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Abstract 

Background: In molecular epidemiology, comparison of intra-host viral variants 
among infected persons is frequently used for tracing transmissions in human popu-
lation and detecting viral infection outbreaks. Application of Ultra-Deep Sequenc-
ing (UDS) immensely increases the sensitivity of transmission detection but brings 
considerable computational challenges when comparing all pairs of sequences. We 
developed a new population comparison method based on convex hulls in hamming 
space. We applied this method to a large set of UDS samples obtained from unrelated 
cases infected with hepatitis C virus (HCV) and compared its performance with three 
previously published methods.

Results: The convex hull in hamming space is a data structure that provides informa-
tion on: (1) average hamming distance within the set, (2) average hamming distance 
between two sets; (3) closeness centrality of each sequence; and (4) lower and upper 
bound of all the pairwise distances among the members of two sets. This filtering 
strategy rapidly and correctly removes 96.2% of all pairwise HCV sample compari-
sons, outperforming all previous methods. The convex hull distance (CHD) algorithm 
showed variable performance depending on sequence heterogeneity of the studied 
populations in real and simulated datasets, suggesting the possibility of using clus-
tering methods to improve the performance. To address this issue, we developed a 
new clustering algorithm, k-hulls, that reduces heterogeneity of the convex hull. This 
efficient algorithm is an extension of the k-means algorithm and can be used with any 
type of categorical data. It is 6.8-times more accurate than k-mode, a previously devel-
oped clustering algorithm for categorical data.

Conclusions: CHD is a fast and efficient filtering strategy for massively reducing the 
computational burden of pairwise comparison among large samples of sequences, 
and thus, aiding the calculation of transmission links among infected individuals using 
threshold-based methods. In addition, the convex hull efficiently obtains important 
summary metrics for intra-host viral populations.
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Background
Comparison of large samples of diverse genetic variants and obtaining summary sta-
tistics are common tasks in many fields, from computational searches of databases 
to cancer research and molecular epidemiology. For instance, comparison between 
populations of mitochondrial DNA variants from normal tissues and tumours brings 
important insights [1].

Phylogenetic analysis of viral sequences is frequently used in investigation of out-
breaks and transmission chains [2–6], usually using a single sequence per infected 
individual. However, many viruses such as hepatitis C virus (HCV) exist as a popula-
tion of numerous genetic variants in each infected individual. It was observed that 
minority variants in the source are often the ones responsible for transmission, indi-
cating that the use of a single sequence per individual lacks sensitivity for detecting 
such transmissions [7]. Molecular analysis of intra-host viral populations sampled 
from infected persons was shown to be very efficient in detection of HCV transmis-
sions in outbreak investigations [8–11]. Statistical analysis of intra-host HCV variants 
obtained from epidemiologically characterized outbreaks allowed for the develop-
ment of a simple and accurate threshold-based approach for detecting HCV transmis-
sions [7].

Sampling of intra-host HCV variants, including minority variants, by Ultra-Deep 
Sequencing (UDS) improves sensitivity of transmission detection [7]. However, compar-
ing all sequences from each pair of samples creates a considerable computational chal-
lenge. For instance, a relatively small dataset of 401 HCV samples required to perform 
80,200 pairwise sample comparisons, for a total of 4.56 × 1010 pairwise sequence com-
parisons [12]. As the number of tested cases increases over time, detection of transmis-
sion networks becomes computationally impractical. However, we have observed that 
less than 1% of all sample-pairs are usually linked by transmission, even in high-risk 
populations. Therefore, an exhaustive search over all pairs of sequences is very ineffi-
cient because the great majority of sample pairs are above certain relatedness thresh-
old, which corresponds to 3.77% for HCV [7]. Briefly, it would be very advantageous to 
remove most of these pairs in order to reduce the number of computations needed to 
establish transmission on a set of samples.

Similar problems are encountered under different names in various areas of computer 
science [13–19]. There are many methods for rapid string comparison. Detection of viral 
transmissions is affected by three factors: (1) owing to a continuous addition of new data 
samples during outbreak investigations, there is a need of comparing two or more popu-
lations of homologous sequences, which is different from comparison of a sequence to a 
static data structure or a static database; (2) a need of exact distance calculations makes 
any available fast heuristic and approximate methods unsuitable for the purpose; and 
(3) use of the relatedness threshold allows for application of filtering strategies. These 
factors have been addressed by three previously published filtering algorithms: the k-
mer bloom filter based on a lower bound of the maximal common substring [20]; the 
Hamming radius of each population and the triangle inequality [20]; and the signature 
method based on comparing k-mers and k-chunks of every pair of sequences [21].
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The current work was motivated by intuition that comparison of distances among 
every pair of points in a set can be replaced by calculation of distances among points 
located at the surface of the set. For the Euclidean plane (Fig. 1a), the convex hull of a 
set of points X is the smallest convex set that contains X, which can be visualized as the 
shape enclosed by a rubber band stretched around X [22]. However, every point in the 
hamming space is “at the surface” [23], which would apparently make this intuition use-
less for our purposes. Notwithstanding, each convex hull has a schema that describes it 
succinctly [24]. For instance, for the set of strings Pn = (010000, 011010, 111000, 010010, 
011110), the convex hull is *1***0, where * means that the position can be 0 or 1. Thus, 
the convex hull in the hamming space is a set comprising all binary strings matching the 
schema (16 sequences in this example).

The Multiple Sequence Alignment (MSA) of nucleotide sequences from viral popula-
tions can be used to calculate a vector of frequencies of nucleotide states (A, C, G, T or 
gap) at each position in the MSA. This is analogous to the convex hull schema described 
above, with the added information of frequency for each state (Fig. 1b). These vectors 
are also known as Position weight matrices (PWMs), position-specific scoring matrices 
or weighted patterns [25]. They have been used in models of transcription factor binding 
sites and in online matching algorithms [26].

Here, we present a fast and efficient filtering strategy that removes most pairwise 
comparisons, aiding the calculation of transmission links by threshold-based methods. 
In addition, we show that application of convex hull significantly reduces the computa-
tional cost of many important summary statistics that are routinely calculated for each 
population.

Results
Useful metrics derived from the convex‑hull

The convex hull of each file provides the following information:

Fig. 1 Convex hull data structure. a Example of a convex hull in two dimensions. b Example of a convex hull 
frequency vector for a given population. c Calculation of the convex hull distance between two populations
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1 Average Hamming distance The average hamming distance  (ADp) among all 
sequences within the population p is a very common summary statistic of the genetic 
heterogeneity of a population. However, it is computationally challenging as it 
requires 

(

n2 − n
)

/2 pairwise comparisons and then calculates the average. Using the 
convex hull, we can obtain  ADp in the following manner:

 where n is the number of sequences, l is the length, number of positions, fai is the fre-
quency of nucleotide i at position a and faj is the frequency of nucleotide j at position 
a.

2 CCh of each sequence The average distance from each sequence h to all others within 
the population, its closeness centrality  CCh, is an important measure of centrality 
that is also computationally challenging, as we need to make 

(

n2 − n
)

/2 pairwise 
comparisons and then calculate the average of each sequence. Using the convex hull, 
we can easily obtain  CCh in the following manner:

 where l is the length (number of positions in the MSA) and fa is the population fre-
quency of the nucleotide present at sequence h, position a.

3 Average distance between two populations The average hamming distance  (ADpq) 
among all sequences of two populations, p and q, is a very common statistic in popu-
lation genetics that is the basis for several measures of genetic relatedness. However, 
it is computationally challenging as it requires pn ∗ qn pairwise comparisons before 
calculating the average. Using the convex hull, n  ADp can be obtained using:

 where fpai is the frequency of nucleotide i at position a in the set p and fqaj is the fre-
quency of nucleotide j at position a in the set q.

4 Lower and upper bound of all distances between two sets Figure 1c shows the convex 
hulls of two example populations. In this example, there are 2 positions with empty 
intersection, therefore, the distance between any sequence in p and any sequence in 
q must be 2 or more. This is a lower bound of all the distances between members of 
p and q. This metric helps to safely discard any population pairwise comparison if 
its value is higher than the threshold T. Thus, the convex hull distance between two 
populations p and q,  CHDpq, can be defined by:

where a is equal to 0 if any nucleotide in position a of set p is also present in set q, or 
equal to 1 otherwise. If  CHDpq > T, this pair of samples can be safely discarded.

ADp =

∑l
a=1

∑

i �=j faifai
(
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)

/2
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l
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a=1

fa
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In this example there are 3 positions with empty or partial intersection, thus the 
distance between any sequence in p and any sequence in q must be 3 or less. This is 
the upper bound of all the distances between members of p and q.

Filtering performance

To illustrate a greater efficiency of the filtering approach over the full calculation of 
all sequence pairs, we generated 20 files with a variable number of sequences and 
applied both algorithms. The time taken by the CHD filter grows very slowly when 
the number of sequences per file increases, because the number of pairwise sample 
comparisons remains constant, whereas the full-distance method increases in a quad-
ratic manner (Fig. 2a).

For the viral dataset, the CHD filtering algorithm quickly removed 96.2% of all 
sample-pairs, outperforming the other three algorithms used here for comparison 
(Fig. 2b). In the viral dataset, the average divergence between CHD and actual mini-
mal distance was only 7.84% (Fig. 2c), whereas divergence between the upper bound 
and maximal distance was 2.3-times greater (18.32%).

Fig. 2 Convex hull distance (CHD) performance. a Time taken by the comparison of 20 files with a variable 
number of sequences. b Comparison of filtering performance of four methods. c Boxplot of the divergence 
between the CHD and the actual minimal distance (dark grey) in the viral dataset, as well as the upper bound 
and the maximal distance (light grey). d Divergence percentage between the observed minimal distance and 
the CHD, for raw samples (continuous line) and samples partitioned into two clusters (dashed line)
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We performed simulations to test performance of the CHD distance with 100 vary-
ing levels of genetic heterogeneity (Fig. 2d). As expected, the greater the diversity, the 
greater the divergence between true minimal distance and CHD.

k‑Hulls performance

Splitting each population into clusters creates sets of lower diversity than the original, 
which could provide a boost in CHD performance. Here, we propose a new way to split 
populations into clusters: a modified version of the k-mode algorithm, where the mode 
(consensus) of the cluster is replaced with the convex hull of the cluster, thus using more 
information. We performed simulations to test performance of the k-hulls algorithm 
with varying levels of cluster separation (Fig.  3a). Each simulated dataset contained 
either 2, 3 or 4 true clusters. The k-hulls method was found to be consistently correct 
in classification of sequences into clusters when the community separation was > 0.25. 

Fig. 3 k-hulls performance. a Comparison of k-hulls and k-modes for 2, 3 or 4 clusters. b Gap score by 
number of clusters, average of 100 random simulations with a community separation of 0.4. c Fraction of 
samples where the correct number of clusters was chosen
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A community separation of 0.25 means that only 25% of the total variation is found 
between clusters and 75% of the variation is random.

At community separations > 0.5, both the k-mode and k-hulls approaches were equal 
in performance. However, for lower values of community separation, k-hulls is 6.8-times 
more accurate. We observed that a higher sensitivity was because k-hulls uses more data 
(all sequences of the cluster instead of just its consensus) and thus avoids many ties in 
the cluster assignments.

Although algorithms of the k-means family can be performed several times from ran-
dom starting points, we proposed a heuristic to find the initial seeds that makes use of 
the closeness centrality calculated using the convex hull. In order to evaluate its per-
formance, we used all possible sets of seeds and ranked them by their average distance. 
It was found that, in average, our approach identifies a set of seeds outperforming 
99.9946% of all other sets.

The main problem of clustering is the difficulty of choosing the optimal number of 
clusters, as the clusters’ quality always improves (by any intra-cluster or inter-cluster 
measure) the number of clusters is increased. We used the gap statistic [27] to choose 
the best clustering solution, in terms of how different it is from a random solution of the 
same size. Figure 3b shows how the average gap score for 100 random simulations (with 
a community separation of 0.4) changes with different cluster solutions. For each num-
ber of true clusters (n = 2, 3 or 4) the correct solution has the highest gap score. Over all 
levels of community separation, we found that the method tends to choose the correct 
number of clusters when the community separation is > 0.35. Regarding the membership 
within a cluster, we found that geometric mean showed better performance than arith-
metic mean due to a reduction in the number of ties.

k‑Hulls on HCV dataset

We applied the k-hulls algorithm to HCV and simulated datasets to evaluate the CHD 
filtering performance. On the HCV data, clustering results in correct filtering of 99.92% 
of sample pairs, which is an improvement over the scenario without clustering (96.2%). 
On the simulated data with no true clusters, a forced clustering into two groups mod-
erately improves the CHD performance while adding very little computational work 
(Fig.  1d). With low mutation rates (e.g. < 0.05), clustering improves the CHD perfor-
mance by 2.4-fold. However, it must be considered that the performance of any filtering 
strategy would be benefited by splitting the population into clusters, but we only meas-
ured its effect on the CHD method.

Discussion
The convex hull in hamming space is a simple data structure that is efficient in generat-
ing information on: (1) average hamming distance within the set, (2) average hamming 
distance between two sets; (3) closeness centrality of each sequence; and (4) lower and 
upper bound of all the pairwise distances among the members of two sets. These met-
rics are routinely calculated by measuring all possible sequence pairs. The approach 
described here significantly reduces the number of pairs required to be assessed to accu-
rately calculate these metrics. Although we have not provided formal proofs for these 
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shortcuts, all these formulas were tested for correctness by comparing their results with 
the ones obtained by using the full calculation, with identical results. These comparisons 
were performed on all datasets, both with the real HCV datasets and simulated datasets 
produced with a variety of diversity levels.

The CHD filtering algorithm showed the best performance among the studied meth-
ods. CHD is also the simplest, which results in a fast processing time (< 1 s on a desktop 
computer to complete analysis of any dataset used here). In addition, the convex hull of 
each sample generates a very small file that needs to be calculated only once. Storage of 
this file requires minimal space, making it readily available for repeat usage when new 
files are deposited to the database.

The CHD filtering strategy proposed here is applicable in many settings. It can be 
used for the detection of viral transmissions by a threshold-based method [7] or can be 
applied to any sets of data with common categorical variables for their rapid comparison.

As expected, a greater diversity results in a greater divergence between the true min-
imal distance and CHD. Thus, the CHD filtering performance on other viral datasets 
is expected to be negatively affected by high diversity, for instance, when a patient is 
infected with > 1 strain. However, this situation can be alleviated by application of clus-
tering algorithms.

Usually, clustering of genomic sequences or other categorical data is performed on 
distance matrices for all pairs of sequences or variables using methods such as:

(1) a similarity tree (e.g. UPGMA) with selection of a level of clustering that satisfies 
certain constraints (e.g. bootstrap support or a threshold level of difference).

(2) a community detection algorithm applied to a network based on the distance 
matrix.

(3) correspondence analysis (like principal component analysis but applied to categori-
cal data using the distance matrix) with the following application of a secondary 
clustering algorithm.

A different method type, which can be applied to categorical data, is the k-mode algo-
rithm [28], which is a version of the k-means algorithm applicable to clustering large 
data sets with categorical values. The algorithm works by calculating a cluster mode of 
each position. Thus, each sequence is compared to the consensus of a cluster, as opposed 
to the centroid in continuous data. Here, we improved the k-mode algorithm by replac-
ing the consensus with the convex hull of a cluster, thus retaining more information on 
clusters and achieving a higher accuracy (6.8X) when the community separation is weak. 
We also showed that the gap statistic provides an efficient way for selection of the best 
partition solution for the k-hulls algorithm.

Before advent of UDS, the detection of viral transmissions was based on phylogenetic 
analyses of a single viral sequence per patient. Increased UDS sampling of intra-host 
viral variants from each infected person improved the sensitivity of transmission detec-
tion [7] but amplified the computational burden by immensely increasing the number of 
sequences needed to be compared. Novel molecular surveillance technologies like the 
Global Hepatitis Outbreak and Surveillance Technology [29] rapidly generate and accrue 
massive numbers of intra-host viral variants from many infected individuals, presenting 
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significant computational challenges to timely and accurately process molecular data. 
It is estimated that 2.0–2.8 million people have chronic HCV infection in the United 
States [30]. Efficient molecular surveillance on such a large population would necessi-
tate fundamental improvements in the capacity to manage and analyze rapidly growing 
molecular data to assist in devising public health interventions to control and eliminate 
viral diseases. Computational approaches reducing the computational burden caused by 
massive data, such as our approach presented here, are important for enhancing surveil-
lance efforts.

Conclusions
We present a fast and efficient filtering strategy that drastically reduces the amount of 
computation required for comparison of large samples of genomic sequences. The pro-
posed filtering algorithm has many applications in different fields dealing with com-
parison of massive datasets of categorical variables such as analysis of sequences of 
intra-host viral variants for the detection of transmission and transmission networks. In 
addition, this approach is efficient in calculation of important summary metrics for viral 
populations.

Methods
Problem definition

Given P = (P1,  P2,…), a set of samples where each  Pi is associated with a set  Si = (Si
1, 

 Si
2, …) of homologous sequences, enumerate all sample pairs  (Pi,  Pj) where any pair-

wise sequence comparisons  (Si
x,  Sj

y) has a hamming distance lower than the relatedness 
threshold, T (see Fig. 1). Given that every sequence-pair needs to be considered, it yields 
an O(n2) algorithm, where n is the number of sequences.

Viral dataset

The viral dataset is composed of previously published HCV sequences obtained from 
401 HCV infected individuals [7, 12, 20, 21, 31, 32]. The sequences, obtained by UDS, 
encode the HCV E1/E2 junction (an amplicon of 306 bp, being 264 bp after removing 
primer sequences), which contains the HCV hypervariable region 1. The average num-
ber of unique sequences per sample was 534.3. For each sample-pair, all its sequences 
are used to create a multiple-sequence alignment (MSA), which is then used to calculate 
the hamming distance between every pair of sequences. The two samples are consid-
ered related if the minimum of the hamming distance between their sequences is smaller 
than T, which in our case corresponds to 3.77% [7]. All sample-pairs in this viral dataset 
are above this threshold and thus are unrelated to each other, covering the spectrum of 
HCV diversity within and between subtypes (1a, 1b, 2a, 3a and 4a).

Performance comparison

We measure the performance of the method by testing what percentage of all popula-
tion pairwise comparisons are safely discarded because they cannot have any pair of 
sequences with a hamming distance below the threshold. The rationale of the approach 
is that the great majority of sample pairs have sequences that are highly different (unre-
lated and it would be advantageous to remove these pairs in order to reduce the amount 
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of computation needed to establish transmission on a set of samples. Every sample-pair 
is still considered, yielding an O(p2) algorithm, where p is the number of samples, but a 
single comparison is made, instead of all sequence pairs. We compare our performance 
with three previously published algorithms:

(1) Maximal common substring [20], based on the lower bound of the maximal com-
mon substring, which is applied to the k-mer bloom filter.

(2) The Hamming radius filter [20], based on the Hamming radius of each population 
and the triangle inequality.

(3) The signature method [21], based on comparing k-mers and k-chunks of every pair 
of sequences.

k‑Hulls clustering algorithm

The use of a clustering method is expected to improve the performance of the convex 
hull distance. Here, we modify the k-mode algorithm [28] by replacing the consensus 
cluster with the convex hull of the cluster, thus gaining more information about the clus-
ter. The algorithm is as follows:

1 Choose a desired number of clusters, k.
2 Find k seeds:

a Calculate the convex hull of all data
b 1st seed Calculate the closeness centrality of each sequence with the formula 

described for closeness centrality  (CCh). The most distant sequence is the 1st 
seed.

c 2nd seed Calculate the distance from the 1st seed to all others and identify the 
most distant.

d For each additional seed: Calculate the distance from the previous seeds to all 
other sequences and find the sequence with the highest geometric mean.

3 Preparations:

a Transform each sequence into the convex hull format.
b Each cluster begins with just one seed.

4 While the cluster membership changes:

a Calculate the Euclidean distance between each sequence’s convex hull and each 
cluster’s convex hull.

b Assign the sequence to its closest cluster and obtain a list of cluster member-
ships.

c Recalculate the convex hull of each cluster.
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In order to find the optimal number of clusters, we used the gap score [27] in the fol-
lowing manner:

1 Calculate the goodness of the clustering solution. For each position on each cluster, 
calculate the Shannon entropy, then average over all positions.

2 Calculate an average of “within cluster” goodness (rather than “between cluster”).
3 Compare this value with the one obtained by 1000 random partitions of the same 

size by means of the gap score.
4 Choose the solution with the best score.

Simulated datasets

To test the performance of the CHD and the k-hulls algorithm, we created several simu-
lated datasets with varying degrees of sequence heterogeneity and variable number of true 
clusters. For measuring the effect of genetic heterogeneity on the CHD distance, 5000 sim-
ulated pairs of files were created, with 50 replicas for each level of mutation rate (100 levels) 
and with each pair comparing two populations with the same level of simulated diversity.

For the clustering algorithm, 39,900 simulated datasets were created, with 100 replicas for 
each parameter combination. Each file consisted of 48 sequences, each sequence 50 nucleo-
tides long. The sequences could be separated into 2, 3 or 4 true clusters, with 20 levels of 
community separation, ranging from 0.05 to 0.95. For instance, a community separation of 
0.05 means that only 5% of the total variation is found between clusters and 95% of the vari-
ation is random.
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