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Background
Introduction

A huge amount of information is spread in the scientific literature, particularly in the life 
science and health domains. Information extraction methods aim to extract this infor-
mation to build or enrich knowledge bases. Yet, natural language is highly variable and 
a single semantic entity can be expressed in different forms in text (e.g. synonyms or 
hyponyms). Entity normalization (also called entity disambiguation, entity grounding, or 
entity linking) is an important subtask of information extraction that addresses this issue 
by linking entity mentions in text to categories or concepts of a reference vocabulary. 
In Life Science and Health domains, entity normalization allows textual mentions to be 
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grounded with the same references as databases (e.g. sequence banks, disease control 
records), improving data interoperability.

Normalization can be seen as a multi-class classification problem where the enti-
ties are the examples to be classified and the categories or concepts are the classes. The 
reference vocabularies can be formal semantic resources such as ontologies [1, 2]. An 
ontology concept can be labelled by several terms (e.g. synonyms). Each concept can be 
used as a semantic reference for textual entity mentions. For instance, the concept iden-
tified by OBT:001623 in the OntoBiotope ontology [3, 4], and labelled by the term “lym-
phocyte”, could normalize textual entity mentions such as “lymphocytes”, “lymphocytic”, 
“t-cell” or “monoclonal B cells”.

In specialized domains, this classification problem is frequently characterized by a 
large number of classes but few manually annotated training examples. It results in a 
highly multi-class and few-shot learning problem [5, 6] and even a zero-shot learning 
problem [7], namely a problem where some predictable classes have no positive example 
in the available training set. Few-shot learning is a well-known challenge for machine 
learning, which remains mainly addressed by weakly supervised and transfer learning 
approaches.

In this article, we propose C-Norm (“Concept-NORMalization”), a new shallow neu-
ral method to address the few-shot learning normalization problem. C-Norm synergisti-
cally combines standard and weak supervision, ontological knowledge and distributional 
semantics. We assessed the method on the Bacteria Biotope normalization (BB-norm) 
task [7] of the BioNLP Open Shared Tasks (BioNLP-OST) 2019 [8]. This task aims to 
normalize mentions of microbial habitats and phenotypes with concepts from the Onto-
Biotope ontology, which are expressed in variable forms in text. C-Norm outperforms 
existing methods evaluated on the BB-norm dataset, without using manually-designed 
and domain-specific rules and with low requirements of computational resources com-
pared to large neural networks.

Related work

Pattern‑matching rule‑based methods

Classic strategies to normalize textual entities rely on the similarity between entity forms 
and concept labels [8]. Due to frequent linguistic variations (e.g. noun-phrase inversion, 
typographic variations, synonymy), these methods are dependent on comprehensive 
lexicons. Several strategies are used to ensure comprehensiveness: third-party resources 
[9, 10], inflection generation [11–13], pre-processing (lemmatization, stemming or 
stopword filtering) [14], giving more weight to syntactic heads of mentions and labels 
[15]. These methods are commonly limited to a given domain/task because they depend 
heavily on domain-specific resources (e.g. involving specific blacklists, specific disam-
biguation rules), which results in a poor adaptability.

Static word vector‑based methods

Vector representations of words enable to handle textual entities in a formal representa-
tion. Ranging from TF-IDF bag-of-words [16] to embeddings [17–20], these word rep-
resentations are largely used in recent natural language processing systems, especially 
in combination with machine learning systems. For entity normalization tasks, they are 
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mainly used to compute a similarity measure in the same vector space between repre-
sentations of text mentions and concept labels. For each mention, the concept with the 
most similar label is predicted. Machine learning is not required beyond a simple 1-near-
est-neighbor algorithm: a cosine similarity measure can be used to detect form similari-
ties between both expressions [21, 22] or to handle linguistic variations [23]. However, 
these approaches have limitations. TF-IDF bag-of-words representations fail to detect 
similarities between expressions which share no common words. Word embeddings, 
despite their strength, do not fully succeed to account for domain-specific meanings [24] 
without integrating some external knowledge [25].

Machine‑learning and vector‑based methods

Manually produced examples, such as couples of mentions to normalize and concepts, 
provide useful knowledge about a task and domain. By using them, machine learning 
(ML) algorithms aim to predict concepts from input mentions that exhibit similar fea-
tures to the training examples. The goal of such methods is to adapt to a task and domain 
just by using associated examples. Adaptability is what makes ML methods competitive 
in many tasks, as long as there are enough good-quality examples available for the target 
task.

ML algorithms mostly use vectors to represent inputs and outputs. They learn to 
transform input representations of text mentions in a way that optimizes the similarity 
between the final transformed vectors of mentions and the vectors of their associated 
concepts.

Historically, D-Norm [26] was the first method which addressed the normalization 
problem in this way, by using TF-IDF bag-of-words representations for input mentions 
and for concept labels. D-Norm also overcomes the limitations of TF-IDF bag-of-words 
by learning a linear projection of the representations of mentions into the space com-
posed by the representations of the labels of concepts. The linear projection must maxi-
mize the dot product between mention vectors and label vectors from the associated 
concept, even for mentions and labels with no common token. Nevertheless, TF-IDF 
bag-of-words are high-dimensional, sparse vectors, which operate poorly with machine 
learning algorithms.

The CONTES method [27] addresses normalization in a way similar to D-Norm. 
However, instead of TF-IDF bag-of-words, it represents vectors of entity mentions by 
averaging the word embeddings of the words composing the mentions, and it represents 
vectors of concepts by relying on the hierarchical structure of the reference ontology, 
without using the ontology labels themselves. The method uses word embeddings as 
input, which overcomes the limitation of TF-IDF bag-of-words representations. CON-
TES uses the ordinary least squares method to estimate the linear projection param-
eters, which struggles to scale up on large training datasets and large ontologies.

In the general domain, the state-of-the-art methods to address entity normalization in 
that way are large neural nets [28]. The reason may hold in their capacity to model hard 
nonlinear phenomena. From a computational point of view, neural networks have the 
asset of being online algorithms. Nevertheless, large neural nets seem to have difficulty 
addressing the few-shot learning problem. In fact, in specialized domains, shallow con-
volutional neural networks (CNNs) have been used with some success in normalization 
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tasks with small training data. Their purpose is to calculate an intermediate represen-
tation of an expression from the embeddings of their tokens [29], or to detect specific 
tokens (or contiguous sequences of tokens) that could trigger a specific class [30]. There 
still seems to be considerable room for improvement.

Sieve‑based and ensemble approaches

In order to improve performance, another strategy is to integrate several methods (i.e. 
as components) at once to take advantage of their complementarity. For instance, rule-
based methods can make predictions even in a zero-shot learning context and frequently 
achieve good accuracy, but poor recall (i.e., they cannot make predictions for all men-
tions). In contrast, vector-based machine learning methods achieve better recall. Thus, a 
common sieve strategy is to first use a method with a high accuracy, preserve the predic-
tions and pass the mentions without prediction (or the mentions with predictions esti-
mated as uncertain) onto another method [29, 31]. A limitation of combining methods 
in this pipelined way is that the second method will not get the opportunity to make a 
prediction for every entity and prediction errors from the first method are propagated.

Ensemble approaches are a more synergistic way of combining multiple components. 
They are considered the state-of-the-art for many machine learning problems [32]. The 
advantages of ensemble methods lie in their higher expressive power compared to their 
single components, as well as in a reduced risk of overfitting. And yet, to our knowledge, 
ensemble methods are still surprisingly uncommon for entity normalization in spe-
cialized domains. An example is the method of Deng et al. [29] which follows a voting 
ensemble strategy where several identical neural components are trained on the same 
example set, but the random initialization of each component results sometimes in dif-
ferent predictions. Then, for each mention, the concept predicted by a majority of mod-
els is chosen.

In this paper, we build on previous work and combine two vector-based neural meth-
ods in an attempt to overcome their limitations. We design a new method that inte-
grates the two approaches in an ensemble averaging way and compare its performance 
to a more rigid sieve-based approach. We also compare it to several existing approaches, 
including the ensemble-based method of Deng et al. [29].

Methods
In this section, we give an overview of the normalization task we are addressing. Then 
we describe our methods, as well as our experimental setting.

Bacteria Biotope dataset and task

We used the BB-norm dataset of the Bacteria Biotope 2019 Task [33] to evaluate our 
method. Bacteria Biotope 2019 is part of BioNLP Open Shared Task 2019 [34] and 
consists of several information extraction subtasks in the microbiology domain. The 
BB-norm subtask aims at normalizing Microorganism, Habitat, and Phenotype enti-
ties using taxonomies and ontologies. In our study, we focused on the normaliza-
tion of Habitat and Phenotype entities. We chose to focus on these entities because 
they are expressed with noun and adjectival phrases that can take varied and com-
plex forms. In contrast, microorganisms are mostly expressed in a codified way, based 
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on proper nouns including a few orthographical variations. This type of named enti-
ties is typically easier to predict and classic rule-based methods usually yield high 
performance.

Habitat and Phenotype entities have to be mapped to concepts of the OntoBio-
tope ontology [4]. The ontology consists of two main branches, the microbial habitat 
branch, which contains 3172 concepts and is used to normalize Habitat entities, and 
the microbial phenotype branch, which contains 429 concepts and is used to normal-
ize Phenotype entities. The dataset is divided into a training, a development and a test 
set. Habitat and Phenotype entity annotations are provided in all sets and normali-
zation annotations are provided in the training and development sets only. Figure 1 
shows an example of the normalization task for Habitat and Phenotype entities. Each 
entity mention in the example text is mapped to an ontology concept.

Statistics of the dataset are given in Table 1. Its size is rather small, especially the 
Phenotype part of the dataset, in comparison with the size of the ontology. The main 
consequence is that some ontology concepts have few examples in the training data 
(if any). Indeed, the average number of examples per concept of the ontology is 0.6 
with a standard deviation of 4.3 for habitats, and 1.2 with a standard deviation of 6.5 
for phenotypes. The average number of examples per ontology concept occurring in 
the training data (training + development sets, as opposed to all ontology concepts) is 

Pseudoalteromonas is known to have many cold-adapted enzymes that function in the

polar seawater where this bacterium typically grows.

OBT:003105
label: marine water

OBT:000338
label: marine environment

OBT:000001
label: microbial habitat

OBT:002982
label: extreme cold resistant

OBT:002945 
label: thermal resistant

OBT:000002
label: microbial phenotype

Fig. 1 Normalization example for Habitat and Phenotype entities

Table 1 Number of documents and annotations in the BB-norm corpus

Train Dev Test

Documents 133 66 97

Habitat entities 1118 610 924

Phenotype entities 369 161 252

Habitat concepts 232 137 201

Phenotype concepts 67 44 49
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6.4 with a standard deviation of 12.3 for habitats, and 6.0 with a standard deviation of 
13.5 for phenotypes, which is still very low for a classification task. Thus, the Bacteria 
Biotope corpus is a good example of the few-shot learning problem. Moreover, the 
task is also a good example of the zero-shot learning problem, since the proportion 
of concepts for which there is no example at all is quite high: 92.7% for habitats and 
84.4% for phenotypes.

Overview of the method

Our approach draws on findings from previous work, in particular that of Ferré et  al. 
[27], Deng et al. [29] and Limsopatham and Collier [30]. We observe from Ferré et al. 
[35] that the CONTES method is able to predict concepts that are relatively close to 
the target concepts in the semantic space, but has difficulty pinpointing the exact ones. 
We come to this conclusion by looking at the high non-strict performance score (where 
close matches are taken into account) obtained by CONTES in comparison with its 
lower strict performance score (where an exact match is required).

In contrast, shallow CNNs obtain a good overall score on datasets with strict evalua-
tion [30], and a state-of-the-art score on datasets with non-strict evaluation [29], sug-
gesting that they can make a significant number of exact predictions, but when they fail, 
the prediction is often semantically very far from the correct one in the ontology graph. 
Our hypothesis is that these two types of method are complementary and that it might 
be worth combining them.

Based on this hypothesis, we propose C-Norm, a synergistic ensemble method that 
combines two components: a single-layer feedforward neural network (SLFNN) for its 
ability to position the concepts well in the semantic space and a shallow convolutional 
neural network (CNN) for its ability to make exact predictions. We also implement a 
more standard sieve-based combination approach to compare it to C-Norm.

All components and combination methods use word vectors as input based on word 
embeddings trained on unlabeled corpora, and vectors of ontology concepts as output 
targets.

In the following, we first describe the construction of the word embeddings and con-
cept vectors, then the SLFNN and shallow CNN components and the two combination 
methods.

Preprocessing

All our methods are based on word embeddings from Word2Vec [18] and concept vec-
tors from Ferré et al. [35, 36].

Word embeddings

We perform sentence and word segmentation on the corpus used to train Word2Vec, 
and to avoid out-of-vocabulary words, we apply the same word segmenter (see Avail-
ability of data and materials) on the labels of ontology concepts and on the BB-norm 
dataset. To obtain word embeddings adapted to the microbiology domain tackled by the 
BB-norm task, we use a dedicated corpus derived from PubMed, the same as in Ferré 
et  al. [36]. In all these resources, we filtered stop-words (non-content words such as 
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prepositions and determiners). All the initial embeddings have then been normalized to 
unit length.

Integrating ontological information in concept vectors

We use concept vectors as output targets of our neural network, following the work of 
Ferré et al. [27]. This strategy allows us to integrate knowledge from the ontology into 
our neural network-based method. More specifically, we encode hierarchical informa-
tion (ancestor-child relations) in concept vectors. Concept vectors are built with the 
optimization proposed in Ferré et al. [35]. Each vector is built with a size equal to the 
number of concepts in the ontology, and each dimension is associated with a unique 
concept. The vector of a given concept has non-zero weights only for the dimension 
corresponding to the concept and for all dimensions corresponding to the ancestors of 
this concept (i.e. from the parents up to the root of the ontology). The weight is set to 1 
for the dimension of the given concept. For the dimension of its ancestors, the weight 
decreases as we go up the hierarchical path in the ontology, that is, the farther away the 
ancestor is in the hierarchy the lower the weight is (the ontology root being the farthest 
ancestor, with the lowest non-zero weight). The formula for computing the weight is as 
follows:

where N  is the number of concepts in the ontology, cij is the jth weight of the vector of 
concept Ci , w is a decay factor in [0,1], and d(Ci,Cj) is the number of steps of subsump-
tion relation in the ontology hierarchy between Ci and its ancestor Cj . The decay factor 
controls the importance given to ancestors. If the decay factor is set to zero, all represen-
tations become standard one-hot vectors, which allows the method to be used with non-
hierarchical resources. If the decay factor is set to 1, all ancestors have the same weight 
as the current concept.

Combining shallow neural networks

Component methods: single layer feedforward neural network and shallow CNN

Single Layer Feedforward Neural Network (SLFNN) Inspired by the CONTES method 
[27], the SLFNN aims to find a linear projection which globally aligns textual mention 
embeddings with the vectors of the concepts normalizing them. Embeddings of the 
words composing the mentions are averaged to obtain mention embeddings, which 
are then given to the dense layer of the SLFNN. We replaced the ordinary least squares 
method used in the original CONTES by a neural method to learn the projection. It 
allows the SLFNN to scale up to large training datasets and simplifies its combination 
with other neural architectures. The architecture of the SLFNN is shown in Fig. 2.

Shallow CNN the shallow CNN we used is inspired by Limsopatham and Collier [30], 
with no final softmax layer and with concept representations as in Ferré et al. [35]. As 
in other methods [27, 29] that do not use the usual one-hot vector representations for 
classes, classification is performed with a regression approach. It targets the concept 
vector nearest to the output vector computed for each mention, according to the cosine 
similarity. The objective remains the detection of a specific concept triggered by the 

∀i, j ∈ {1, ...,N }, cij = wd
(

Ci ,Cj
)
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presence of certain tokens in the input text, but the training also includes the additional 
constraint that the detection of a relevant concept must also trigger the detection of all 
its more general ancestors. This constraint stems from the fact that the output vectors 
are not standard one-hot vectors with only the weight of the specific concepts to predict 
set to 1, but also include non-zero weights for the ancestors, as described in Section Inte-
grating ontological information in concept vectors. The intuition behind this constraint is 
that by learning parent–child proximities, the model will be able to minimize its predic-
tion errors by predicting concepts that are close ancestors of the target concepts rather 
than concepts far away in the ontological graph. Figure 3 shows the architecture of the 
shallow CNN.

Combination methods: Sieve and C‑Norm

Sieve The SLFNN and CNN components each produce a prediction of a concept and 
a cosine similarity score between a textual mention and its predicted concept (i.e. the 
concept with the nearest vector). We hypothesize that this score can act as a confidence 
score and that we could compute an optimal threshold to select predictions having the 
highest probability of being correct. Thus, we designed a sieve-based method that first 
uses the shallow CNN to make predictions for all mentions, keeps only the predictions 
with a score above the chosen threshold, and then gives the remaining mentions to the 
SFLNN component. This process is illustrated in Fig. 4. Among the two components, we 
empirically chose the shallow CNN as the first component to produce initial predictions.
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Fig. 2 Architecture of the Single Layer Feedforward Neural Network. The input is the matrix of word 
embeddings of the non-stopword tokens of the mentions
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Fig. 3 Architecture of the shallow CNN. The input is the matrix of word embeddings of the non-stopword 
tokens of the mentions
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C-Norm The Sieve method includes a new hyperparameter to be manually set: the 
confidence threshold. However, the optimal value of the threshold may be highly vari-
able depending on the task and it may be difficult to determine without annotated gold 
standards. Moreover, the Sieve method is a rigid way to combine the SLFNN and the 
Shallow CNN. The C-Norm method aims to combine more the two methods more effi-
ciently. We parallelize both methods within a single neural architecture that combines 
their outputs with an averaging layer. Averaging outputs is a common ensemble method 
that yields good performance. We chose to do this in an end-to-end way in order to 
allow the combination step (the averaging layer) to give feedback to the individual com-
ponents during training, as opposed to a static averaging of the outputs after independ-
ent training of the components. The architecture can then directly learn a smoother way 
to combine the contributions of each component. Figure  5 shows the architecture of 
C-Norm with the interaction of the two components.

Experimental setting

Training sets

To offset the small size of the manually annotated datasets, we followed a weak super-
vision strategy to increase the size of the training set with non-manually annotated 
examples. We used the labels of the ontology concepts as examples of normalized men-
tions, i.e. each concept label is handled as an entity mention normalized with that same 

female
mouse
model
genital
tract

chlamydia
infec�on

Shallow CNN if cosine similarity > threshold
predic�on

SLFNN

if cosine similarity < threshold

predic�on

find the 
nearest concept 

vector

Fig. 4 Architecture of our Sieve method using our SLFNN and shallow CNN methods. The inputs are the 
matrix of word embeddings of the tokens of the mentions
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of word embeddings of the tokens of the mentions
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concept. This strategy has shown good results in previous work on the 2016 edition of 
the Bacteria Biotope task [36].

When tuning the models, we trained on the manually annotated training set aug-
mented with ontology labels and used the development set as validation data. When 
evaluating on the test set, we also added the development set to the training data. Thus, 
our approach combines standard supervision (using the manually annotated BB-norm 
corpus) with weak supervision (using the ontology concept labels as training examples).

Hyperparameter setting

Word embeddings We used embeddings computed by Word2Vec with the same train-
ing corpus and the same hyperparameters as those described in Ferré et al. [36] for the 
CONTES method, except for the embedding size which we set to a smaller value of 200 
(compared to 1000) which was computationally more efficient while still yielding high 
performance.

Concept vectors To smooth the non-zero values of ancestor dimensions and compared 
to the initial CONTES method which had an equivalent decay factor of 1.0 (all non-zero 
weight to 1), a subsequent study [35] showed that a factor of 0.6 may be a better choice 
to improve simultaneously strict and nonstrict performance scores. Thus, we chose this 
value for all our experiments.

Neural network hyperparameters We tuned the hyperparameters of the models on the 
development set of the BB-norm corpus. Most hyperparameters were chosen empiri-
cally by training multiple runs of the models for Habitat normalization and were re-used 
for models normalizing Phenotypes. We did so because the Phenotype part of the data-
set is much smaller than the Habitat part and thus it is harder to observe clear tendencies 
on this dataset. For all models, we chose the Nadam optimizer [37] and the log_cosh loss 
function, after experimenting with a number of options—Stochastic Gradient Descent, 
Adam [38], Adadelta [38], Amsgrad [39] and Nadam [37] for the optimizer and mse, cos, 
huber, mae, and log_cosh for the loss function. The advantage of the log_cosh function, 
besides showing good performance (either the highest or similar performance compared 
to other loss functions), was to yield more stable results across repeated runs. For all 
models, the number of epochs was empirically chosen by evaluating the performance at 
different epochs and stopping when performance did not visibly improve anymore.

We list below the hyperparameters chosen for each method:

SLFNN We set the number of epochs to 50 for Habitat models and 100 for Pheno-
type models.
Shallow CNN We set the number of filters to the size of the ontology (i.e., 3172 for 
Habitat models and 429 for Phenotype models). We selected a single filter size of 1, 
after experimenting with a few single sizes (1 to 5) as well as with some combinations 
of sizes based on previous work by Limsopatham and Collier [30] (specifically, sizes 
3, 4 and 5]). We chose the leakyReLU activation function [40] directly at the end of 
the maxpool layer, after experimenting with leakyReLU, ReLU, tanh, and softsign. We 
set the number of epochs to 150 for Habitat models and 50 for Phenotype models.
Sieve We set the cosine similarity threshold of the Sieve method to 0.4, after experi-
menting with values ranging from 0.9 to 0.1 (in 0.1 increments). We observed that 
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0.3 and 0.4 both worked best compared to other values (approximately 6 points 
higher than the worst threshold values), and chose the higher value between the two.
C-Norm We set the number of epochs to 200 for Habitat models and 30 for Pheno-
type models. The other hyperparameters are those of the Shallow CNN component 
(activation function, filter size, filter number).

Evaluation strategy

The official evaluation tool of the BB-norm task [33] was used to compute performance 
scores on the test set of the task. We also report results on the development set, includ-
ing an evaluation of the performance of all components and combination methods, and 
analyses of the effect of using weakly supervised data and of using ontological informa-
tion. More precisely, we look at the performance of our best-performing method with 
versu without using the ontology labels as training examples, and at its performance 
with different values of the decay factor (used to build concept vectors), including a fac-
tor of 0 which is equivalent to generating one-hot concept vectors with no ontological 
information.

The metrics of the BB-norm shared task are a similarity score and a strict exact match 
score. The strict exact match score is equal to 1.0 if the predicted concept is equal to 
the reference concept, 0.0 otherwise. This score can be relatively harsh for tasks where 
the references are semantically related (e.g. two semantically close subsumed concepts). 
Therefore, the BB-norm task uses a smoother similarity score based on the semantic dis-
tance between two concepts in an ontology, as defined by Wang et al. [41]. For a predic-
tion, this similarity score is calculated between the reference concept and the predicted 
concept, having the value of 1.0 if both concepts are equal, and tending towards 0.0 if the 
concepts are farther in the hierarchical graph of the ontology. The overall score of a data-
set prediction is the average of all scores for each mention.

We compared our approach to those of the official participants of the BB-norm 2019 
shared task and to the baseline provided by the task organizers. The baseline is a simple 
rule-based method that performs exact matching between lemmatized entity mentions 
and ontology concept labels. Most approaches from the participants use word embed-
dings and machine-learning, but not all of them. The PADIA BacReader team [29] com-
bined a voting ensemble of shallow CNNs with a rule-based baseline in a sieve way. The 
BLAIR GMU team [42] used a machine learning and embedding-based method. The 
BOUN-ISIK team [43] used a static word embedding-based method integrating syntac-
tic information. The AmritaCen Healthcare team also participated but did not publish 
the details of their method.

We also included in the comparison two machine learning and embedding-based 
methods that obtained state-of-the-art results on a previous version of the Bacteria 
Biotope task in 2016 [44]: the CONTES method and the sieve-based HONOR method 
[36]. We used the best hyperparameters of those two methods as described in Ferré et al. 
[35, 36]: we trained the models on the training and development sets of the task and on 
the ontology labels, and used a decay factor of 0.6 to build the concept vectors and an 
embedding size of 1000.
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Results
In this section, we report results obtained on the development set by the neural com-
ponents and combination methods. We analyze the effect of using weakly supervised 
data and ontological knowledge. Then we show the performance of the C-Norm 
method on the test set and compare it with existing approaches.

Experiments on the development set

Performance of the different methods

Table  2 shows performance obtained on the BB-norm development sets for each 
neural network component and each combination architecture. Results are averaged 
over 10 runs to account for variations in the initialization of the neural networks and 
standard deviation is provided.

The shallow CNN component performed better than the single-layer feedforward 
NN for Habitats. The SLFNN performed almost 20 points lower in terms of strict 
score, but its similarity score remains quite high (0.654 vs. 0.696). This suggests that 
the two methods are complementary: the S-CNN does better at pinpointing the exact 
concept, but the SLFNN is able to position the mentions quite well in the concept 
vector space (which explains the high Wang score). On the Phenotype normalization 
task, the two methods obtained similar results measured by both scores, the SLFNN 
performing slightly higher, although the very small size of the Phenotype dataset 
makes it hard to draw any conclusion.

The Sieve combination architecture performed slightly better than both compo-
nents for Habitat entities (in terms of Wang score), and similarly to the SLFNN for 
Phenotype entities.

The C-Norm method outperformed all methods by at least 10 points for both types 
of score on habitat normalization, and by 4 and 7 points respectively for each score on 
phenotype normalization. It demonstrates the benefit of combining the SLFNN and 
S-CNN components as well as of using a smoother integration method than a sieve-
based approach.

In light of these results on the development set, we did not evaluate all methods 
on the test set, but focused on the C-Norm method and compared it to existing 
approaches.

Table 2 Performance of  all methods on  the  BB-norm development set (mean 
with standard deviation)

The highest scores are in italics

BB-norm habitats BB-norm phenotypes

Wang score Strict score Wang score Strict score

SLFNN 0.654 ± 0.003 0.325 ± 0.004 0.814 ± 0.013 0.537 ± 0.011

S-CNN 0.696 ± 0.003 0.510 ± 0.007 0.782 ± 0.005 0.501 ± 0.013

Sieve (thresh-
old = 0.4)

0.725 ± 0.003 0.508 ± 0.005 0.807 ± 0.008 0.527 ± 0.009

C-Norm 0.819 ± 0.004 0.633 ± 0.009 0.854 ± 0.011 0.620 ± 0.024
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Effect of using weakly supervised data

Table  3 shows the performance of the C-Norm method for Habitat entities on the 
development set using only the manually annotated training set (standard supervi-
sion) and using both the manual annotations and the ontology labels as training data 
(standard + weak supervision). We see that the gain in performance is substantial, i.e. 
more than 10 points for both types of score, thus demonstrating the benefit of adding 
ontology labels to the training set.

Effect of using ontological knowledge

Figure 6 plots the performance of C-Norm for Habitat entities using different values 
of the decay factor (ranging from 0 to 1, with 0.1 increments). A value of 0 means that 
the hierarchical relation between parent and child concepts is not taken into account 
in the output vector, thus no ontological knowledge is used. We can see that using the 
hierarchical information (i.e., decay factors > 0) consistently increases performance. 
The choice of the value of the decay factor is not clear-cut, as values from 0.4 to 0.8 all 
work well. However, a value of 0.6 yields a high similarity score as well as the highest 
strict score, and so seems a reasonable choice. Compared to not integrating ontologi-
cal knowledge, using the 0.6 decay factor increases the Wang score by 3.5 points and 
the strict score by 2.3 points.

Evaluation results

Table 4 gives a summary of the characteristics of the methods evaluated on the test 
set of the BB-norm task, including the baseline, methods from official teams who 

Table 3 Performance of  C-Norm for  Habitats on  the  development set, using standard 
supervision vs. standard + weak supervision

The type of supervision used is in italics

Wang score Strict score

C-Norm standard 0.698 ± 0.003 0.473 ± 0.004

C-Norm standard + weak 0.819 ± 0.004 0.633 ± 0.009

Fig. 6 C-Norm performance scores for Habitats using different decay factors
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participated in the BB-norm shared task (AmritaCen Healthcare, BOUN-ISIK, BLAIR 
GMU and PADIA BacReader), methods having obtained high performance on a simi-
lar dataset (CONTES and HONOR), and our best performing method C-Norm.

Performance of the methods is shown in Table 5. C-Norm significantly outperforms 
all existing methods according to both measures, non-strict evaluation (Wang similar-
ity score) and strict evaluation (strict exact score): respectively + 4 and + 7 points com-
pared to the best approach (HONOR) for Habitat normalization, and + 9 points (for 
both scores) compared to the best approach (CONTES) for Phenotype normalization.

Discussion
C-Norm significantly outperforms other methods on the two datasets of the 2019 BB-
norm task. An advantage of the C-Norm method is also that it is domain-independ-
ent, in contrast with methods such as HONOR which obtained good results but used 
domain-specific rules.

The C-Norm ensemble method is able to improve upon the performance of the 
individual SLFNN and S-CNN components. We performed an error analysis on pre-
dictions made on the development set by the best run of our methods. Out of the 
610 mentions in this set, 382 mentions (62.6%) have been correctly normalized by 
C-Norm. Compared to C-Norm, the SLFNN has only correctly normalized 194 men-
tions (31.8%), the S-CNN only 308 mentions (50.5%) and the union of the correct 

Table 4 Characteristics of the methods

Embedding-based ML-based Rule-based

Baseline No No Yes

AmritaCen Healthcare n/a n/a n/a

BOUN-ISIK Yes No Yes

BLAIR GMU Yes Yes No

PADIA BacReader Yes Yes Yes

CONTES Yes Yes No

HONOR Yes Yes Yes

C-Norm Yes Yes No

Table 5 Performance on the test set (95% CI = 95% confidence interval)

The highest scores are in italics

Habitats Phenotypes

Wang [95% CI] Strict [95% CI] Wang [95% CI] Strict [95% CI]

Baseline 0.559 [0.543, 0.576] 0.224 [0.199, 0.250] 0.581 [0.559, 0.604] 0.091 [0.056, 0.127]

AmritaCen 0.522 [0.497, 0.548] 0.347 [0.314, 0.376] 0.646 [0.595, 0.698] 0.512 [0.448, 0.571]

BOUN-ISIK 0.687 [0.667, 0.710] 0.428 [0.395, 0.459] 0.566 [0.520, 0.610] 0.315 [0.259, 0.373]

BLAIR GMU 0.615 [0.596, 0.632] 0.211 [0.185, 0.237] 0.646 [0.607, 0.685] 0.313 [0.254, 0.373]

PADIA 0.684 [0.661, 0.709] 0.488 [0.456, 0.519] 0.758 [0.716, 0.803] 0.618 [0.556, 0.676]

CONTES 0.715 [0.694, 0.736] 0.500 [0.467, 0.529] 0.799 [0.760, 0.835] 0.616 [0.553, 0.675]

HONOR 0.737 [0.716, 0.759] 0.531 [0.499, 0.563] 0.778 [0.738, 0.814] 0.578 [0.519, 0.640]

C-Norm 0.777 [0.755, 0.797] 0.604 [0.574, 0.635] 0.881 [0.855, 0.907] 0.700 [0.643, 0.755]
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predictions of both components results in 342 mentions (56.1%). C-Norm correctly 
normalized 91 mentions (15%) which have been incorrectly normalized by the 
SLFNN and the S-CNN. It shows that the particular combination of the SLFNN and 
the S-CNN in C-Norm is able to take advantage of their complementarity. Neverthe-
less, the SLFNN has correctly normalized 12 mentions (2%) which have not been cor-
rectly normalized by C-Norm and 48 mentions (7.9%) for the S-CNN. However most 
of these newly introduced errors (85%) are assigned relatively weak penalties by the 
Wang similarity score compared to errors from the SLFNN and the SCNN, meaning 
that they are not severe errors (see the following paragraph for a typology of errors).

Despite the high performance of C-Norm, few-shot normalization is still challeng-
ing and there is room for improvement. The error analysis on the development set 
revealed that 228 mentions (37.4%) out of 610 were incorrectly normalized. We clas-
sified errors into several types:

• Partially correct normalization 40 mentions (17.5% of the errors) have only 
been partially correctly normalized. Indeed, the BB-norm dataset includes men-
tions that have to be normalized with more than one concept (e.g. the mention 
“healthy adult” has to be normalized with both <OBT:002712: healthy person> 
and <OBT:003245: adult human>). Existing methods, including C-Norm, typically 
only predict one concept per mention.

• Overgeneralization 64 mentions (28.1% of the errors) have been normalized by a 
concept more general (i.e. higher in the is_a hierarchy graph) than an exact one, 
and the predicted concepts are at a maximum of 5 concepts above the exact con-
cept (e.g. the “scimudin cheese” mention should have been normalized by the 
concept <OBT:003522: Scimudin>, and has been normalized by <OBT:001480: 
cheese>, and <OBT:003522: Scimudin> is_a <OBT:003492: mould ripened 
cheese>, which is_a <OBT:003459: soft cheese>, which is_a <OBT:003428: ripened 
cheese>, which is_a <OBT:003381: fermented cheese>, which is_a < BT:001480: 
cheese>).

• Overspecification On the contrary, 36 mentions (15.8% of the errors) have been 
normalized by a concept more specific (i.e. lower in the is_a hierarchy graph) than 
an exact one, and the predicted concepts are at a maximum of 2 concepts below 
the exact concept (e.g. the mention “ulcer” has been normalized by <OBT:001533: 
duodenal ulcer>, and should have been normalized by <OBT:000933: ulcer>, 
and <OBT:001533: duodenal ulcer> is_a <OBT:001248: peptic ulcer>, which is_a 
<OBT:000933: ulcer>).

• Other The remaining errors (88 mentions, 38.6% of the errors) corresponds to 
mentions normalized with concepts that are not in the hierarchical path of their 
correct concept, i.e., they were normalized neither with an ancestor nor with a 
child.

We consider the first three types of errors less serious than the last one. They are 
assigned weaker penalties by the Wang similarity score. At an equivalent distance 
in the graph between predicted and correct concept, the last type of error is more 
penalized than an overgeneralization/specification error by the similarity measure. 
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Moreover, these errors are globally the worst in terms of distance to the correct con-
cept: they range from 2 to 16, with a median at 8. Thus, we estimate that this type of 
error should be addressed as a priority in future work. We analyzed them in detail 
and found that, out of these 88 mentions, there were two main sources of errors:

Syntactic structure of entity mentions (31 mentions, 35.2%): our method has 
sometimes trouble determining the core meaning of the multi-word mentions. 
For instance, the mention “chicken nugget processing plant” has been auto-
matically annotated with the concept <OBT:002729: nugget>, rather than with 
<OBT:002129: meat industry>, and the mention “hyperimmune mouse sera” with 
<OBT:002727: mouse> rather than with <OBT:000524: blood serum>. Taking into 
account syntactic information such as the identification of the syntactic head of 
entity mentions could contribute to improve performance in these cases.
Ambiguities (16 mentions, 18.2%) Our method does not take into account the con-
text of entity mentions and thus does not handle well ambiguities such as poly-
semic words. For instance, the word “malt” can either mean “dried germinated 
cereal grains” (represented by the concept <OBT:003215: malt>), or be the acro-
nym of “mucosa-associated lymphoid tissue” (which is a <OBT:000334: lymphatic 
system part>). Another example is the one-word mention “chicken”, which is often 
annotated with the concept <OBT:003314: chicken>, but should sometimes be 
annotated with the concept <OBT:002394: chicken meat>, depending on the con-
text.

We identified potential solutions to address these limitations. A way to take into 
account syntactic information would be to use graph-neural networks [45] to rep-
resent graph nodes, such as words in a syntactic dependency tree [46]. This kind of 
networks could be used as a bottom layer for C-Norm, enabling the method to give 
more weight to syntactic heads compared to modifiers when computing an interme-
diate representation for each mention. To take into account the context of a mention, 
at least the intra-sentence context, a first step could be to replace Word2Vec word 
embeddings with context-aware word embeddings such as those computed by ELMo 
[19] or BERT [20]. We plan to investigate these interesting directions in future work.

The weak supervision strategy results in a large increase in performance (+ 12.1 
points for Wang score and + 16 for strict). We hypothesize that there are three main 
explanations for this increase:

• An augmentation of the training data Few-shot classification methods can primar-
ily take advantage of data augmentation, and adding labels almost triples the total 
number of examples.

• A better coverage of the training data All the concepts in the ontology have at least 
one label, so the new training data covers 100% of the ontology concepts. It really 
differs from the manually annotated examples, which cover only 7.3% of the ontol-
ogy concepts.

• An ontology well-suited for natural language processing The OntoBiotope ontology 
has been built from expert analysis of microbiological publications. This implies 
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that the labels are terms which are close to those found in texts. However, this 
feature is dependent on the task and the ontology, and will not necessarily gener-
alize well to other contexts. For instance, in the Social Media Mining for Health 
Applications (SMM4H) shared task [47] where adverse drug reaction mentions in 
tweets are normalized with concepts from the MeDRA terminology, the language 
used in tweets can be quite different from term labels (e.g. “head is killing me” 
normalized with the concept <MEDDRA:10019211: headache>).

C-Norm has been evaluated on two normalization tasks belonging to the same dataset 
from a specialized domain (i.e. scientific literature in microbiology). To demonstrate the 
actual adaptability of the method to other domains, evaluations on others tasks should 
be conducted in the future, such as the Social Media Mining for Health Applications 
(SMM4H) dataset [47] or the TAC Adverse Drug Reaction Extraction from Drug Labels 
dataset [48].

Conclusions
C-Norm is a new neural method which synergistically integrates several strategies to 
handle few-shot normalization tasks: weak supervision, ontological knowledge integra-
tion and distributional semantics. C-Norm is built in an ensemble averaging way, which 
learns to dynamically combine predictions from two neural components with comple-
mentary results: a shallow CNN and a single layer feedforward neural network. These 
components are representative of two recent types of approach that have shown good 
performance in entity normalization in specialized domains. Our results show that the 
choice of components and the method to combine them is the source of a significant 
gain in the predictive capacity of algorithms, greatly outperforming other methods on 
the Bacteria Biotope datasets of BioNLP-OST 2019, while keeping an overall relatively 
shallow algorithm.
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