assumption is that 
only one type of distribution is permitted because only one set of cut-offs for the classi-
fier are used (equal tails of the distribution based on an assumption of symmetry/Nor-
mality) regardless of whether the gene is Normally-distributed or not. Each non-Normal 
distribution contributes a specific role towards determining the appropriate cut-offs (e.g. 
Bimodal reflects the split between the two modes, asymmetric distributions like Gamma 
and Lognormal reflects an one-tailed cut-off split). Hence, the tests performed under the 
shape assumption demonstrated how incorporating non-Normal distributions improved 
the statistical classification process (Fig. 6) over the symmetric one.

Genome sequencing projects like TCGA, but also ICGC, HAPMAP, ENCODE, and 
1000 Genomes have given us a deeper appreciation for how heterogeneous human pop-
ulations are with respect to genomic features. In light of this, it seems overly simplistic 
to assume that all key regulators will be found by correlating different data types on the 
assumption that all patients in the population will exhibit similar levels of the variable 
of interest. Instead, a more comprehensive approach may be based on identifying sub-
groupings of patients that share similar levels of a variable, and investigating whether 
there are correlations with other genomic features. Similarly, investigating how these 
gene expression distributions manifest at the single cell level within a tumor sample may 
also be instructive for understanding the contributions of different genes toward cancer 
growth and maintenance.

Conclusions
This study identified the prevalence of genes with non-Normal gene expression distri-
butions within cancer patient cohorts for AML, OV, and GBM from TCGA. Regard-
less of the technology platform, at least 50% of the cancer transcriptome was classified 
into one of five non-Normal distributions, including Cauchy, bimodal, Gamma, and 



Page 15 of 18de Torrenté et al. BMC Bioinformatics 2020, 21(Suppl 21):562

Lognormal distributions. We tested the utility of incorporating assumptions based 
on the gene expression distribution into survival analysis models for the three can-
cer patient cohorts. Our results indicate that prognostic genes identified based on 
consideration of the shape of the distribution were different from those identified 
through more standard assumptions. These shape-based prognostic markers provided 
functional insights into cancer biology that were not detected using genes identified 
from standard approaches. Moreover, classifying patients based on poor versus good 
survival based on assumptions of gene expression shape resulted in higher perfor-
mance than standard assumptions. This study has shown how subgroupings can be 
identified by considering the shape of the expression distribution and highlighted 
the value that can stem from this, both in terms of functional interpretations and the 
improved performance in statistical classification. More generally, the approaches 
used in this study provides a natural way to model heterogeneity under an explicit 
statistical framework. The results from this study raise new questions about the role 
of shape-based modeling for gene expression data.

Methods
The Cancer Genome Atlas datasets

Data were sourced from The Cancer Genome Atlas (TCGA, http://cance rgeno me.nih.
gov/). The acute myeloid leukemia (AML) dataset had 197 samples with microarray 
data, and 173 samples with RNA-seq data. The glioblastoma multiforme (GBM) had 549 
samples with expression data, 169 samples with RNA-seq data. The ovarian serous cys-
tadenocarcinoma (OV) was used only for expression and RNA-seq data, and had 586 
samples, respectively. For gene expression, the level 2 data on U133A (with 22,277 probes 
corresponding to 12,496 genes) for glioblastoma, ovarian and lung, and U133_plus_2 
(with 54,613 probes corresponding to 19,850 genes) for AML were used in this study. For 
RNA-seq, for AML, GBM and OV, we used the level 3 IlluminaHiSeq_RNAseqV2 with a 
total of 20,531 genes. The expression levels from the RNA-seq datasets were reported as 
RSEM [24] raw counts that were quantile normalized for each cohort. We downloaded 
the clinical data corresponding to the microarray and RNA-seq datasets. From these 
files, the survival time (see summary in Additional file 1: Table S2) and the tumor purity 
estimated by a pathologist (for GBM and OV) were used. The missing values in survival 
time were omitted from all statistical analyses.

Data preprocessing

For all microarray and RNA-seq data, gene expression values were  log2-transformed. 
For RNA-seq, we filtered the genes by removing those with more than 25% of the 
samples with values less than 1 on the  log2-transformed scale. GBM and OV data-
sets were batch-corrected using the function ComBat from the R package sva (version 
3.14.0). We used the annotation R package hgu133a.db (version 3.1.3) for the GBM 
and OV datasets and hgu133plus2.db (version 3.1.3) for AML. To resolve multiple 
probes mapping to a unique gene identifier, we calculated the average of all expres-
sion values from probes mapping to the same gene symbol.

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
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Classifying genes into different distributions

For testing Normality and Lognormality, we used the Shapiro test from the R pack-
age stats (version 3.2.2) [25] with a threshold of 0.01 on the data and log of the data 
respectively. For Pareto, Gamma and Cauchy, the Kolmogorov–Smirnov test [26] was 
applied.

For this test, we needed to set parameter values. For Pareto and Gamma, the param-
eters were estimated with the Maximum Likelihood Estimates (MLE). For the MLE of 
Gamma, we used the rGammaGamma R package (version 1.0.12.). For Cauchy, the 
two parameters were set as the median and the interquartile range.

As we are estimating the parameters directly on the dataset, we applied a paramet-
ric bootstrap to estimate the final p value. This idea of resampling to find the null 
distribution of the test statistics when estimating the parameters is based on the Lil-
liefors test [27]. The threshold for the final p value was set to 0.01 for the significance. 
For testing Bimodality, we computed the Bimodality Index [28] from the R package 
ClassDiscovery (version 3.0.0.) and kept every gene and locus having a score bigger 
than 1.1.

In order to have a faster algorithm, we first test if a gene is bimodal, if yes it is clas-
sified as so and removed from the list and otherwise the other distributions are tested 
and the best was chosen (see Fig. 2). As the Lognormal, Pareto and Gamma distribu-
tion are defined on positive values, they were tested only on genes having all their 
values greater than zero. If we have an equality between two distributions the order 
of classification is as followed: (1) Normal, (2) Lognormal, (3) Cauchy. Genes that fall 
in neither category are classified as unknown and the distributions sets are disjoint 
meaning a gene cannot be assigned to more than one distribution.

Evaluating differences in survival time

In order to test the difference between two survival curves, we used the log-rank test 
from the R package survival (version 2.38.3) with a threshold of 0.05. To estimate the 
survival curves, the Kaplan–Meier estimate was used.

Over‑representation analysis

The Bioconductor package GOstats (version 2.48.0) was used to test for the over-
representation of Gene Ontology Biological Processes that also included annotations 
from the Bioconductor package org.Hs.eg.db (version 3.7.0). p values were cor-
rected for multiple testing using the p.adjust function with the Benjamini–Hochberg 
method. Statistical significance was set at 0.0001.
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Additional file 1. Supplementary figures and tables.

Abbreviations
AML: Acute myeloid leukemia; BP: Biological process; CLT: Central limit theorem; GO: Gene ontology; GBM: Glioblastoma 
multiforme; OV: Ovarian serous cystadenocarcinoma; RNA-seq: RNA-sequencing; TCGA : The Cancer Genome Atlas.

https://doi.org/10.1186/s12859-020-03892-w


Page 17 of 18de Torrenté et al. BMC Bioinformatics 2020, 21(Suppl 21):562

Acknowledgements
We thank Milos Tanurdzic, Mark Donoghue and Deanne Taylor for useful discussion of this work. An earlier version of this 
article has been published on a preprint server and can be accessed at https ://www.biorx iv.org/conte nt/10.1101/57269 
3v1.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 21 Supplement 21 2020: Accelerating Bioinformat-
ics Research with ICIBM 2020. The full contents of the supplement are available at https ://bmcbi oinfo rmati cs.biome 
dcent ral.com/artic les/suppl ement s/volum e-21-suppl ement -21.

Authors’ contributions
LDT and SZ performed the analyses. LDT, MC and JCM designed the analyses with input and direction from MS and 
JMG. LDT and JCM wrote the manuscript that was approved by all co-authors. All authors read and approved the final 
manuscript.

Funding
This research was supported by the Albert Einstein College of Medicine start-up funds (LDT, JCM). JCM is supported 
by an Australian Research Council Future Fellowship (FT170100047) and by a Metcalf Prize from the National Stem Cell 
Foundation of Australia. The funding bodies listed did not play a role in the design of the study, the collection, analysis, 
and interpretation of the data, nor in writing the manuscript. Publication costs are funded by start-up funds provided by 
the University of Queensland to JCM.

Availability of data and materials
All data used to support the conclusions in this study is publicly available from The Cancer Genome Atlas (TCGA, http://
cance rgeno me.nih.gov/).

Ethics approval and consent to participate
No permissions were required to use any of the repository data as all data used was publicly available.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA. 
2 Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA. 
3 Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, 
Otfried-Mueller-Strasse 10, 72076 Tuebingen, Germany. 4 Department of Epidemiology and Population Health, Albert 
Einstein College of Medicine, Bronx, NY 10461, USA. 5 Australian Institute for Bioengineering and Nanotechnology, The 
University of Queensland, Brisbane, QLD 4072, Australia. 

Received: 17 November 2020   Accepted: 18 November 2020
Published: 28 December 2020

References
 1. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid 

leukemia. N Engl J Med. 2013;368(22):2059–74.
 2. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 

2011;474(7353):609–15.
 3. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma 

genes and core pathways. Nature. 2008;455(7216):1061–8.
 4. Lim L, et al. Mature B-cell acute lymphoblastic leukaemia associated with a rare MLL-FOXO4 fusion gene. Br J Hae-

matol. 2012;157(6):651.
 5. So CW, Cleary ML. Common mechanism for oncogenic activation of MLL by forkhead family proteins. Blood. 

2003;101(2):633–9.
 6. Wang H, et al. Dynamic transcriptomes of human myeloid leukemia cells. Genomics. 2013;102(4):250–6.
 7. Valk PJ, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med. 

2004;350(16):1617–28.
 8. Bartholdy B, et al. HSC commitment-associated epigenetic signature is prognostic in acute myeloid leukemia. J Clin 

Invest. 2014;124(3):1158–67.
 9. Marcucci G, et al. The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood. 

2011;117(4):1121–9.
 10. Gentles AJ, et al. Association of a leukemic stem cell gene expression signature with clinical outcomes in acute 

myeloid leukemia. JAMA. 2010;304(24):2706–15.
 11. Eppert K, et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med. 

2011;17(9):1086–93.
 12. Li Z, et al. Identification of a 24-gene prognostic signature that improves the European LeukemiaNet risk classifica-

tion of acute myeloid leukemia: an international collaborative study. J Clin Oncol. 2013;31(9):1172–81.
 13. Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15(6):321–33.

https://www.biorxiv.org/content/10.1101/572693v1
https://www.biorxiv.org/content/10.1101/572693v1
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-21-supplement-21
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-21-supplement-21
http://cancergenome.nih.gov/
http://cancergenome.nih.gov/


Page 18 of 18de Torrenté et al. BMC Bioinformatics 2020, 21(Suppl 21):562

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 14. Davidson B, Trope CG, Reich R. Epithelial-mesenchymal transition in ovarian carcinoma. Front Oncol. 2012;2:33.
 15. Ishwaran H, et al. Random survival forests. Ann Appl Stat. 2008;2(3):841–60.
 16. Mar JC. The rise of the distributions: why non-normality is important for understanding the transcriptome and 

beyond. Biophys Rev. 2019;11(1):89–94.
 17. Ertel A, Tozeren A. Switch-like genes populate cell communication pathways and are enriched for extracellular 

proteins. BMC Genomics. 2008;9:3.
 18. Kernagis DN, Hall AH, Datto MB. Genes with bimodal expression are robust diagnostic targets that define distinct 

subtypes of epithelial ovarian cancer with different overall survival. J Mol Diagn. 2012;14(3):214–22.
 19. Karn T, et al. Melanoma antigen family A identified by the bimodality index defines a subset of triple negative breast 

cancers as candidates for immune response augmentation. Eur J Cancer. 2012;48(1):12–23.
 20. Pique DG, et al. A novel approach to modelling transcriptional heterogeneity identifies the oncogene candidate 

CBX2 in invasive breast carcinoma. Br J Cancer. 2019;120(7):746–53.
 21. Newton MA, et al. On differential variability of expression ratios: improving statistical inference about gene expres-

sion changes from microarray data. J Comput Biol. 2001;8(1):37–52.
 22. Church BV, Williams HT, Mar JC. Investigating skewness to understand gene expression heterogeneity in large 

patient cohorts. BMC Bioinformatics. 2019;20(Suppl 24):668.
 23. Raman P, et al. A comparison of survival analysis methods for cancer gene expression RNA-Sequencing data. Cancer 

Genet. 2019;235–236:1–12.
 24. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. 

BMC Bioinformatics. 2011;12:323.
 25. Shapiro SS, Wilk MB. An Analysis of Variance Test for Normality (Complete Samples). Biometrika. 

1965;52(3/4):591–611.
 26. Smirnov N. Table for estimating the goodness of fit of empirical distributions. Ann Math Stat. 1948;19:279–81.
 27. Lilliefors HW. On the Kolmogorov–Smirnov test for normality with mean and variance unknown. J Am Stat Assoc. 

1967;62(318):399–402.
 28. Wang J, et al. The bimodality index: a criterion for discovering and ranking bimodal signatures from cancer gene 

expression profiling data. Cancer Inform. 2009;7:199–216.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	The shape of gene expression distributions matter: how incorporating distribution shape improves the interpretation of cancer transcriptomic data
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Over 50% of the cancer transcriptome does not follow a Normal distribution.
	Incorporating assumptions that permit more than one distribution type identifies different sets of genes that discriminate between good versus poor patient survival outcomes
	Identifying prognostic marker genes using the expression distribution shape information provides functional insights into cancer biology that were not found using standard symmetric assumptions
	Incorporating the shape of the gene expression distribution improved the performance of a classifier’s ability to predict survival of individual patients in different types of cancers
	Box-Cox transformations did not alter the number of Normally-distributed genes in RNA-sequencing data
	Tumor purity does not influence variation in gene expression shape for the overall cancer transcriptome
	Most distributions demonstrate significant enrichment for unique biological processes

	Discussion
	Conclusions
	Methods
	The Cancer Genome Atlas datasets
	Data preprocessing
	Classifying genes into different distributions
	Evaluating differences in survival time
	Over-representation analysis

	Acknowledgements
	References


