
MCCMF: collaborative matrix factorization 
based on matrix completion for predicting 
miRNA‑disease associations
Tian‑Ru Wu, Meng‑Meng Yin, Cui‑Na Jiao, Ying‑Lian Gao, Xiang‑Zhen Kong and Jin‑Xing Liu* 

Tian-Ru Wu: Mail: wutianru@126.com

Background
MicroRNAs (MiRNAs) are a class of non-coding single-stranded RNA molecules. Their 
lengths are usually 18–24 nucleotides. Instead of synthesizing proteins, miRNAs par-
ticipate in post-transcriptional regulation of gene expression in eukaryotes and viruses 
[1]. In spite of the first miRNA Line-4 was discovered in 1993 [2], the diversity and 
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prevalence of these genes were revealed in recent years. To date, 38,589 miRNA have 
been found in animals, plants and viruses [3]. At the same time, miRNAs were discov-
ered to play an important role in cell proliferation [4], differentiation [5], senescence [6], 
apoptosis [7], and so on. A study indicated that more than one third of human genes 
are regulated by miRNA [8]. Obviously, miRNA disorder could have severe impacts on 
humans.

Evidence shows that an increasing number of miRNAs are closely associated with 
diseases [9]. Since the first discovery of miR15 and miR16 deficiency in B cell chronic 
lymphocytic leukemia (B-CLL) [10], the research results of miRNA-disease associations 
are often reported. For example, the expression of miR-25 and miR-223 is significantly 
higher in patients with esophageal squamous cell carcinoma than the normal people, 
while the expression of miR-375 is significantly lower [11]. Studies show that miR-26a 
may be a regulatory factor that inhibits the progression and metastasis of c-Myc/EZH2 
double height advanced HCC [12]. In addition, miR-340 has been suggested as a bio-
marker for cancer metastasis and prognosis [13]. At present, the research on miRNAs 
and diseases is becoming more extensive. Researchers have also developed a number of 
databases to store miRNA and disease data, such as dbDEMC [14], HMDD v3.0 [15] and 
miR2Disease [16]. Unfortunately, the known correlation data is not complete. Moreover, 
traditional methods to identify new miRNA-disease associations are time-consuming 
and laborious.

With the improvement of information technology and the development of a large 
number of miRNA data sets, many effective methods for predicting miRNA-disease 
associations have been proposed [17]. According to the hypothesis that functionally 
similar miRNAs may be associated with diseases with similar phenotypes [18], Jiang 
et al. [19] first constructed a genetic data network, and then prioritized disease-related 
miRNAs to predict miRNA-disease associations. However, due to the limited associa-
tion information, this method is not quite effective. A computational framework was 
developed by Li et al., which can be used to measure the association between the can-
cer and miRNA based on the functional consistency score (FCS) of miRNA target genes 
and cancer-related genes. This method has a significant advantage in the identifica-
tion of cancer-related miRNA [20]. Based on heterogeneous omics data, the potential 
miRNA-disease associations were identified via using a Graph Regularized Non-nega-
tive Matrix Factorization (GRNMF) by Xiao et al. [21]. However, the prediction results 
of GRNMF method may not be optimal in some cases. Chen et al. [22] proposed a new 
a computational model of Matrix Decomposition and Heterogeneous Graph Inference 
for miRNA-disease association prediction (MDHGI) to discover new miRNA-disease 
associations. The model made full use of matrix decomposition before the construc-
tion of heterogeneous networks, thus improving the prediction accuracy. The protein-
driven inference of miRNA-disease associations (miRPD) was proposed by Mørk et al. 
[23], which can infer the correlation between miRNA-protein-disease associations. At 
the same time, they provide scoring schemes that can create correlation sets of high 
and medium credibility. Three new miRNA-disease association prediction methods 
based on global network similarity measure were developed by Chen et al. [24], namely 
MBSI (microRNA-based similarity inference), PBSI (phenotype-based similarity infer-
ence) and NetCBI (network-consistency-based inference). NetCBI is especially suitable 
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for predicting target diseases, but it relies on network similarity measurement to a great 
extent. Similarly, Gao et al. [25] put forward a method based on Double Network Sparse 
Graph Regularized Matrix Factorization (DNSGRMF), and added the L2,1-norm and 
Gaussian interaction profile (GIP) kernel to improve the prediction ability. In addition, 
considering the nearest neighbor information of the miRNA and the disease, Gao et al. 
[26] introduced a method of Nearest Profile-based Collaborative Matrix Factorization 
(NPCMF) to predict miRNA-disease associations. One of the most obvious disadvan-
tages of NPCMF is that it introduces too much NP information, which may reduce the 
prediction accuracy while adding extra noise. In order to protect the known correlation, 
Logistic Weighted Profile-based Collaborative Matrix Factorization (LWPCMF) method 
was proposed by Yin et al. [27], which effectively predicts miRNA-disease associations. 
The prediction effect of this method is promising. Chen et al. [28] constructed a model 
based on Canonical Correlation analysis (CCA), which can fully reveal the possible 
molecular causes of miRNA-disease association. However, direct performance compari-
son is difficult to be achieved by this method.

In recent years, machine learning-based miRNA-disease association prediction meth-
ods are also popular. A support vector machine (SVM) classifier was developed by Xu 
et al. [29] to extract features from the miRNA-disease network and miRNA expression 
levels. Yet, the construction of miRNA target-dysregulated network (MTDN) is complex, 
so only direct miRNA target regulation can be predicted. Chen et al. [30] used random 
walk to prioritize disease-related miRNAs to predict potential human miRNA-disease 
associations. Like the problem of Jiang et al., their approach is also affected by limited 
disease-miRNA associations. A model of Restricted Boltzmann machine for multiple 
types of miRNA-disease association prediction (RBMMMDA) was established by Chen 
et al. [31]. Chen et al. [32] constructed a computational model called Laplacian Regu-
larized Sparse Subspace Learning for MiRNA-Disease Association prediction (LRSS-
LMDA). The model has stronger dimensionality reduction capability and can be easily 
extended to higher dimensional data sets. A new Induction Matrix Completion model 
for MiRNA-Disease Association prediction (IMCMDA) was constructed by Chen et al. 
[33]. Because it is a semi-supervised model, only positive samples and unmarked sam-
ples are needed, which greatly reduces the difficulty of modeling. Soon after, Chen et al. 
[34] proposed a new MiRNA-Disease Association Prediction Bipartite graph Network 
Projection computing model (BNPMDA). Compared with previous models, the predic-
tion accuracy of BNPMDA is improved. A new miRNA-disease association prediction 
algorithm based on the decision tree was proposed by Chen et  al. [35]. This method 
constructs a computing framework for integrated learning and dimension reduction. 
By training and integrating multiple base classifiers, they reduce prediction bias and 
improve prediction performance. Ding et al. [36] used an improved calculation method 
based on inductive matrix completion to predict miRNA-disease associations. (IIM-
CMP). Experiments show that IIMCMP can achieve powerful and reliable performance 
evaluation. Li et al. [37] developed a method of neural inductive matrix completion with 
graph convolutional network (NIMCGCN) for the prediction of miRNA-disease associ-
ation. To test the predictive power of NIMCGCN in the absence of any known miRNAs, 
they studied breast cancer with 100% accuracy. The above methods have made great 
contributions to predicting associations of miRNA-disease.
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Since the shortcomings of the above methods, a novel method for predicting miRNA-
disease associations with Collaborative Matrix Factorization based on Matrix Comple-
tion (MCCMF) is proposed in this paper. Firstly, human miRNA-disease association 
matrix, miRNA function similarity matrix and disease semantic similarity matrix are 
obtained from HMDD v2.0, but the obtained matrix is sparse. Therefore, the matrix 
completion method is used to complete the matrix. The matrix completion algorithm is 
mainly developed on the basis of Augmented Lagrange multiplier method (ALM) [38], 
Alternating Direction Method (ADM) [39] and Singular Value Threshold (SVT) oper-
ation [40]. Secondly, we integrate the completed matrix and the GIP kernel similarity 
matrix of the disease and the miRNA. At the same time, the miRNA-disease association 
matrix is preprocessed by Weight K Nearest Known Neighbors (WKNKN) method to 
solve the problem of unknown missing values [41]. Finally, collaborative matrix factori-
zation is used to predict associations between miRNAs and diseases. In the experiment, 
a fivefold cross validation on MCCMF is performed, and results show that our method is 
superior to the other four methods. In addition, we focus on the cases of Gastrointesti-
nal Neoplasms, Retinoblastoma and Hepatoblastoma. Our method not only successfully 
verifies the known associations of miRNA-disease, but also finds many unknown asso-
ciations. To sum up, MCCMF can avoid the inherent noise of the data set, with high-
speed and high prediction accuracy.

Results
Performance evaluation

In this section, AUC value, accuracy, precision, recall and f-measure are used to evaluate 
the performance of MCCMF method. Initially, we implement fivefold cross validation 
to objectively evaluate the predictive power of our method. The existing miRNA-dis-
ease associations are randomly divided into five groups, among which four groups are 
used as the training set and the remaining one as the test set. In addition, in order to 
demonstrate the high predictive capability of our method, the random deletion of the 
miRNA-disease association (i.e. Cross Validation pairs’ mode) increases the difficulty 
of prediction before performing the cross validation [42]. Fivefold cross validation is 
repeated 10 times to prevent grouping from causing bias, and the average result of 10 
times is used as the final evaluation result.

The ROC curve is drawn to represent the predicted performance intuitively, and 
the AUC value is calculated to evaluate MCCMF quantitatively. TPR and FPR can be 
expressed as:

where TP is the number of samples that are actually positive and are also predicted to be 
positive. FN  represents the number of samples that are actually negative and also pre-
dicted to be negative. However, TN  and FP represent the number of samples for which 
the predicted results are inconsistent.

(1)TPR =
TP

TP + FN
,

(2)FPR =
FP

TN + FP
,
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In order to make the performance evaluation more comprehensive, we also use other 
evaluation indicators, including the accuracy, precision, recall and f-measure. Their cal-
culation formulas are defined as follows:

Comparison with other methods

The AUC value is generally between 0 and 1. The higher the AUC value is, the better the 
prediction result will be. MCCMF finally obtains an AUC value of 0.9563 in the fivefold 
cross validation. MCCMF is compared with four advanced methods such as WBNPMD 
[43], RLSMDA [44], GRNMF [21] and CMF [45], which proves the superior perfor-
mance of our method. The ROC curves are drawn in Fig. 1, and the comparison results 
are listed in Table 1. The results of other methods in Table 1 are obtained directly from 
the literature.

In the Table 1, the highest value is highlighted in italic, with the standard deviation in 
parentheses. In the fivefold cross validation experiment, WBNPMD, RLSMDA, GRNMF, 
CMF and MCCMF obtain AUCs of 0.9173, 0.8389, 0.869, 0.8697 and 0.9569, respec-
tively. Therefore, our method is superior to the other four methods.

WBNPMD with higher AUC value is selected for comparison with MCCMF, and 
accuracy, precision, recall and f-measure are presented as a bar graph in Fig.  2. Also, 
MCCMF is better than WBNPMD.

(3)accuracy =
TP + TN

TP + TN + FP + FN
,

(4)precision =
TP

TP + FP
,

(5)recall =
TP

TP + FN
,

(6)f −measure =
2× precision× recall

precision× recall
.

Fig. 1 The ROC curves for each method in the fivefold cross validation experiment
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Case studies

In the end, we carry out a simulation experiment to analyze the specific disease. First of 
all, the disease we want to explore is selected and the predicted score is ranked. Then, 
based on the predicted score after ranking, some miRNAs of high associations degree 
with the disease are found. Moreover, by comparing with the original miRNA-disease 
association matrix, they are determined whether the associations of high prediction 
score is known. Finally, the unknown associations are verified by searching existing data 
sets. Here, we choose three diseases of Gastrointestinal Neoplasms, Retinoblastoma and 
Hepatoblastoma for analysis. In addition, three popular data sets, dbDEMC [14], HMDD 
v3.0 [15] and miRCancer [46] are used for validation. These data sets store miRNA-dis-
ease associations that have been experimentally confirmed by some researchers over the 
years.

Gastrointestinal Neoplasms is a very common gastrointestinal disease with a high 
incidence. However, there are no obvious symptoms in the early growth stage of 
the neoplasms, which is very dangerous to human beings. We successfully predict 
31 known associations and 9 new associations, 7 of which are confirmed by HMDD 
v3.0 and miRCancer. For example, Tazawa et al. [47] discovered the potential role of 
oncogenic miR-21 in Gastrointestinal Neoplasms. Other confirmed miRNAs have 
been reported in relevant data sets, and they are not listed here. There are still two 

Table 1 AUC results of cross validation experiments

Methods Gold standard dataset

RLSMDA 0.8389 (0.0006)

GRNMF 0.869 (0.00023)

CMF 0.8697 (0.0011)

WBNPMD 0.9173 (0.0005)

MCCMF 0.9569 (0.0005)

Fig. 2 Comparison of the accuracy, precision, recall and f‑measure with WBNPMD
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unconfirmed ones that need further research. Table 2 describes the simulation results, 
where known associations are shown in italic, confirmed new predictions are written 
to the corresponding database, and unconfirmed ones are shown as “unconfirmed”. 
The predicted scores in the Table 2 are ranked according to the strength of the associ-
ation between the miRNA and disease. There is a threshold to determine whether the 
prediction is accurate. Compared with known information and other databases, the 
prediction results of our method are generally accurate. Although two remain uncon-
firmed, these two could provide some insights for researchers.

Retinoblastoma is a malignant tumor that occurs in children under 3 years old, and 
has a familial predisposition. There are 38 known associations between the disease 
and miRNA in the known association data set, and 37 known associations are success-
fully predicted by us. At the same time, 23 new associations are predicted, seven of 
which are confirmed and the others are unconfirmed. Montoya et al. [48] found that 
the expression of miR-31 in Retinoblastoma is significantly reduced, which promotes 
the development of targeted therapy for Retinoblastoma. Table 3 shows the specific 
situation. The predictive sorting method in Table 3 is the same as that in Table 2.

Hepatoblastoma is the most common intraabdominal malignant tumor after neu-
roblastoma and nephroblastoma in childhood. In the existing miRNA-disease asso-
ciation data set, there are 8 known miRNA-disease associations, and all of them 
have been predicted. Besides, we predicted 12 new associations, seven of which are 
confirmed and 5 are not. We also find literatures confirming that miR-143 is a fac-
tor affecting Hepatoblastoma. The study of Zhang et  al. [49] showed that blocking 
miR-143 could significantly inhibit local liver metastasis. Hepatoblastoma prediction 

Table 2 Predicted miRNAs for Gastrointestinal Neoplasms

Rank MiRNA Evidence Rank MiRNA Evidence

1 has‑mir‑1 Known 21 has‑let‑7a Known

2 has‑mir‑22 Known 22 has‑mir‑152 Known

3 has‑mir‑200 Known 23 has‑mir‑497 Known

4 has‑mir‑9 Known 24 has‑mir‑21 HMDD v3.0

5 has‑mir‑221 Known 25 has‑mir‑375 Known

6 has‑mir‑146a Known 26 has‑mir‑107 Known

7 has‑mir‑133b Known 27 has‑mir‑18b Known

8 has‑mir‑200c Known 28 has‑mir‑494 Known

9 has‑mir‑200a Known 29 has‑mir‑150 miRCancer

10 has‑mir‑7 Known 30 has‑mir‑208a Known

11 has‑mir‑200b Known 31 has‑mir‑98 Known

12 has‑mir‑222 Known 32 has‑mir‑141 miRCancer

13 has‑mir‑126 Known 33 has‑let‑7g Known

14 has‑mir‑196a Known 34 has‑mir‑184 Unconfirmed

15 has‑mir‑142 Known 35 has‑mir‑210 miRCancer

16 has‑mir‑124 Known 36 has‑mir‑486 HMDD v3.0

17 has‑mir‑148a Known 37 has‑mir‑338 Known

18 has‑mir‑451a Known 38 has‑mir‑27a miRCancer

19 has‑mir‑31 Known 39 has‑mir‑146b HMDD v3.0

20 has‑mir‑451 Known 40 has‑let‑7c Unconfirmed
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Table 3 Predicted microbes for Retinoblastoma

Rank MiRNA Evidence Rank MiRNA Evidence

1 has‑mir‑1 Known 31 has‑mir‑32 Unconfirmed

2 has‑mir‑9 Known 32 has‑mir‑200 Unconfirmed

3 has‑mir‑17 Known 33 has‑mir‑192 Known

4 has‑mir‑20a Known 34 has‑mir‑513b Known

5 has‑mir‑18a Known 35 has‑mir‑135b Known

6 has‑mir‑29c Known 36 has‑mir‑513c Known

7 has‑mir‑92a Known 37 has‑mir‑22 miRCancer

8 has‑let‑7d Known 38 has‑mir‑31 HMDD v3.0

9 has‑let‑7f Known 39 has‑mir‑513a Known

10 has‑let‑7g Known 40 has‑mir‑30c Known

11 has‑let‑7a Known 41 has‑mir‑491 Known

12 has‑mir‑19b Known 42 has‑mir‑135a Unconfirmed

13 has‑let‑7b Known 43 has‑mir‑125b HMDD v3.0

14 has‑mir‑29b Known 44 has‑mir‑7 Unconfirmed

15 has‑let‑7e Known 45 has‑mir‑181a Unconfirmed

16 has‑let‑7i Known 46 has‑mir‑223 Unconfirmed

17 has‑mir‑124 Known 47 has‑mir‑210 Unconfirmed

18 has‑let‑7c Known 48 has‑mir‑376a Known

19 has‑mir‑19a Known 49 has‑mir‑30a Unconfirmed

20 has‑mir‑92 Known 50 has‑mir‑145 miRCancer

21 has‑mir‑181b Known 51 has‑mir‑34b HMDD v3.0

22 has‑mir‑34a Known 52 has‑mir‑155 Unconfirmed

23 has‑mir‑29a Known 53 has‑mir‑133a Unconfirmed

24 has‑mir‑181 Known 54 has‑mir‑137 Unconfirmed

25 has‑mir‑24 Known 55 has‑mir‑146b Unconfirmed

26 has‑mir‑142 Known 56 has‑mir‑150 Unconfirmed

27 has‑mir‑10b Known 57 has‑mir‑126 Unconfirmed

28 has‑mir‑34c Known 58 has‑mir‑18b Unconfirmed

29 has‑mir‑125a Known 59 has‑mir‑221 miRCancer

30 has‑mir‑21 HMDDv3.0/miRCancer 60 has‑mir‑373 HMDD v3.0

Table 4 Predicted microbes for Hepatoblastoma

Rank MiRNA Evidence Rank MiRNA Evidence

1 has‑mir‑1 Known 11 has‑mir‑31 Unconfirmed

2 has‑mir‑21 Known 12 has‑mir‑126 dbDEMC

3 has‑mir‑150 Known 13 has‑mir‑146a HMDD v3.0

4 has‑mir‑199a HMDD v3.0 14 has‑mir‑125b Unconfirmed

5 has‑mir‑143 HMDD v3.0 15 has‑mir‑148a Known

6 has‑mir‑145 Known 16 has‑mir‑22 dbDEMC

7 has‑mir‑199b Known 17 has‑mir‑210 HMDD v3.0

8 has‑mir‑214 Known 18 has‑mir‑138 Unconfirmed

9 has‑mir‑125a Known 19 has‑mir‑133a Unconfirmed

10 has‑mir‑9 Unconfirmed 20 has‑mir‑122 HMDD v3.0



Page 9 of 22Wu et al. BMC Bioinformatics          (2020) 21:454  

results are shown in Table 4. The predictive sorting method in Table 4 is also the same 
as that in Tables 2 and 3.

As can be seen from the simulation results above, most known miRNAs are success-
fully predicted, while a small number of unknown associations are in HMDDv3.0, miR-
Cancer and dbDEMC data sets. Although a few have not been confirmed, they can be 
used as a reference for researchers. In addition, we used Cytoscape software to map the 
prediction network of these three diseases (Fig.  3). In the network, the ellipse repre-
sents miRNAs, and the remaining shapes represent diseases. The correlations are con-
nected by line segments with arrows, and there are common miRNAs between diseases. 
According to the size of the predicted score, the color degree of the ellipse is set differ-
ently. The darker the color of the ellipse is set to, the stronger the correlation between 
miRNA and disease is.

Discussion
The above experimental results are enough to prove that our method is superior to 
the most advanced method. The excellent prediction performance of MCCMF can 
be attributed to several significant factors. Firstly, data is preprocessed by Weight K 
Nearest Known Neighbors method and matrix completion method to improve the 
prediction accuracy. Secondly, a collaborative matrix factorization model is applied to 
predicting miRNA-disease associations, which is a promising one among many col-
laborative filtering technologies. In bioinformatics, matrix factorization contributes 

Fig. 3 The association network between disease and miRNA
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to identifying hidden links among genes. However, the performance of our method 
needs to be further improved. For instance, there exists a better way to integrate data, 
rather than simply adding them together. In the future, we will improve the technol-
ogy to use the latest version of the data set, such as HMDD v3.0.

Conclusions
In this paper, a collaborative matrix factorization method based on matrix comple-
tion (MCCMF) is developed for predicting miRNA-disease associations. Consider-
ing the sparse and incomplete similarity matrix of miRNA-disease, we use the matrix 
completion method to complete the matrix. Then the completed matrix is integrated 
with GIP kernel similarity to improve the data information and reduce the influence 
of noises. In addition, WKNKN is also introduced to pretreat the existing associa-
tion matrix of miRNAs and diseases, so our method is suitable to practical problems. 
Finally, the idea of CMF is adopted to construct the objective function and obtain the 
predicted results. The AUC value (0.9569) of MCCMF is higher than other advanced 
methods in the fivefold cross validation experiment. In order to comprehensively 
evaluate the performance of MCCMF, accuracy, precision, recall and f-measure are 
applied to measure the performance, and results are 0.992, 0.779, 0.918 and 0.830, 
respectively. Compared with the other four methods, our method has the best per-
formance. The analysis of Gastrointestinal Neoplasms, Retinoblastoma and Hepato-
blastoma further verified the effectiveness of MCCMF. Since most of associations are 
unknown in reality, MCCMF can also be used to predict in this situation.

Methods
We develop a novel method for predicting miRNA-disease associations with MCCMF. 
MCCMF is divided into four main steps: Firstly, we use the matrix completion algo-
rithm to complete the miRNA similarity matrix and the disease similarity matrix to 
generate a new completion similarity matrix. Secondly, the new completion similarity 
matrix is integrated with existing miRNA and disease similarity information. Thirdly, 
the WKNKN is used to convert the binary values of the miRNA-disease association 
matrix into the interaction likelihood values [41]. Finally, the Collaborative Matrix 
Factorization is used to predict the association of miRNA-disease. Figure 4 shows the 
complete process for MCCMF.

Human miRNA‑disease associations

The initial miRNA-disease association data is downloaded from HMDD v2.0 [50]. 
HMDD v2.0 is an experimental data set supporting human miRNA-disease associa-
tions, and storing 5430 experimentally verified miRNA-disease associations between 
495 miRNAs and 383 diseases. In this paper, the adjacency matrix MD is used to rep-
resent the miRNA-disease association network. The adjacency matrix MD is a sparse 
matrix composed of 0 and 1. If MD

(

mi, dj
)

 is 1, disease dj is correlated with miRNA 
mi ; otherwise irrelevant.
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MiRNA function similarity

According to the hypothesis that functionally similar miRNAs are more likely to be 
associated with phenotypic diseases, a method for calculating the functional similar-
ity of miRNAs (MISIM) is proposed by Wang et  al. [51]. Firstly, we need to define 
semantic similarity between one disease and one group of disease. The calculation 
formula is as follows:

Fig. 4 Flowchart of potential disease‐miRNA association prediction based on the model of MCCMF
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Here d represents one disease and D represents one disease group. Then, we define the 
similarity of d and D , S(d,D) , as the maximum similarity.

Functional similarity of the two miRNAs is defined as

where M1 and M2 represent the related miRNAs of D1 and D2 , respectively. D1 contains 
m diseases, and D2 contains n diseases.

In this paper, we download the miRNA function similarity from https ://www.cuila b.cn/
files /image s/cuila b/misim .zip. And the matrix MF is used to represent the functional 
similarity network of the miRNA, in which the element MF(i, j) represents the similarity 
between miRNA mi and miRNA mj . The self-similarity of each miRNA is 1, so the diagonal 
elements of the matrix MF are 1.

Due to incomplete miRNA data supported by the experiment, the similarity values calcu-
lated by MISIM may be biased. Some subsequent treatment of the matrix may be improved 
[52].

Disease semantic similarity

The relationship between different diseases is obtained from the MeSH database (https ://
www.ncbi.nlm.nih.gov/). Based on the previous literature [51], we represent the disease D 
as a Directed Acyclic Graph, DAG(D) = (D,T (D),E(D)) , where T (D) is the set of both a 
node D and its ancestor nodes, and E(D) is the set of edges that ancestor nodes pointing to 
node D . For ancestor node t in DAG(A) , its contribution to the semantic value of disease A 
is computed as follows:

In the above formula, � is a semantic contribution factor. Based on the method of Wang 
et al., the value of � is set to 0.5. For the disease A , the contribution of itself to the disease 
A is 1, while the contribution of ancestor node t is decreasing with the increase of its layers.

Based on the contribution of ancestor diseases and disease A itself, the semantic value of 
disease A can be expressed as follows:

According to the hypothesis that the more shared part of the disease pairs in DAGs is, the 
higher similarity is. The semantic similarity between disease A and disease B is calculated 
as:

(7)S(d,D) = max
1≤i≤k

(S(d,Di)).

(8)MISIM(M1,M2) =

∑

1≤i≤m S(d1i,D2)+
∑

1≤j≤n S(d2i,D1)

m+ n
,

(9)D1A(t) =

{

1 if t = A,

max
{

� ∗ D1A

(

t
′
)

|t
′
∈ children of t

}

if t �= A.

(10)DV 1(A) =
∑

t∈T (A)

D1A(t).

(11)DS1(A,B) =

∑

t∈T (A)∩T (B) (D1A(t)+ D1B(t))

DV 1(A)+ DV 1(B)
.

https://www.cuilab.cn/files/images/cuilab/misim.zip
https://www.cuilab.cn/files/images/cuilab/misim.zip
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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However, the above model is a little inadequacy, which is the setting of � that causes the 
same layer of diseases with the same semantic contribution. Obviously, the incidence of 
various diseases is different, and the contribution of diseases with high incidence should be 
less than those with low incidence. To improve the above model, we combine the method 
of Xuan et al. [53] to define the semantic similarity calculation method. In this method, the 
contribution of ancestor node t in DAG(A) to the semantic value of disease A is as follows:

The semantic value of disease A , and the semantic similarity between the disease A and 
the disease B are calculated as:

Finally, in order to calculate the semantic similarity more comprehensive and rational, we 
combine the two models to get Eq. (15).

Gaussian interaction profile kernel similarity for diseases and miRNAs

On the basis of the hypothesis that functionally similar miRNAs may be associated with 
similar diseases, and vice versa, the known miRNA-disease association network is used 
to construct the GIP kernel similarity for diseases and miRNAs [54]. GIP kernel similarity 
can increase the multiple and topological information of known correlations. The interac-
tion profile of miRNA m(i) is represented by the binary vector M(i) of the i-th column of 
the adjacency matrix MD . Similarly, the binary vector D(i) of the i-th row of the adjacency 
matrix MD denotes the interaction profile of disease d(i) . Hence, we can define the GIP 
kernel similarity for miRNAs and diseases as follows:

Here, γm and γd are parameters to control the kernel bandwidth and obtained by the fol-
lowing formulas:

(12)D2A(t) = − log
the number of DAGs including t

the number of diseases
.

(13)DV 2(A) =
∑

t∈T (A)

D2A(t),

(14)DS2(A,B) =

∑

t∈T (A)∩T (B) (D2A(t)+ D2B(t))

DV 2(A)+ DV 2(B)
.

(15)DS(A,B) =
DS1(A,B)+ DS2(A,B)

2
.

(16)GM(m(i),m(j)) = exp(−γm||M(i)−M(j)||2),

(17)GD(d(i), d(j)) = exp(−γd ||D(i)− D(j)||2).

(18)γm =
δm

1
nm

∑nm
i=1 ||M(i)||2

,
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where δm and δd are also bandwidth parameters and they are set to 1 according to the 
previous study [55]. The nm and nd mean the number of all the miRNAs and diseases.

Matrix completion

The miRNA functional similarity matrix and disease semantic similarity matrix cal-
culated by the above operations are still sparse and incomplete, and there are some 
redundant associations (i.e. inherent noise). So we use the matrix completion method 
to solve the problem [56]. Suppose the incomplete matrix is D , which can be repre-
sented as a linear combination of D and the noise matrix N . The formula is as follows:

where DR is a low-rank matrix, and specifically, it is a more refined or informative simi-
larity matrix after removing noise from the existing similarity matrix.

In order to make R be low-rank, a nuclear norm on D is added. At the same time, 
the L2,1-norm of the error term N is used to make noise matrix N more sparse. When 
the final low-rank matrix DR

∗ and sparse matrix N∗ are calculated, DR
∗ or D−N

∗ are 
used to describe a completed matrix. Therefore, a formula for solving convex optimi-
zation problem can be defined as follows:

Here, || · ||∗ represents the nuclear norm, ω ∈ (0, 1) is the positive weighting param-
eter and || · ||2,1 is the noise regularization term.

When solving optimization problems under equality constraints, the ALM method 
is more effective [38]. Therefore, according to ALM, the Eq. (21) can be rewritten as:

Then switch the Eq.  (22) to an unconstraint problem, which is the Lagrange func-
tion. The formula is as follows:

where β > 0 is the penalty parameter, and β is updated by β = min(ρβ , maxβ) . Y1 and Y2 
are the Lagrange multipliers.

The ADM method is used to solve the Eq. (23) [39]. The ADM is a simple method 
to solve the decomposable convex optimization problem, especially in solving large-
scale problems. The update iterations for ADM are as follows:

(19)γd =
δd

1
nd

∑nd
i=1 ||D(i)||

2
,

(20)D = DR +N,

(21)min
R,N

||R||∗ + ω||N||2,1s.t.D = DR +N.

(22)min
R,N,X

||X||∗ + ω||N||2,1s.t.D = DR +N,R = X.

(23)

Lβ(X,R,N) = ||X||∗ + ω||N||2,1

+ tr(YT
1 (D−DR −N))+ tr(YT

2 (R − X))

+
β

2
(||D−DR −N||2F + ||R − X||2F ),
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Based on the singular value shrinkage operator [40], Xk+1 and Nk+1 are represented as 
follows:

yet the minimization of R is a least squares problem, and its normal equation is as 
follows:

where I = DD
T is widely used in matrix completion.

Then X , R and N are updated by changing the Lagrange multipliers Y1 and Y2 . Moreo-
ver, Y1 and Y2 can be obtained by the following formulas:

Finally, we can get the final low-rank matrix R∗ and sparse matrix N∗ until the con-
vergence conditions ||D−DR −N||∞ < ε and ||R − X||∞ < ε are satisfied. Here, ε is an 
extremely low number (set as 1× 10−8 in this paper). As mentioned above, the refined 
matrix R∗ and noise matrix N∗ can be used to describe a completed matrix in the form of 
D× R

∗ or D−N
∗ . The specific process of matrix completion is shown in Fig. 5.

Based on the above matrix completion method, the disease semantic similarity matrix 
DS and miRNA functional similarity matrix MF are used as input matrices to replace 
matrix D , so that we can obtain two refined similarity matrices CD and CM , respectively.

(24)























X
k+1 = arg min

X
L(X,Rk ,Nk ,β),

R
k+1 = arg min

R
L(Xk+1,R,Nk ,β),

N
k+1 = arg min

N
L(Xk+1,Rk+1,N,β).

(25)X
k+1 = D 1

β

(

R +
Y2

β

)

= argmin
1

β
||X||∗ +

1

2

∥

∥

∥

∥

X −

(

R +
Y2

β

)
∥

∥

∥

∥

2

F

,

(26)

N
k+1 = D ω

β

(

D−DR +
Y1

β

)

= argmin
w

β
||N||2,1 +

1

2

∥

∥

∥

∥

N−

(

D−DR +
Y1

β

)
∥

∥

∥

∥

2

F

,

(27)R = (I+D
T
D)−1

(

D
T
D−D

T
N+ X +

D
TY1 − Y2

β

)

,

(28)Y1 = Y1 + β(D−DR − E),

(29)Y2 = Y2 + β(R − X).
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The algorithm of Matrix completion is summarized in Algorithm 1.

Fig. 5 The process of matrix completion
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Similarity information integrations

Subsequent work is to integrate the completed matrix with existing similarity matrices. 
Since similarity information integrations of diseases and miRNAs are similar, Fig. 6 only 
shows the process for integration of miRNA similarity.

The specific integration formulas are as follows:

WKNKN

WKNKN can be thought of as a voting or integration method: some potential classifiers 
(nearest neighbors) are aggregated by a (weight) majority vote, the results of which are 
used for prediction [41].

In this paper, MD expresses the miRNA-disease association matrix, which only repre-
sents the association between the miRNA and the disease verified by human experiment 
at the current stage. And we simply stipulate that if the miRNA is associated with the 
disease, MD

(

mi, dj
)

 will be set to 1. However, there are still many unknown miRNAs and 
diseases in the world, and whether they can be used as a bridge between existing miR-
NAs and diseases or not are still unknown. Maybe existing miRNAs are correlated with 
existing diseases through these unknown miRNAs, so the MD regulation is obviously 
inappropriate.

Therefore, by estimating these unknown conditions through the correlation of its 
known neighbors, the WKNKN method preprocesses the matrix MD to get the pre-pro-
cessed matrix of MD ( PMD ). If MD

(

mi, dj
)

= 0 , WKNKN will give MD
(

mi, dj
)

 a value 
from 0 to 1 according to the corresponding similar information of miRNAs and diseases. 
The specific process of WKNKN is shown in Fig. 7.

(30)IMS(i, j) =

{

CM(i,j)+GM(i,j)
2 , if MF(i,j) = 0,

GM(i,j)+CM(i,j)+MF(i,j)
3 , otherwise,

(31)IDS(i, j) =

{

CD(i,j)+GD(i,j)
2 , ifDS(i,j) = 0,

GD(i,j)+CD(i,j)+DS(i,j)
3 , otherwise,

Fig. 6 The flowchart of an integration method. Matrix MF is the miRNA functional similarity matrix and GM is 
the GIP kernel similarity for miRNAs and CM is the Complete MiRNA
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MCCMF for MiRNA‑disease association prediction

The CMF method proposed by Shen et al. [45] that can effectively predict the poten-
tial interactions between miRNAs and diseases. In this study, the idea of the CMF 
method is used to predict the miRNA-disease association. The specific steps of CMF 
are as follows: firstly, the input miRNA-disease association matrix PMD is decom-
posed into two low-rank matrices A and B by using the singular value decomposition.

where U and V is the unitary matrix. S is a negative real diagonal matrix, and there 
are k singular values on the diagonal.

Secondly, we write the objection function of MCCMF according to the idea of CMF, 
as follows:

(32)

[U, S,V] = SVD(PMD, k),

A = US

1
2
k ,

B = VS

1
2
k ,

Fig. 7 The process of WKNKN. IMS and IDS are similar integration matrices of miRNA and disease, respectively



Page 19 of 22Wu et al. BMC Bioinformatics          (2020) 21:454  

Here, || · ||F is the Frobenius norm to ensure that the feature vectors of simi-
lar miRNAs and similar diseases are similar. �l , �m and �d are positive parameters, 
which are determined by the fivefold cross validation, and �l ∈

{

2−2, 2−1, 20, 21
}

 , 
�m/�d ∈

{

2−3, 2−2, 2−1, 20, 21, 22, 23, 24, 25
}

.
Thirdly, we use L to represent the Eq. (33), and derive two alternative update rules by 

setting ∂L
/

∂A = 0 and ∂L
/

∂B = 0.

where Ik is the k × k identity matrix.
Finally, we update A and B iteratively until they converge to get the final A and B . By 

A ∗ BT , the prediction matrix for miRNA-disease associations is obtained. The detail 
process of MCCMF can be seen in Fig. 8.

(33)

min
A,B

||PMD− AB
T ||2F + �l(||A||2F + ||B||2F )

+ �m||IMS− AA
T ||2F

+ �d ||IDS− BB
T ||2F .

(34)A = (PMD ∗ B+ �mIMS ∗ A)(BT
B+ �lIk + �mA

T
A)−1,

(35)B = (PMD
T ∗ A + �dIDS ∗ B)(AT

A + �lIk + �dB
T
B)−1,

Fig. 8 The flowchart of CMF method. PMD is the pre‑processed matrix of miRNA‑disease association matrix
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The algorithm of CMF is summarized in Algorithm 2.
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