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Background
In recent years, science and technology have developed rapidly, and many experts and 
scholars are paying more and more attention to long non-coding RNAs (lncRNAs). 
The length of lncRNAs is more than 200 nucleotides, and it is not involved in encoding 

Abstract 

Background: In the development of science and technology, there are increasing 
evidences that there are some associations between lncRNAs and human diseases. 
Therefore, finding these associations between them will have a huge impact on our 
treatment and prevention of some diseases. However, the process of finding the asso‑
ciations between them is very difficult and requires a lot of time and effort. Therefore, 
it is particularly important to find some good methods for predicting lncRNA‑disease 
associations (LDAs).

Results: In this paper, we propose a method based on dual sparse collaborative matrix 
factorization (DSCMF) to predict LDAs. The DSCMF method is improved on the tradi‑
tional collaborative matrix factorization method. To increase the sparsity, the  L2,1‑norm 
is added in our method. At the same time, Gaussian interaction profile kernel is added 
to our method, which increase the network similarity between lncRNA and disease. 
Finally, the AUC value obtained by the experiment is used to evaluate the quality of our 
method, and the AUC value is obtained by the ten‑fold cross‑validation method.

Conclusions: The AUC value obtained by the DSCMF method is 0.8523. At the end of 
the paper, simulation experiment is carried out, and the experimental results of pros‑
tate cancer, breast cancer, ovarian cancer and colorectal cancer are analyzed in detail. 
The DSCMF method is expected to bring some help to lncRNA‑disease associations 
research. The code can access the https:// github. com/ Ming‑ 0113/ DSCMF website.
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protein functions [1]. Many experiments have demonstrated that lncRNAs play an 
important role in many aspects, such as epigenetic regulation, cell cycle control and cell 
differentiation regulation [2–4]. However, the current understanding of lncRNAs is still 
far from enough, and many unknown areas still need us to explore them. Therefore, we 
still need to strengthen the research on lncRNAs, which will also contribute to the better 
development of human biology.

There are increasing evidences that lncRNAs are closely linked to many human dis-
eases, such as common cardiovascular diseases [5, 6], diabetes [7], Alzheimer’s [8] and 
some cancers. LncRNA like MALAT1 is a transcript that is overexpressed in many can-
cers [9]. It is closely related to diseases such as lung cancer [10], renal cancer [11] and 
esophageal cancer [12]. Another example is GAS5, which is related to head and neck 
cancer [13], colon cancer [14], thyroid cancer [15], etc. Although some LDAs databases 
have been established for research by experts and scholars, the number of known LDAs 
in the database are far from enough, and there are many unknown associations that 
require people to mine them. Therefore, it is very necessary to find a method for efficient 
and accurate LDAs prediction.

At present, many methods have been proposed in the aspect of LDAs prediction 
[16]. These methods have helped more or less for predictions. For example, Sun et al. 
proposed a new computational model that used random walk with restart methods 
on the lncRNA functional similarity network [17]. A lncRNA-lncRNA functional sim-
ilarity network was constructed, and the relationship between similar phenotypic dis-
eases and functionally similar lncRNAs was used to predict novel associations. Finally, 
it was found through experiments that this method is indeed feasible. Chen et  al. 
improved on the basis of the random walk with restart model, combining the disease 
semantic similarity matrix with the lncRNA expression similarity matrix, and setting 
the initial probability vector of the random walk with restart model [18]. Therefore, 
this model can be applied to studies of diseases without known related lncRNAs. 
Chen et  al. proposed a Laplacian regularized least squares method to predict novel 
associations based on the assumption that similar diseases may be related to func-
tionally similar lncRNAs [19]. This method was developed under the framework 
of semi-supervised learning and can be used to sort the candidate disease-lncRNA 
pairs for all diseases. Chen proposed a KATZ measurement model to predict novel 
LDAs by combining lncRNA expression similarity and functional similarity, as well 
as disease semantic similarity and GIP kernel similarity [20]. This method can pre-
dict lncRNAs with no known associations for those diseases or those with no known 
associations for lncRNAs. Ding et  al. proposed a way to combine the gene-disease 
association network with the lncRNA-disease association network into a lncRNA-
disease-gene tripartite graph for prediction [21]. The advantage of this method is that 
it can better describe the heterogeneity of coding-non-coding genes-disease associa-
tions than other methods. Ping et al. proposed a method of constructing a bipartite 
network to predict novel LDAs [22]. This method is based on the known topology of 
the lncRNA-disease network to identify those potential LDAs. Finally, the Leave-one-
out cross-validation method was used to evaluate the performance of the method. 
Zhao et  al. proposed a method for predicting novel LDAs without relying on any 
known lncRNA-disease association [23]. This method is based on distance correlation 



Page 3 of 18Liu et al. BMC Bioinformatics          (2021) 22:241  

set that combines known lncRNA-miRNA associations and miRNA-disease asso-
ciations to predict novel associations. The result proves that this method is effec-
tive and has great advantages. Ou-Yang et al. proposed a new method for predicting 
LDAs, called the two-side sparse self-representation method [24]. The advantage of 
this approach is that it can adaptively learn the self-characterization of lncRNAs and 
the self-characterization of diseases, a process based on the known LDAs. And this 
method can also be supported from the internal associations between diseases and 
lncRNAs. Fu et al. proposed a matrix factorization model, which mainly decomposes 
the data matrix of heterogeneous data sources into low-rank matrix by matrix [25].

In this paper, an improved matrix factorization model is proposed to predict LDAs. 
This method mainly uses the collaborative matrix factorization, and then joins the 
Gaussian interaction profile kernel. At the same time, the  L2,1-norm is added to prevent 
over-fitting [26–28]. Since there may be some missing associations in the course of the 
experiment, the accuracy of our predictions will be reduced, so we also add the weight 
K nearest known neighbors (WKNKN) pre-processing process. The cross-validation 
method is used to obtain the AUC value of this method. At the end of the paper, the sim-
ulation experiment is carried out. The results show that our method is indeed superior 
to other methods. The specific improvements to our approach are as follows:

• In the DSCMF method, the  L2,1-norm is introduced to sparse A and B , which 
reduces redundant data, improves the computational power of the model, 
improves the robustness of the algorithm, and reduces the influence of noise on 
the A and B matrices.

• Network similarity is added to the DSCMF method, and we add the lncRNA net-
work similarity matrix and the disease network similarity matrix to our method.

In the second part of this paper, we show the experimental results of the DSCMF 
method. The third and fourth parts discuss and summarize the DSCMF method 
respectively, and put forward the next work plan. The specific algorithm and detailed 
formula of the DSCMF method can be seen in the fifth part of this article.

Results
Human LncRNA‑disease associations

The LncRNADisease database is a common database for studying lncRNA-disease 
associations [29]. This database contains 247 diseases, 369 lncRNAs and their asso-
ciations. These associations were previously verified by 687 experiments [21]. The 
data used in this paper are 178 diseases without disease ontology (https:// disea se- 
ontol ogy. org/) and 115 lncRNAs without expression profiles selected from ArrayEx-
press (https:// www. ebi. ac. uk/ array expre ss/) [30]. Finally, we get a dataset with 540 

Table 1 LncRNAs, diseases, and associations in Gold Standard Dataset

Datasets LncRNAs Diseases Associations

Gold standard dataset 115 178 540

https://disease-ontology.org/
https://disease-ontology.org/
https://www.ebi.ac.uk/arrayexpress/
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lncRNA-disease associations, as listed in Table  1. Y is an adjacency matrix. If the 
value of this element is 1, this lncRNA l(i) is related to the disease d(j) . Otherwise, 
it implies that the lncRNA has nothing to do with this disease. The ten-fold cross-
validation method is applied in this paper, and the above dataset is used as the gold 
standard dataset for experiments to predict novel LDAs.

Cross validation

Cross-validation is used as an evaluation method in our experiments. And compared 
with the previously proposed LRLSLDA [19], ncPred [31], TPGLDA [21] and NTSH-
MDA [32] methods. The experiment process mainly uses the ten-fold cross-validation 
method. At the same time, in order to ensure the stability and reliability of our experi-
mental results, each method is repeated 30 times. It should be noted that some unknown 
associations may be lost. To avoid this, the WKNKN pre-processing process is applied to 
our method.

At the end of the final experiment, a corresponding AUC value [33] will be generated. 
This AUC value is an evaluation indicator used to evaluate the quality of our method. To 
know the AUC value, you need to know the area under the receiver operating character-
istic (ROC) curve. The AUC value is equivalent to the area under the ROC curve. ROC 
curve is related to true positive rate (TPR) and false positive rate (FPR). The calculation 
formula is as follows:

where TP and TN  represent the number of positive and negative samples that are true. 
FP and FN  represent the number of positive and negative samples that are false.

The area under the ROC curve is a number not greater than 1, that is, the AUC value 
is a number between 0 and 1. Generally, according to past experience, the AUC value is a 
number between 0.5 and 1. If it is less than 0.5, it proves that this method is not feasible.

Comparison with other methods

The experimental results of the LRLSLDA, ncPred, TPGLDA, NTSHMDA and DSCMF 
methods are listed in Table 2. In Table 2, we show the method with the highest AUC 
value and its AUC value in italics. It can be clearly seen from the experimental results 

(1)TPR =
TP

TP + FN
,

(2)FPR =
FP

TN + FP
,

Table 2 AUC results of cross validation experiments

Methods Gold standard dataset

LRLSLDA 0.6625 (0.0089)

ncPred 0.7566 (0.0218)

TPGLDA 0.7586 (0.0306)

NTSHMDA 0.7938 (0.0030)

DSCMF 0.8523 (0.0049)
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that the DSCMF method has the highest AUC value, followed by the NTSHMDA 
method, but our method is still 5.85% higher than it. The lowest AUC value is the 
LRLSLDA method, which is 18.98% lower than our method. A more intuitive descrip-
tion of the AUC values for the various methods can be found in Fig. 1.

The above results fully show that the DSCMF method is better than the previous 
methods, which is more conducive to the prediction of LDAs. The DSCMF method adds 
a GIP kernel to the original CMF method, thereby increasing the lncRNA network simi-
larity matrix and the disease network similarity matrix in the original method. The sec-
ond is to add the  L2,1-norm, which increases the sparsity. Therefore, this method has 
great advantages over other methods.

Sensitivity analysis from WKNKN

In the course of the experiment, some unknown associations that often have important 
influence on our prediction may be lost, so in order to avoid this negative impact will 
affect our experimental results, WKNKN pre-processing process is introduced in the 
DSCMF method. In this process, the setting of the parameters will also have a certain 
impact on the experimental results. Different parameters may cause the AUC value to 
change, so the choice of parameters is particularly important. It includes the choice of 
two parameters, one is the K  value representing the nearest known neighbor, and the 
other is the attenuation parameter P . According to previous experience, when setting K  
to 5 and P to 0.7, AUC tends to be stable. When K  is set to 5 and P is set to 0.7, the AUC 
value tends to be stable. Figures 2 and 3 show the effect of the two parameters K  and P 
on AUC, respectively.

Robust analysis of DSCMF

In this paper, we increase the  L2,1-norm, and the increase of the  L2,1-norm can improve 
the robustness of our algorithm. In order to prove the ability of the DSCMF method to 
learn the subspace, that is, the anti-interference ability when restoring data is strong, the 
DSCMF method is applied to the synthetic dataset composed of 200 two-dimensional 

Fig. 1 The LRLSLDA, ncPred, TPGLDA, NTSHMDA and DSCMF methods compare the performance of the AUC 
and ROC curves based on the ten‑fold cross‑validation method. It can be seen that the DSCMF method has 
the best performance
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data points, and all the data points are distributed in a one-dimensional subspace, i.e. 
y = x . x and y refer to the position of the coordinate axis where the data point is located. 
In addition, we also apply the original CMF method to this synthetic dataset to compare 
with our method. The specific process is to add different numbers of noise points in the 
synthesized dataset to compare the robustness of the CMF and DSCMF methods. Fig-
ure 4 shows the data distribution after adding one noise point. It can be seen that both 
CMF and DSCMF methods can be relatively stable. Figures 5, 6, and 7 show the data dis-
tribution of 30, 60, and 90 noise points respectively. It can be clearly seen that with the 
increase of noise points, the DSCMF method can basically maintain a stable state, basi-
cally unaffected by noise points. However, the CMF method is more affected by noise 
points. It is therefore proved that the DSCMF method increases the robustness.

Fig. 2 The sensitivity analysis for K  under CV‑p

Fig. 3 The sensitivity analysis for P under CV‑p



Page 7 of 18Liu et al. BMC Bioinformatics          (2021) 22:241  

Fig. 4 The comparison of the robustness of the CMF and DSCMF methods when the noise point is 1

Fig. 5 The comparison of the robustness of the CMF and DSCMF methods when the noise point is 30

Fig. 6 The comparison of the robustness of the CMF and DSCMF methods when the noise point is 60
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Case study

In this section, simulation experiment is performed to predict some novel LDAs. For 
the predicted results, four common diseases are selected for research: prostate cancer, 
breast cancer, ovarian cancer, and colorectal cancer. The experimental procedure is as 
follows: For one of the diseases, the predicted score matrix obtained is sorted from high 
to low. Then several lncRNAs with the highest scores are selected for analysis and veri-
fied by the databases LncRNADisease and Lnc2cancer.

The first study is prostate cancer. Prostate cancer is an epithelial malignancy that is 
closely related to genetic factors and is present in the prostate. For more detailed infor-
mation on prostate cancer, please visit the https:// www. omim. org/ entry/ 176807 website. 
In the original gold standard dataset, 13 lncRNAs have been shown to be associated with 
prostate cancer. The top 20 lncRNAs in the prediction matrix are extracted and ana-
lyzed. It is found that 12 of the original 13 lncRNAs that have been shown to be asso-
ciated with prostate cancer are predicted. And in Table 3, we have indicated these 12 
lncRNAs in italics. Among the remaining 8 lncRNAs, three lncRNAs, TUG1, IGF2-AS 
and CDKN2B-AS1, are found in the database LncRNADisease, and they are all associ-
ated with prostate cancer. Their PMIDs are 26975529 [34], 19767753 [35] and 23660942 

Fig. 7 The comparison of the robustness of the CMF and DSCMF methods when the noise point is 90

Table 3 Predicted LncRNAs for prostate cancer

Rank lncRNA Evidence Rank lncRNA Evidence

1 MALAT1 Known 11 HOTTIP Known

2 MEG3 Known 12 DANCR Known

3 H19 Known 13 XIST Lnc2cancer

4 HOTAIR Known 14 PTENP1 LncRNADisease; Lnc2cancer

5 GAS5 Known 15 TUG1 LncRNADisease

6 PVT1 Known 16 IGF2‑AS LncRNADisease

7 UCA1 Known 17 ZFAS1 Unconfirmed

8 HULC Known 18 CDKN2B‑AS1 LncRNADisease

9 KCNQ1OT1 Known 19 CCAT1 Unconfirmed

10 NEAT1 Known 20 SNHG16 Unconfirmed

https://www.omim.org/entry/176807
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[36], respectively. The XIST in the table is confirmed to be associated with prostate can-
cer in the database Lnc2cancer, and its PMID is 29212233 [37]. PTENP1, a lncRNA, is 
found to be associated with prostate cancer in both database LncRNADisease and Lnc-
2cancer. Their PMIDs are 24373479 [38] and 20577206 [39] respectively. The specific 
information is shown in Table 3.

The second disease is breast cancer. Breast cancer has become a common disease 
that threatens women’s physical and mental health. For more detailed information 
about breast cancer, please visit: https:// www. omim. org/ entry/ 114480. In the gold 
standard dataset of the experiment, there are 20 kinds of lncRNA related to breast 
cancer. Comparing the predictions of the first 30 lncRNAs predicted in the simulation 
experiment, we find that the 17 lncRNAs in our experiment are confirmed in the gold 
standard dataset.  These 17 lncRNAs are specifically indicated in italics in Table  4. 
And 2 of the remaining 13 are confirmed in the LncRNADisease database. The two 
lncRNAs are CCAT1 and TUG1. Their PMIDs are 26464701 [40] and 27791993 [41]. 
There are three lncRNAs are confirmed to be associated with breast cancer in the 
Lnc2cancer database, which are PTENP1, SNHG16 and TUSC7, respectively. The 
PMIDs of these three lncRNAs are 29085464 [42], 28232182 [43], and 23558749 [44], 
respectively. And KCNQ1OT1, a lncRNA, is confirmed to be associated with breast 
cancer in both LncRNADisease and Lnc2cancer databases. The remaining seven 
lncRNAs are not confirmed by the databases to be associated with breast cancer. The 
specific experimental results are listed in Table 4. For example, in the case of lncRNA 
CCAT1, previous studies have demonstrated that CCAT1 is overexpressed than nor-
mal tissue.

The third disease is ovarian cancer. Ovarian cancer is a common disease in female gen-
ital organs. Its incidence is second only to cervical cancer and endometrial cancer, pos-
ing a serious threat to women’s health. For more detailed information on ovarian cancer 
please visit https:// www. omim. org/ entry/ 167000. In the gold standard dataset, it is 
known that 12 lncRNAs are associated with ovarian cancer, so the top 22 lncRNAs in the 
prediction matrix are selected for analysis and the results are listed in Table 5. We suc-
cessfully predict 11 lncRNAs, which have been confirmed in the gold standard dataset. 

Table 4 Predicted LncRNAs for breast cancer

Rank lncRNA Evidence Rank lncRNA Evidence

1 HOTAIR Known 16 ZFAS1 Known

2 MALAT1 Known 17 CDKN2B-AS1 Known

3 H19 Known 18 CCAT1 LncRNADisease

4 GAS5 Known 19 PTENP1 Lnc2cancer

5 UCA1 Known 20 HULC Unconfirmed

6 PVT1 Known 21 BANCR Unconfirmed

7 BC040587 Known 22 SNHG16 Lnc2cancer

8 XIST Known 23 TUG1 LncRNADisease

9 MEG3 Known 24 MINA Unconfirmed

10 SPRY4-IT1 Known 25 TUSC7 Lnc2cancer

11 CCAT2 Known 26 EPB41L4A‑AS1 Unconfirmed

12 BCYRN1 Known 27 7SK Unconfirmed

https://www.omim.org/entry/114480
https://www.omim.org/entry/167000
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At the same time, these 11 lncRNAs are shown in italics in Table 5. Three lncRNAs are 
confirmed in the LncRNADisease database, which are GAS5, NEAT1, and CCAT2, and 
their PMID numbers are 27779700 [45], 27608895 [46], 27558961 [47]. MEG3, SNHG16, 
MNX1-AS1, and ZFAS1 are confirmed to be associated with ovarian cancer in the Lnc-
2cancer database, and their PMIDs are 28175963 [48], 29461589 [49], 29271994 [50], 
and 28154416 [51], respectively. The remaining four lncRNAs are not confirmed have 
any association with ovarian cancer in both databases LncRNADisease and Lnc2cancer.

The last disease listed is colorectal cancer. Colorectal cancer is a common malignant 
tumor in humans. China is a low-incidence area for colorectal cancer, but in recent 
years, the incidence of colorectal cancer has increased in different regions. As can be 
seen from the original gold standard dataset, the dataset contains 21 lncRNAs that 
are associated with colorectal cancer. 20 association pairs are successfully predicted 
by the DSCMF algorithm, they are shown in italics in Table 6. And the remaining 10 
lncRNAs are verified in the two databases LncRNADisease and Lnc2cancer whether 

Table 5 Predicted LncRNAs for ovarian cancer

Rank lncRNA Evidence Rank lncRNA Evidence

1 HOTAIR Known 12 GAS5 LncRNADisease

2 H19 Known 13 MEG3 Lnc2cancer

3 UCA1 Known 14 NEAT1 LncRNADisease

4 PVT1 Known 15 SPRY4‑IT1 Unconfirmed

5 MALAT1 Known 16 CCAT2 LncRNADisease

6 XIST Known 17 HULC Unconfirmed

7 BCYRN1 Known 18 SNHG16 Lnc2cancer

8 CCAT1 Known 19 BANCR Unconfirmed

9 SRA1 Known 20 ZFAS1 Lnc2cancer

10 LSINCT5 Known 21 PTENP1 Unconfirmed

11 MNX1-AS1 Known 22 TUSC7 Unconfirmed

Table 6 Predicted LncRNAs for colorectal cancer

Rank lncRNA Evidence Rank lncRNA Evidence

1 MALAT1 Known 16 TUSC7 Known

2 HOTAIR Known 17 RPL34-AS1 Known

3 MEG3 Known 18 SNHG16 Known

4 GAS5 Known 19 MNX1-AS1 Known

5 PVT1 Known 20 NPTN-IT1 Known

6 UCA1 Known 21 SPRY4‑IT1 LncRNADisease

7 H19 Known 22 PTENP1 Unconfirmed

8 XIST Known 23 CDKN2B‑AS1 LncRNADisease

9 CCAT1 Known 24 LINC00261 Unconfirmed

10 NEAT1 Known 25 BCYRN1 Unconfirmed

11 HULC Known 26 TUG1 LncRNADisease

12 CCAT2 Known 27 MINA Unconfirmed

13 BANCR Known 28 7SK Unconfirmed

14 LSINCT5 Known 29 BC040587 Unconfirmed

15 KCNQ1OT1 Known 30 ZFAS1 LncRNADisease
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they are associated with colorectal cancer. Among them, 4 lncRNAs are confirmed to 
be associated with colorectal cancer in the LncRNADisease database. These 4 lncR-
NAs are SPRY4-IT1, CDKN2B-AS1, TUG1 and ZFAS1, respectively. Their PMIDs are 
27621655 [52], 27286457 [53], 27421138 [54] and 27461828 [55] respectively. There 
are also six lncRNAs that are not confirmed to be associated with colorectal cancer 
and further research is needed. Specific information on lncRNA and colorectal cancer 
is shown in Table 6:

Discussion
Numerous studies have shown that lncRNA is indeed associated with certain diseases in 
humans, so it is a very important contribution to find some effective methods to predict 
these associations. However, the process of finding LDAs takes a long time and consumes 
a lot of energy. So, if you find some new ways to predict LDAs, this will be of great help 
to our research. The DSCMF method introduced in this paper mainly adds the  L2,1-norm 
to the traditional collaborative matrix factorization method to increase the sparsity, and at 
the same time, the GIP kernel is used to increase the network similarity. The final cross-
validation method also proves that our method is suitable for LDAs prediction. Of course, 
our method is not completely without disadvantages. The DSCMF method requires a long 
running time. Therefore, shortening the running time of our method is an important prob-
lem that we still need to solve.

Conclusion
A ten-fold cross-validation method is used in the experimental part of this paper. And 
WKNKN pre-processing method is also used in the paper to solve those unknown interac-
tions, so the accuracy of prediction is improved to the greatest extent.

In the next work, we will continue to work on this aspect of research. And, try to make up 
for the shortcomings in the previous research process and find some new prediction meth-
ods. At the same time, we will try to apply our method to more datasets such as miRNA-
disease associations datasets, so as to more fully prove the performance of our method. At 
the end of the paper, I hope that the DSCMF method can be helpful for predicting lncRNA-
disease associations, and we will be more committed to this research and contribute to 
human society.

Methods
LncRNA expression similarity

ArrayExpress contains more than 60,000 expression profiles of 16 human tissues, and these 
expression profiles are generated by RNA-Seq technology. The lncRNA expression profile 
used in this paper is obtained from ArrayExpress. The correlation between each pair of 
lncRNA expression profiles can be expressed using the Spearman correlation coefficient, 
which is also the similarity of lncRNA expression. The matrix Sl can be used to represent 
the lncRNA expression similarity matrix, and the expression similarity between lncRNA li 
and lncRNA lj can be shown in the form of Sl

(

li, lj
)

.
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Disease semantic similarity

The semantic similarity of the disease was first used in the ncRNA-disease association, and 
the results proved its correctness [56]. In this paper, a directed acyclic graph (DAG) is used 
to describe the relationship between disease semantics. For disease Dd , its directed acyclic 
graph can be expressed as DAG

(

Dd
)

=
(

Dd ,T
(

Dd
)

,E
(

Dd
))

 , where T
(

Dd
)

 is represented 
as the set of nodes and E

(

Dd
)

 is represented as a set of edges between nodes. The specific 
formula is as follows:

where � represents a semantic contribution factor. Given a disease semantic similarity 
matrix Sd . To determine the semantic similarity between the two diseases di and dj , it is 
necessary to look at their common DAG parts. Therefore, as long as their DAG common 
parts are larger, their semantic similarities are greater. The specific calculation formula is 
as follows:

Weight K nearest known neighbors

In order to prevent the loss of some unknown correlations and make our predictions 
more accurate, the WKNKN preprocessing process is added to the DSCMF method. In 
the lncRNA-disease association matrix Y , if lncRNA is associated with disease, the value 
in the matrix is 1, otherwise it is 0. The role of pre-processing is to change these 0 or 1 to 
values between 0 and 1, forming a new matrix to increase the accuracy of the prediction.

Gaussian interaction profile kernel similarity

Regardless of whether the disease is associated with the lncRNA in the lncRNA-disease 
network, it is likely to have a similar association with the new disease. The Gaussian 
interaction profile kernel similarity used in this method is based on this assumption [57]. 
The GIP kernel similarity can be used in this method to represent the network topo-
logical structure of LDAs. The topological structure of lncRNA li , lj and disease di , dj are 
represented by the following formula:

(3)DV (Dd) =
∑

d∈T (Dd)

D
Dd (d),

(4)DDd (d) =

{

1 if d = Dd ,

max
{

� ∗ DDd

(

d
′
)

∣

∣d
′

∈ children of d
}

if d �= Dd ,

(5)S
d(di, dj) =

∑

t∈T (di)∩T (dj)
(Ddi(t)+ Ddj (t))

DV (di)+ DV (dj)
.

(6)GIPlncRNA(li,lj) = exp(−γ
∥

∥Y(li)− Y(lj)
∥

∥

2
),

(7)GIPdisease(di,dj) = exp(−γ
∥

∥Y(di)− Y(dj)
∥

∥

2
).
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The parameters of the adjustment kernel bandwidth represented by γ in the above two 
formulas. Y(li) stands for a binary vector, the i-th row of Y , which represents the inter-
action profiles of the association between li and each disease. Next, the lncRNA expres-
sion similarity matrix and the network similarity matrix are combined by using formula 
(8). Similarly, the disease semantic similarity matrix and the network similarity matrix 
are combined by using formula (9).

In the above two formulas, α ∈ [0, 1] , and it is a parameter that can be adjusted. Where 
Kl is the final matrix combining lncRNA expression similarity and network similarity, 
and Kd is the final matrix that combines the semantic similarity of disease with network 
similarity.

DSCMF

Collaborative filtering is introduced in the traditional CMF method [58], which can 
accurately predict some novel LDAs. The objective function of the traditional CMF is as 
follows:

where �·�F is Frobenius norm. �h , �l and �d are positive parameters.
Then, the Sl in the traditional collaborative matrix factorization method is replaced 

by Kl . Similarly, Sd is replaced by Kd , thereby increasing the network similarity between 
lncRNA and disease. The improved formula is as follows:

At the same time, to increase the sparsity, the method in this paper adds  L2,1-norm to 
matrix A and B respectively. The final objective function can be written as:

The matrices A and B of this formula are two latent feature matrices produced by the 
decomposition of the matrix Y . Where �A�2F = Tr

(

A
T
A
)

= Tr
(

AA
T
)

 , 

�A�2,1 = Tr
(

A
T
D1A

)

 and �B�2,1 = Tr
(

B
T
D2B

)

.D1 , D2 are two diagonal matrices, where 
the values of the j-th diagonal element are denoted as d1jj = 1

/

2||(A)j||
2
 , 

d2jj = 1
/

2||(B)j||
2
 , respectively.

The first term is to construct an approximate model, the purpose is to find the matrix 
A and B . The second part is to add the Tikhonov regularization terms to prevent over-
fitting. The third part is to add the  L2,1-norm to matrix A . The fourth part is to add the 

(8)Kl=αSl + (1− α)GIPl ,

(9)Kd=αSd + (1− α)GIPd .

(10)
minA,B = ||Y − AB

T ||2F + �h(||A||2F + ||B||2F )

+ �l ||S
l − AA

T||2F + �d ||S
d − BB

T ||2F ,

(11)
minA,B = ||Y − AB

T ||2F + �h(||A||2F + ||B||2F )

+ �l ||Kl − AA
T||2F + �d ||Kd − BB

T ||2F .

(12)
minA,B = ||Y − AB

T||2F + �h(||A||2F + ||B||2F )+ �h||A||2,1

+ �h||B||2,1 + �l ||Kl − AA
T||2F + �d ||Kd − BB

T||2F .
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 L2,1-norm to matrix B.The last two parts are the collaborative regularization terms of 
lncRNA expression similarity matrix and disease semantic similarity matrix. A detailed 
flow chart of the DSCMF method is shown in Fig. 8.

Optimization and algorithm of DSCMF method

In this paper, we use the least squares method to update A and B to optimize the new 
method of this paper. In the first step, the values of A and B need to be initialized, so the 
singular value decomposition (SVD) method is used in this paper. The initial formula is:

where Sk represents a diagonal matrix that contains the k largest singular values. Next, 
based on the objective function, the partial derivatives are obtained for A and B , respec-
tively, and their partial derivatives are zero. Finally, updating is stopped once A and B 
converge. The iteration formula is as follows:

where �h , �l and �d are a combination of the best parameters automatically selected from 
�h ∈

{

2−2, 2−1, 20, 21
}

 and �l
/

�d ∈
{

0, 10−4, 10−3, 10−2, 10−1
}

.

(13)[U, S,V] = SVD(Y, k),A = US

1/2
k ,B = VS

1/2
k ,

(14)A = (YB+ �lKlA)

(

B
T
B+ �hIk + �lA

T
A + �hD1IK

)−1
,

(15)B =

(

Y
T
A + �dKdB

)(

A
T
A + �hIk + �dB

T
B+ �hD2Ik

)−1
,

lncRNA expression 
similarity

GIP

Linear combination 
matrix Kl

CMF

Matrix Y

Matrix A Matrix B

L2,1-norm L2,1-norm

DSCMF

Disease semantic 
similarity 

GIP

Linear combination 
matrix Kd

CMF

Fig. 8 Method flow chart. The DSCMF method consists of two parts. First, the matrix Y is decomposed into A 
and B , and  L2,1‑norm is added to A and B , respectively. Second is to join the GIP kernel in the CMF method
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Through the detailed description of the above process, the algorithm of the DSCMF 
method can be organized as follows:

Algorithm 1: DSCMF
Input: lncRNA-Disease matrix n mR ×∈Y , lncRNA expression similarity matrix 

lS , disease semantic similarity matrix dS

Parameters: , , , , ,h l dK P k λ λ λ

Output: prediction score matrix 
∧
Y

Pre-processing: d, ,l d
l→ →S K S K d= ( , , , , )lWKNKN K PY Y K K

Initialization: [ ] ( ), , = SVD ,kU S V Y , 1 2 1 2
k k= ,A US B = VS

Repeat
Update A using Eq. (14)
Update B using Eq. (15)

Until convergence

=
∧
Y AB

Return 
∧
Y

The DSCMF method is convergent.  The maximum number of iterations is set to 
100 times during the experiment, in order to find the local optimal solution of the 

Fig. 9 Convergence curve of the DSCMF method. When the number of iterations is about ten, our method 
tends to converge
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objective function. The convergence curve is shown in Fig. 9. The algorithm tends to 
converge in about 10 times, which proves that our algorithm can converge quickly.

Abbreviations
DSCMF: Dual sparse collaborative matrix factorization; GIP: Gaussian interaction profile; WKNKN: Weighted K nearest 
known neighbors; CV: Cross‑validation; SVD: Singular value decomposition.

Acknowledgements
Thanks go to the editor and the anonymous reviewers for their comments and suggestions.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 22 Supplement 3, 2021: Proceedings of the 2019 Inter-
national Conference on Intelligent Computing (ICIC 2019): bioinformatics. The full contents of the supplement are available 
online at https:// bmcbi oinfo rmati cs. biome dcent ral. com/ artic les/ suppl ements/ volume‑ 22‑ suppl ement‑3.

Authors’ contributions
JXL and MMG jointly contributed to the design of the study. ZC designed and implemented the DSCMF method, 
performed the experiments, and drafted the manuscript. YLG participated in the design of the study and performed the 
statistical analysis. FL contributed to the data analysis. All authors read and approved the final manuscript.

Funding
Publication costs are funded by the National Natural Science Foundation of China under Grant Nos. 61872220 and 
61902216. The funder played no role in the design of the study and collection, analysis, and interpretation of data and in 
writing the manuscript.

Availability of data and materials
The datasets that support the findings of this study are available in https:// www. cuilab. cn/ lncrn adise ase.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 School of Computer Science, Qufu Normal University, Rizhao, China. 2 Qufu Normal University Library, Qufu Normal 
University, Rizhao, China. 

Received: 29 October 2020   Accepted: 9 November 2020

References
 1. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136:629–41.
 2. Wang C, Wang L, Ding Y, Lu X, Zhang G, Yang J, Zheng H, Wang H, Jiang Y, Xu L. LncRNA structural characteristics in 

epigenetic regulation. Int J Mol Sci. 2017;18:2659.
 3. Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21:354–61.
 4. Alvarez‑Dominguez JR, Hu W, Lodish HF. Regulation of eukaryotic cell differentiation by long non‑coding RNAs. In: 

Molecular biology of long non‑coding RNAs. Springer; 2013. p. 15–67.
 5. Micheletti R, Plaisance I, Abraham BJ, Sarre A, Ting C‑C, Alexanian M, Maric D, Maison D, Nemir M, Young RA. The 

long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci Transl Med. 2017;9:eaai9118.
 6. Zhu YP, Hedrick CC, Gaddis DE. Hematopoietic stem cells gone rogue. Science. 2017;355:798–9.
 7. Bai X, Geng J, Li X, Wan J, Liu J, Zhou Z, Liu X. Long noncoding RNA LINC01619 regulates microRNA‑27a/forkhead 

box protein O1 and endoplasmic reticulum stress‑mediated podocyte injury in diabetic nephropathy. Antioxid 
Redox Signal. 2018;29:355–76.

 8. Luo Q, Chen Y. Long noncoding RNAs and Alzheimer’s disease. Clin Interv Aging. 2016;11:867.
 9. Änkö M‑L, Neugebauer KM. Long noncoding RNAs add another layer to pre‑mRNA splicing regulation. Mol Cell. 

2010;39:833–4.
 10. Guo F, Yu F, Wang J, Li Y, Li Y, Li Z, Zhou Q. Expression of MALAT1 in the peripheral whole blood of patients with lung 

cancer. Biomed Rep. 2015;3:309–12.
 11. Xiao H, Tang K, Liu P, Chen K, Hu J, Zeng J, Xiao W, Yu G, Yao W, Zhou H. LncRNA MALAT1 functions as a competing 

endogenous RNA to regulate ZEB2 expression by sponging miR‑200s in clear cell kidney carcinoma. Oncotarget. 
2015;6:38005.

 12. Huang C, Yu Z, Yang H, Lin Y. Increased MALAT1 expression predicts poor prognosis in esophageal cancer patients. 
Biomed Pharmacother. 2016;83:8–13.

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-22-supplement-3
https://www.cuilab.cn/lncrnadisease


Page 17 of 18Liu et al. BMC Bioinformatics          (2021) 22:241  

 13. Fayda M, Isin M, Tambas M, Guveli M, Meral R, Altun M, Sahin D, Ozkan G, Sanli Y, Isin H. Do circulating long non‑
coding RNAs (lncRNAs)(LincRNA‑p21, GAS 5, HOTAIR) predict the treatment response in patients with head and 
neck cancer treated with chemoradiotherapy? Tumor Biol. 2016;37:3969–78.

 14. Lucafò M, Di Silvestre A, Romano M, Avian A, Antonelli R, Martelossi S, Naviglio S, Tommasini A, Stocco G, Ventura A. 
Role of the long non‑coding rna growth arrest‑specific 5 in glucocorticoid response in children with inflammatory 
bowel disease. Basic Clin Pharmacol Toxicol. 2018;122:87–93.

 15. Guo L‑J, Zhang S, Gao B, Jiang Y, Zhang X‑H, Tian W‑G, Hao S, Zhao J‑J, Zhang G, Hu C‑Y. Low expression of 
long non‑coding RNA GAS5 is associated with poor prognosis of patients with thyroid cancer. Exp Mol Pathol. 
2017;102:500–4.

 16. Cui Z, Liu J‑X, Gao Y‑L, Zhu R, Yuan S‑S. LncRNA‑disease associations prediction using bipartite local model with 
nearest profile‑based association inferring. IEEE J Biomed Health Inform. 2019;24:1519–27.

 17. Sun J, Shi H, Wang Z, Zhang C, Liu L, Wang L, He W, Hao D, Liu S, Zhou M. Inferring novel lncRNA‑disease associa‑
tions based on a random walk model of a lncRNA functional similarity network. Mol BioSyst. 2014;10:2074–81.

 18. Chen X, You Z, Yan G, Gong D. IRWRLDA: improved random walk with restart for lncRNA‑disease association predic‑
tion. Oncotarget. 2016;7:57919–31.

 19. Chen X, Yan G‑Y. Novel human lncRNA‑disease association inference based on lncRNA expression profiles. Bioinfor‑
matics. 2013;29:2617–24.

 20. Chen X. KATZLDA: KATZ measure for the lncRNA‑disease association prediction. Sci Rep. 2015;5:16840.
 21. Ding L, Wang M, Sun D, Li A. TPGLDA: Novel prediction of associations between lncRNAs and diseases via lncRNA‑

disease‑gene tripartite graph. Sci Rep. 2018;8:1065.
 22. Ping P, Wang L, Kuang L, Ye S, Iqbal MFB, Pei T. A novel method for lncRNA‑disease association prediction based on 

an lncRNA‑disease association network. IEEE/ACM Trans Comput Biol Bioinform. 2018;16:688–93.
 23. Zhao H, Kuang L, Wang L, Xuan Z. A novel approach for predicting disease‑lncRNA associations based on the 

distance correlation set and information of the miRNAs. Comput Math Methods Med. 2018;2018:6747453.
 24. Ou‑Yang L, Huang J, Zhang X‑F, Li Y‑R, Sun Y, He S, Zhu Z. LncRNA‑disease association prediction using two‑side 

sparse self‑representation. Front Genet. 2019;10:476.
 25. Fu G, Wang J, Domeniconi C, Yu G. Matrix factorization‑based data fusion for the prediction of lncRNA–disease 

associations. Bioinformatics. 2017;34:1529–37.
 26. Cui Z, Gao Y‑L, Liu J‑X, Dai L‑Y, Yuan S‑S. L 2, 1‑GRMF: an improved graph regularized matrix factorization method to 

predict drug‑target interactions. BMC Bioinform. 2019;20:287.
 27. Cui Z, Gao Y‑L, Liu J‑X, Wang J, Shang J, Dai L‑Y. The computational prediction of drug‑disease interactions using the 

dual‑network L 2, 1‑CMF method. BMC Bioinform. 2019;20:5.
 28. Gao M‑M, Cui Z, Gao Y‑L, Liu J‑X, Zheng C‑H. Dual‑network sparse graph regularized matrix factorization for predict‑

ing miRNA‑disease associations. Mol Omics. 2019;15:130–7.
 29. Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, Zhang Q, Yan G, Cui Q. LncRNADisease: a database for long‑non‑

coding RNA‑associated diseases. Nucleic Acids Res. 2012;41:D983–6.
 30. Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, Farne A, Holloway E, Kolesnykov N, Lilja 

P, Lukk M. ArrayExpress—a public database of microarray experiments and gene expression profiles. Nucleic Acids 
Res. 2006;35:D747–50.

 31. Alaimo S, Giugno R, Pulvirenti A. ncPred: ncRNA‑disease association prediction through tripartite network‑based 
inference. Front Bioeng Biotechnol. 2014;2:71.

 32. Luo J, Long Y. NTSHMDA: prediction of human microbe‑disease association based on random walk by integrating 
network topological similarity. IEEE/ACM Trans Comput Biol Bioinform. 2020;17(4):1341–51.

 33. Huang J, Ling CX. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans Knowl Data Eng. 
2005;17:299–310.

 34. Du Z, Sun T, Hacisuleyman E, Fei T, Wang X, Brown M, Rinn JL, Lee MG‑S, Chen Y, Kantoff PW. Integrative analyses 
reveal a long noncoding RNA‑mediated sponge regulatory network in prostate cancer. Nat Commun. 2016;7:10982.

 35. Eeles RA, Kote‑Jarai Z, Al Olama AA, Giles GG, Guy M, Severi G, Muir K, Hopper JL, Henderson BE, Haiman CA. 
Identification of seven new prostate cancer susceptibility loci through a genome‑wide association study. Nat Genet. 
2009;41:1116.

 36. Cheetham S, Gruhl F, Mattick J, Dinger M. Long noncoding RNAs and the genetics of cancer. Br J Cancer. 
2013;108:2419.

 37. Du Y, Weng X‑D, Wang L, Liu X‑H, Zhu H‑C, Guo J, Ning J‑Z, Xiao C‑C. LncRNA XIST acts as a tumor suppressor in 
prostate cancer through sponging miR‑23a to modulate RKIP expression. Oncotarget. 2017;8:94358.

 38. Martens‑Uzunova ES, Böttcher R, Croce CM, Jenster G, Visakorpi T, Calin GA. Long noncoding RNA in prostate, blad‑
der, and kidney cancer. Eur Urol. 2014;65:1140–51.

 39. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding‑independent function of gene and 
pseudogene mRNAs regulates tumour biology. Nature. 2010;465:1033.

 40. Zhang X‑F, Liu T, Li Y, Li S. Overexpression of long non‑coding RNA CCAT1 is a novel biomarker of poor prognosis in 
patients with breast cancer. Int J Clin Exp Pathol. 2015;8:9440.

 41. Zhao X‑B, Ren G‑S. WITHDRAWN: LncRNA TUG1 promotes breast cancer cell proliferation via inhibiting miR‑9. Can‑
cer Biomark Sect A Dis Markers. 2016.

 42. Chen S, Wang Y, Zhang J‑H, Xia Q‑J, Sun Q, Li Z‑K, Zhang J‑G, Tang M‑S, Dong M‑S. Long non‑coding RNA PTENP1 
inhibits proliferation and migration of breast cancer cells via AKT and MAPK signaling pathways. Oncol Lett. 
2017;14:4659–62.

 43. Cai C, Huo Q, Wang X, Chen B, Yang Q. SNHG16 contributes to breast cancer cell migration by competitively binding 
miR‑98 with E2F5. Biochem Biophys Res Commun. 2017;485:272–8.

 44. Liu Q, Huang J, Zhou N, Zhang Z, Zhang A, Lu Z, Wu F, Mo Y‑Y. LncRNA loc285194 is a p53‑regulated tumor suppres‑
sor. Nucleic Acids Res. 2013;41:4976–87.

 45. Li J, Huang H, Li Y, Li L, Hou W, You Z. Decreased expression of long non‑coding RNA GAS5 promotes cell prolifera‑
tion, migration and invasion, and indicates a poor prognosis in ovarian cancer. Oncol Rep. 2016;36:3241–50.



Page 18 of 18Liu et al. BMC Bioinformatics          (2021) 22:241 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 46. Chen Z, Zhang Z, Xie B, Zhang H. Clinical significance of up‑regulated lncRNA NEAT1 in prognosis of ovarian cancer. 
Eur Rev Med Pharmacol Sci. 2016;20:3373–7.

 47. Zheng J, Zhao S, He X, Zheng Z, Bai W, Duan Y, Cheng S, Wang J, Liu X, Zhang G. The up‑regulation of long non‑
coding RNA CCAT2 indicates a poor prognosis for prostate cancer and promotes metastasis by affecting epithelial‑
mesenchymal transition. Biochem Biophys Res Commun. 2016;480:508–14.

 48. Zhang J, Liu J, Xu X, Li L. Curcumin suppresses cisplatin resistance development partly via modulating extracellular 
vesicle‑mediated transfer of MEG3 and miR‑214 in ovarian cancer. Cancer Chemother Pharmacol. 2017;79:479–87.

 49. Yang X, Wang G, Luo L. Long non‑coding RNA SNHG16 promotes cell growth and metastasis in ovarian cancer. Eur 
Rev Med Pharmacol Sci. 2018;22:616–22.

 50. Li A, Zhang H. Overexpression of lncRNA MNX1‑AS1 is associated with poor clinical outcome in epithelial ovarian 
cancer. Eur Rev Med Pharmacol Sci. 2017;21:5618–23.

 51. Liu R, Zeng Y, Zhou C‑F, Wang Y, Li X, Liu Z‑Q, Chen X‑P, Zhang W, Zhou H‑H. Long noncoding RNA expression signa‑
ture to predict platinum‑based chemotherapeutic sensitivity of ovarian cancer patients. Sci Rep. 2017;7:18.

 52. Cao D, Ding Q, Yu W, Gao M, Wang Y. Long noncoding RNA SPRY4‑IT1 promotes malignant development of colorec‑
tal cancer by targeting epithelial–mesenchymal transition. OncoTargets Ther. 2016;9:5417–25.

 53. Sun Z, Ou C, Ren W, Xie X, Li X, Li G. Downregulation of long non‑coding RNA ANRIL suppresses lymphangiogenesis 
and lymphatic metastasis in colorectal cancer. Oncotarget. 2016;7:47536.

 54. Wang L, Zhao Z, Feng W, Ye Z, Dai W, Zhang C, Peng J, Wu K. Long non‑coding RNA TUG1 promotes colorectal 
cancer metastasis via EMT pathway. Oncotarget. 2016;7:51713.

 55. Wang W, Xing C. Upregulation of long noncoding RNA ZFAS1 predicts poor prognosis and prompts invasion and 
metastasis in colorectal cancer. Pathol Res Pract. 2016;212:690–5.

 56. Chen X, Yan CC, Luo C, Ji W, Zhang Y, Dai Q. Constructing lncRNA functional similarity network based on lncRNA‑
disease associations and disease semantic similarity. Sci Rep. 2015;5:11338.

 57. van Laarhoven T, Nabuurs SB, Marchiori E. Gaussian interaction profile kernels for predicting drug–target interaction. 
Bioinformatics. 2011;27:3036–43.

 58. Shen Z, Zhang Y‑H, Han K, Nandi AK, Honig B, Huang D‑S. miRNA‑disease association prediction with collaborative 
matrix factorization. Complexity. 2017;2017:2498957.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	DSCMF: prediction of LncRNA-disease associations based on dual sparse collaborative matrix factorization
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Human LncRNA-disease associations
	Cross validation
	Comparison with other methods
	Sensitivity analysis from WKNKN
	Robust analysis of DSCMF
	Case study

	Discussion
	Conclusion
	Methods
	LncRNA expression similarity
	Disease semantic similarity
	Weight K nearest known neighbors
	Gaussian interaction profile kernel similarity
	DSCMF
	Optimization and algorithm of DSCMF method

	Acknowledgements
	References


