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Abstract

Background: The regulatory feedback loops that present in structural and functional
organization of molecular-genetic systems and the phenomenon of the regulatory
signal delay, a time period between the moment of signal reception and its
implementation, provide natural conditions for complicated dynamic regimes in these
systems. The delay phenomenon at the intracellular level is a consequence of the
matrix principle of data transmission, implemented through the rather complex
processes of transcription and translation.
However, the rules of the influence of system structure on system dynamics are not
clearly understood. Knowledge of these rules is particularly important for construction
of synthetic gene networks with predetermined properties.

Results: We study dynamical properties of models of simplest circular gene networks
regulated by negative feedback mechanisms. We have shown existence and stability of
oscillating trajectories (cycles) in these models. Two algorithms of construction and
localization of these cycles have been proposed. For one of these models, we have
solved an inverse problem of parameters identification.

Conclusions: The modeling results demonstrate that non-stationary dynamics in the
models of circular gene networks with negative feedback loops is achieved by a high
degree of non-linearity of the mechanism of the autorepressor influence on its own
expression, by the presence of regulatory signal delay, the value of which must exceed
a certain critical value, and transcription/translation should be initiated from a
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sufficiently strong promoter/Shine-Dalgarno site. We believe that the identified
patterns are key elements of the oscillating construction design.

Keywords: Mathematical modeling, Circular gene networks, Delay argument
equations, Feedback loops regulation, Autorepressor, Cycles, Phase portraits, Inverse
problems

Introduction
Molecular-genetic systems or gene networks are molecular machines which decode
genetic programs and bring them up to all the levels of living systems organization, from
the molecular level (metabolic networks, signaling pathways, splicing, transport etc.) to
subcellular, cellular, tissue, and organismic one. During the evolution, these systems have
obtained ability to adequate reaction on the external signals and on changing of the
environmental conditions. Their structure is based on regulatory circuits, i.e., on sub-
networks composed by genes, which encode transcriptional factors and some types of
enzymes (for example kinase), and their different combinations configure gene networks
regulated by positive, negative, or variable feedback mechanisms.

From the evolutionary viewpoint, configuration of loops with negative feedback loops
regulation is more simple task for a cell, than that of loops with positive feedback loops,
because it can be accomplished by a simple blockage of the transcription initiation site
by the regulatory protein without formation of complex structures that interact with the
RNA polymerase.

This type of regulation is widespread in nature, and its simplest example is a subsys-
tem containing just one gene which controls its own expression by negative feedback
mechanism. This is the minimal regulatory circuit, it acts on itself (Fig. 1a,b), and
there exists a great amount of such regulatory subsystems. For the prokaryotes, in par-
ticular for E.coli, this regulation mechanism is typical for global regulators, such as
FNR (fumarate nitrate reduction regulator) and CRP (cAMP receptor protein) [1–3]
for stress response regulators LexA (locus for X-ray sensitivity A) and MarR (multiple
antibiotic resistance regulator) [4, 5], and for transcriptional factors H-NS (histone-
like nucleoid structuring protein), IHF (integration host factor), Fis (factor for inversion

Fig. 1 Simplest autorepressilators: a negatively autoregulated one-gene network, b its graphical scheme, c
graph of two-genes network, d variety of sub-networks in a trigenic network, e graph of n-elements gene
network
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stimulation), Lrp (leucine-responsive regulatory protein) etc [6–9]. A lot of similar
examples is known for the eukaryotes as well. This type of regulation is characteris-
tic for RB (retinoblastoma) gene [10], hes family basic helix-loop-helix factor (bHLH)
transcription factors, which are important for coordinated somite segmentation [11,
12], DNA binding homeobox transcription factor Nanog, which is involved in embry-
onic stem cell proliferation, renewal, and pluripotency [13, 14], and many other genes
[15–18], etc.

The next stage of regulatory circuits’ complexity is represented by the two-gene sys-
tems, where each gene encodes expression regulator of another gene (Fig. 1c). Here, the
examples of negative regulation circuit are pairs of regulatory factors Sox3-Snail and
DDX21-Snail. They are repressors of each other expression and control formation of
ecto- and mesoderm at early stage of embryo development, [19]. For the Bacillus sub-
tilis, such properties have products of the genes ComK (competence transcription factor)
and kre (ComK repressor) which participate in differentiation of cellular phenotypes [20].
There are similar systems regulated by RNA molecules, for example non-coding RNA
MicF and global regulator of E.coli metabolism Lrp act negatively on expression of each
other [21, 22].

The following class of complexity is composed by trigenic regulatory circuits, where
each gene encodes transcriptional factor, or another protein, and regulation is the circu-
lar one. An example of such a system is negative regulatory circuit AMPK-mTOR-NRF2
which acts in regulation processes of autophagy [23].

Studies of dynamical characteristics of circular gene networks, in particular net-
works regulated by negative feedback loops, are motivated not only by their prevalence
in molecular genetic systems, which is important per se, but also by their role in
dynamics of different biological processes. Even the simplest regulatory circuits incor-
porated into complicated gene networks can determine dynamics of the process in
the large, as it was shown for the gene HES7, whose oscillating expression dynamics
determines process of vertebrata somitogenesis and is related with its autorepression
properties [24].

Now, we study only simplest circular regulatory circuits which can be recovered in
natural gene networks. This is specified by the rapid increase of the amount of sub-
systems when the amount of genes grows. For example, if the number n of gene
elements in a circular gene network equals 3, then the number s(3) of its sub-
networks equals 13 (Fig. 1d). If n = 4, then s(4) equals 201, if n = 5, then
s(5) = 9390; similarly s(6) = 1531336, s(7) = 880492496, s(8) = 1792477159408
etc. So, the mathematical analysis of these subsystems seems to be technically
unfeasible.

We do not consider here cyclic networks regulated by mixed feedback mech-
anisms, which are positive and negative at the same time. The models of these
gene networks possess not only a high oscillatory potential [25–27] but also the
possibility of complex, chaotic dynamics formation [28–31], including the hyper-
chaotic one [32–34]. Here we consider mathematical models of natural circular
gene networks. Our studies are based both, on numerical simulations of these net-
works and on analytic mathematical methods. We describe limit cycles in simplest
circular gene networks models and elaborate algorithms of construction of these
cycles.
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Results
Analysis of limit cycles in a model of the simplest autorepressilator

The model of simplest circular regulatory circuit which acts by the negative feedback loop
is represented by an equation

dx(t)
dt

= f (x(t − τ)) − x(t); f (x) = α

1 + xh . (1)

Description and interpretation of this equation and that of positive parameters α and h
are given below in the “Methods” section.

It was shown in [35] that the Eq. (1) has exactly one positive equilibrium point x0 > 0,
where x0(1 + xh

0) = α. If τ = 0, then for all values of parameters α and h this equilibrium

is stable, and all trajectories of the Eq. (1) tend to x0. However, if w = h xh
0

1+xh
0

> 1, u2 =
w2 −1, and τ ≥ τ ∗ = π−arctan(u)

u then the equilibrium point becomes unstable and a limit
cycle with period T(τ ∗) = 2π

u appears there, see [35].
It follows from the numerical experiments that for τ > τ ∗, the Eq. (1) has only one

stable cycle, and its period T(τ ) exceeds 2τ . So, we assume that this equation does not
have other limit cycles with periods greater than 2τ , though we have not proved this
analytically.

At the same time, this Eq. (1) can possess cycles whose periods are less than τ . Actually,
for τ ≥ τ ∗ and any natural m, there exists at least one limit cycle such that τ ∗ +mT(τ ∗) ≤
τ . This limit cycle is constructed as follows: let Sm(τ ′) = τ ′ + mT(τ ′), where T(τ ′) is
the period corresponding to the parameters α, h, τ ′. Numerical analysis of these cycles
shows that this function grows monotonically with τ ′. When τ ′ grows from τ ∗ to τ , we
have Sm(τ ∗) ≤ τ and Sm(τ ) > τ . So, we see that if for some natural m the inequality
τ ∗ + mT(τ ∗) ≤ τ holds, then the Eq. (1) with the parameters α, h, τm has a limit cycle
corresponding to the parameters α, h, τ .

Limit cycles of gene networks models for n > 1

Natural generalization of the model (1) to the case of circular gene network with n genetic
elements (Fig. 1e) has the form:

dx1
dt

= α1

1 + xhn
n (t − τn)

− β1x1,
dxi
dt

= αi

1 + xhi−1
i−1 (t − τi)

− βixi, i = 2, 3, . . . n. (2)

As in (1), the functions fi(x) = αi
1 + xhi

describe negative feedback mechanisms in the
gene network, x1 = x1(t), xi = xi(t) are concentrations as above. For n = 2, the system of
equations of the type (2) is the simplest model of artificial molecular trigger [36, 37], for
n = 3, this is a model of Elowitz-Leibler repressilator [38], see also [39, 40] for more bio-
logical interpretations. Detailed mathematical analysis of delayed arguments phenomena
in similar models is given in [41]. For its piece-wise version, the sufficient and necessary
conditions of existence of a limit cycle were obtained in [42]. For similar 5-dimensional
system, sufficient condition of existence of a cycle was obtained in [43], where some
results on its stability were presented as well.

In our numerical experiments, we have seen that if the system (2) with the parameters
αi, βi, hi, τi has a limit cycle C1 with coordinate functions (x1(t), x2(t), . . . , xn(t)), then
the same system with the parameters αi, βi, hi, τ̄i such that

∑i=n
i=1 τi = ∑i=n

i=1 τ̄i, has a limit
cycle C2 (y1(t), y2(t), . . . yn(t)) whose coordinate functions yi(t) coincide with xi(t) for all
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i up to some shift of t. So, one can assume here that
∑i=n

i=1 τi < T , where T is the period
of the cycles C1, C2, and that τ1 = τ2 = . . . = τn.

The case of infinite value of the parameter h

When hi → ∞ for all i, then the system (2) reduces to the following one:

dx1(t)
dt

= L1(xn(t − τ1)) − β1x1(t);
dxi(t)

dt
= Li(xi−1(t − τi)) − βixi(t); (3)

where Li are the step functions: Li(x) = βiαi for 0 ≤ x ≤ 1; Li(x) = 0 for x > 1. Similar
systems were studied in [41–43] in analysis of circular gene networks, i = 2, 3, . . . , n.

The graphs of periodic solutions xj(t) of the system (3) have a standard form, see the
Figure 2.

We consider now the symmetric simplified version of the system (3) in the case α1 =
α2 = . . . = αn = α, β1 = β2 = . . . = βn = 1, in order to describe all periodic trajectories
of the system (3) which are symmetric with respect to the cyclic permutations of the
variables x1 → x2 → . . . → xn → x1. In this case this system is reduced to just one
equation with constant delay τ :

dx
dt

= α − x(t) for x(t − τ) < 1;
dx
dt

= −x(t) for x(t − τ) > 1; (4)

Its solution has the form:

x(t) = (x(ti) − α)e−(ti−t) + α if x(ti) − t = 1 and x(t − τ) < 1;

x(t) = x(ti)e−(ti−t) if x(ti − t) = 1 and x(t − τ) > 1.
(5)

We assume here that 0 < t1 < t2 < . . . < tk < T is partition of the period [ 0, T] to
intervals (ti, ti+1) where either x(t − τ) < 1, or x(t − τ) > 1.

If τ = ln α+
√

α2+4(eT −1)(α−1)

2α
then the Eq. (4) has a limit cycle C1 with the period T, and

such τ is unique on the interval (0, T/2). In this case characteristics of the graph on the
Fig. 2 have the form

t1 = ln
α − e−τ

α − 1
, t2 = ln

αeτ − 1
α − 1

, t3 = T − τ ,

x0 = x(0) = x(T) = e−τ , x(t2) = eτ α − α + 1
eτ

.
(6)

Numerical analysis of this cycle shows that it is stable.

Fig. 2 Standard form of the graphs of the solutions xi(t) of the system (3). The horizontal axis is t, the vertical
lines t1, t3 correspond to xi(t) = 1
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Now, fix τ > 0, and α > 1, then the Eq. (4) has a limit cycle C2 with the period T(τ )

such that

T(τ ) = ln
(αeτ − α + 1)(αeτ − 1)

α − 1
. (7)

This is unique limit cycle such that T(τ ) > 2τ . Surely, if this condition T(τ ) > 2τ is
satisfied, then the cycles C1 and C2 coincide.

Lemma 1 If T(τ ) < 2τ , then the Eq. (4) has a countable set of limit cycles.

Proof Let k ≥ 1 be a natural number. Consider τk < τ such that T(τk) calculated by the
formulae (6), (7) satisfies the condition τk + kT(τk) = τ . Then the equation

eT(τk) =
(
αeτ−kT(τk) − α + 1

) (
αeτ−kT(τk) − 1

)

α − 1
; τk = τ − kT(τk) > 0 (8)

has a unique positive solution T(τk).

So, we have constructed a countable set of limit cycles {Ck} such that, given k, the
relations (8) determine the cycle Ck , and the lemma is proved.

Now, we give a description of a symmetric limit cycle of n-dimensional system (4)
with the paraemter α. Let T be the period of this cycle, and (x1(t), x2(t), . . . , xn(t) be its
coordinate T-periodic functions. Since the cycle is symmetric, we have

xi(t) = xi+1
(

t + p
n

T
)

, xn(t) = x1
(

t + p
n

T
)

.

Here, i = 1, 2, . . . , n−1, and positive natural p does not exceed (n−1). Thus, each positive
solution of the equation

eT(τn,p,k) =
(
αeτ+(p/n−k)T(τn,p,k) − α + 1

) (
αeτ+(p/n−k)T(τn,p,k) − 1

)

α − 1
,

τn,p,k = τ +
(p

n
− k

)
T(τn,p,k) > 0, p = 1, 2, . . . n − 1, k = 0, 1, . . .

[
τ

T(τn,p,k)
+ p

n

]

(9)

corresponds to a limit cycle of the system (4), and given τ > 0, T(τn,p1,k1) = T(τn,p2,k2) if
and only if k1 = k2, and p1 = p2.

The case absence of delay arguments

In the particular case of the system (3) with τ1 = τ2 = . . . = τn = 0, it was shown in
[44], that for odd values of n such a system has a limit cycle if and only if αi > 1 for all
i = 1, 2, . . . , n. For n = 3 this cycle is unique and stable [45].

If n = 5, β1 = β2 = . . . = β5 = 1, all the functions Li coincide, and 2α > 5 + √
5, then

the system (4) has at least two limit cycles, see [46].
For even values of n, no stable cycles have been discovered in our studies, both

numerical and analytical.
Consider an inverse problem of identifications of parameters of 3-dimensional dynam-

ical system
dx(t)

dt
= L1(z) − x(t);

dy(t)
dt

= L2(x) − y(t);
dz(t)

dt
= L3(y) − z(t), (10)
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where Li are as in (3), and αi > 1, i = 1, 2, 3.
Piecewise linear systems of the type (10) in different dimensions were studied in gene

networks modeling earlier, see for example [47–49]. As it was shown in [50], the system
(10) has a unique limit cycle C with the periodic coordinate functions x(t), y(t), z(t); let T
be its period, and [ 0, T] be a segment on the t-axis subdivided by the points 0 < t1 < t5 <

t2 < t3 < t4 < T so that the graph of the function y(t) is depicted on the Fig. 2. Unusual
position of t5 is chosen specially, in order to refer to this Figure. So, y0 = y(0) = y(T)

is the minimal value of y(t), y2 = y(t2) is its maximal value, and y(t1) = y(t3) = 1.
Respectively, z1 = z(t1) is the maximal value of z(t), z3 = z(t3) is its minimal value,
x5 = x(t5) is the minimal value of x(t), and x4 = x(t4) is its maximal value. At the same
time, z(t4) = z(t5) = x(0) = x(t2) = 1. The shapes of the graphs of the functions x(t), z(t)
are similar to that of y(t), though their maxima and minima are different as well, as the
lengths of the segments in the partition of [ 0, T]. So, it follows from the formulae (5) that

z1 · e−(t5−t1) = 1; z1 · e−(t3−t1) = z3; (z3 − α3) · e−(t4−t3) + α3 = 1;

y2 · e−(t3−t2) = 1; y2 · e−(T−t2) = y0; (y0 − α2) · e−t1 + α2 = 1;

x4 · e−(T−t4) = 1; x4 · e−(T−t4)−t5 = x5; (x5 − α1) · e−(t2−t5) + α1 = 1,

(11)

and these relations imply the following proposition:

Proposition 1 If the moments tj of extrema of the coordinate functions x(t), y(t), z(t)
are known from observations of the limit cycle C, then these maximal and minimal values,
and the parameters α1, α2, α3 can be expressed explicitly in terms of tj from the Eq. (11).

For example,

z1 = e(t5−t1) > 1; z3 = e(t5−t3) < 1; α3
(

1 − e−(t4−t3)
)

= 1 − e−(t4−t5); etc.

Analogous inverse problems of identifications of parameters of higher-dimensional
dynamical systems of the type (4) can be formulated and solved in a similar way, see for
example, [51, 52].

The case of finite values of h

Lemma 2 If the symmetric system
dx1
dt

= α

1 + xh
n(t − τ)

− x1, . . .
dxi
dt

= α

1 + xh
i−1(t − τ)

− xi, i = 2, 3, . . . n; (12)

has a symmetric T-periodic trajectory with coordinate functions (x1(t), . . . , xn(t)), then

x1
(

t −
(
τ + p

n
T

))
= xn(t), . . . , xi

(
t −

(
τ + p

n
T

))
= xi−1(t), i = 2, 3, . . . , n,

(13)

where p is an integer such that 0 ≤ p < n, and for each j, j = 1, 2, . . . , n, the function xj(t)
is a T-periodic solution of the Eq. (1) with the parameters α, h, τ̄ = τ + p

n
T. The converse

is also true.

Thus, each symmetric limit cycle of the system (12) can be constructed from the peri-
odic solution of (1) with parameters α, h, τ̄ = τ + p

n
T , and we can formulate the following

algorithm of construction of these symmetric limit cycles:
Algorithm 1.
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It follows from Lemma 2 that in order to construct symmetric limit cycles of the system
(12), one has to find T-periodic solutions of the equation

dx(t)
dt

= f (x(t − (τ + p
n

T)) − x(t); f (x) = α

1 + xh , (14)

where p = 1, 2, . . . , (n − 1). Then for any limit cycle x(t) of the Eq. (14), the system (12)
has a limit cycle (x1(t), x2(t), . . . , xn(t)) such that

xi(t) = x
(

t − i
(
τ + p

n
T

))
.

For autonomous sytems, when τ = 0, this algorithm has the following illustrative pre-

sentation. Consider the graph of the function y(τ ) = T(τ )

τ
, and fix any integer p, such

that 0 < p < n. Then for T(τ ) > 2τ , the limit cycle does exist, if the line y = n
p

intersects

the graph of y(τ ), see the Fig. 3.

So, if
n
p

≤ 2, or
n
p

> maxτ>τ∗
T(τ )

τ
then the system (12) does not have limit cycles

whose coordinate funcitions satisfy the relations (13).

If
n
p

= maxτ>τ∗
T(τ )

τ
, or 2 <

n
p

<
T(τ ∗)

τ ∗ , then there exists only one such cycle.

If
T(τ ∗)

τ ∗ ≤ n
p

< maxτ>τ∗
T(τ )

τ
, then there exist two such cycles,

Consider as examples the limit cycles of n-dimensional systems, for α = 1000, h =
10, n = 2, 3, . . . , 11. Each symmetric limit cycle of n-dimensional system (12) with the
parameters α, h, and τ , can be obtained from T(τ )-periodic trajectories of the Eq. (1) with
the parameters α, h, and τ .

For n = 2 there are no symmetric limit cycles,
For n = 3 there exists one symmetric limit cycle with the phase lag T/3, Fig. 3a.

Fig. 3 Geometric interpretation of the Algorithm 1 for τ = 0. The blue curve is the graph of the function

T
( p

n
τ1

)
. The horisontal axis is t, the vertical one shows the values of T

( p

n
τ1

)
and

n

p
. On each graph

p = 1, 2, . . . , n − 1. a n = 3; b n = 4; c n = 5; d n = 6; e n = 7; f n = 8; g n = 9; h n = 10; i n = 11
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For n = 4 there exist two symmetric limit cycles with the phase lag T/4, Figure 2 b.
For n = 5 there exist two symmetric limit cycles with the phase lag T/5 and one limit

cycle with the phase lag 2T/5, Fig. 3c.
For n = 6 there is one symmetric limit cycle with the phase lag T/3, and two limit

cycles with the phase lag T/6, Fig. 3d.
For n = 7 there is one limit cycle with the phase lag 3T/7, one limit cycle with the

phase lag 2T/7, and two limit cycles with the phase lag T/7, Fig. 3e.
For n = 8 there is one symmetric limit cycle with the phase lag 3T/8, and two limit

cycles with the phase lag T/4, Fig. 3f.
For n = 9 there is one symmetric limit cycle with the phase lag 4T/9, and two limit

cycles with the phase lag 2T/9, Fig. 3g.
For n = 10 there is one limit cycle with the phase lag 2T/5, one limit cycle with the

phase lag 3T/10, and two limit cycles with the phase lag T
5 , Fig. 3h.

For n = 11 there is one limit cycle with the phase lag 5T/11, one limit cycle with the
phase lag 4T/11, two limit cycles with the phase lag 3T/11, and two limit cycles with the
phase lag 2T/11, Fig. 3i.

Using the Algorithm 1, similar examples can be described for higher-dimensional
versions of the system (12).

On non-uniqueness of limit cycles in models of circular gene networks

Another algorithm of construction of symmetric limit cycles of the system (11) is based
on factorization of the dimension n, see [53].

Algorithm 2.
Let n = s · �, and s > 1, � > 1 be such a factorization. If s-dimensional system

(12) has a symmetric limit cycle Cs(x1(t), . . . , xs(t)) such that xi(t) = xi+1(t − Ts/s),
i = 1, . . . , s, then the n-dimensional system of the type (12) has a symmetric limit cycle
Cn,s(x1(t), . . . xn(t)) such that xj(t) = xj+1(t − Ts/s). We assume here, as usual, that if
i = s, then i + 1 = 1, respectively, if j = n, then j + 1 = 1.

Proposition 2 Let Cn be a symmetric limit cycle of n-dimensional system (12), and
xj(t) = xj+1(t − pTn/n). This cycle Cn is irreducible if and only if p and n are coprime.

If p and n are not coprime, their greatest common divisor equals m, and n = m · s,
p = m · q, then Cn is generated by the limit cycle Cm of m-dimensional system of the form

(12) such that xr(t) = xr+1

(

t − q
Tm
m

)

, r = 1, 2, . . . , m.

Corollary 1 Each symmetric limit cycle of the system (3) is either irreducible, or is
generated by an irreducible cycle.

The limit cycle Cn,s is called reducible, and if the system (12) has a symmetric limit cycle
which cannot be constructed by the Algorithm 2, we call it irreducible.

Numerical experiments show that limit cycle Cn is stable if and only if the dimension n

is odd, n = 2m + 1, and xj(t) = xj+1

(

t − m
Tn
n

)

. Here j = 1, 2, . . . , n, as above.

Discussion
This paper is devoted basically to symmetric limit cycles in models of gene networks
regulated by negative feedback loops only. Two algorithms of construction of these cycles
are described. In this paper we have shown that
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1. (a) Natural gene networks, not necessary circular, have oscillating potential since
usually they contain circular gene subnetworks.

(b) Initiation of transcription/translation processes in these networks is realized by
sufficiently powerful promotor/SD-site: α >> 1.

(c) Autorepressor’s action is nonlinear: h > 1.
(d) For low-dimensional gene networks, the period between the initiation moment and

the appearance of an active molecule in oscillations of their synthesis should exceed some
critical value: τ > τ ∗.

2. At the same time, for n = 2, the systems (4) describe so called molecular triggers,
and do not have limit cycles. Their analogues in the natural gene networks are genetic
subsystems, that act as switches from one mode of operation to another under external
conditions and/or regulatory signals [36, 37].

3. Such molecular triggers can realize in perspective memory elements in design and
construction of artificial genetic programs. The main attractive property of these molec-
ular triggers is their bistability, and absence of limit cycles makes these systems more
stable. As an example, the Fig. 4 shows a model of gene network composed by molecular
triggers which realizes addition of binary numbers.

We assume here, that activity of the first genetic element of this trigger and inhibited
state of the second one means “1”, and vice versa, “0” corresponds to activity of the second
element, and inhibited state of the first one.

Figure 4b shows the Fragment 1 which calculates the sum of least lower-order digits
of two binary numbers. Figure 4c corresponds to Fragment 2 which realizes summa-
tion of higher-order digits. In order to construct a gene network which adds two n-digit
binary numbers, one has to join one Fragment 1 and (n − 1) Fragments 2, as it is shown
on the Fig. 4d for n = 8. We assume here that different genetic elements of this net-
work encode different proteins, so each regulatory binding is realised only by the proteins
which correspond to the arrows of this Figure.

Fig. 4 Hypothetic summating gene network; a memory cell; b Fragment 1 calculating the sum of the least
lower order digits; c Fragment 2 calculating the sums of higher order digits; d summating gene network for
n = 8; e the states of the triggers in the summating process
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As an illustration, consider the logical sum 10010010+11001001=101011011, see
Fig. 4e. Here, the triggers {T1} should be arranged according to the digits of the first sum-
mand, and the triggers {T2}, respectively, to the digits of the second one. This can be done
by corresponding protein addition to the medium. Then, the regulatory binding bring this
gene network into a state where the triggers {S} desribe the required sum. Here, activity
of the last trigger in {S} corresponds to the highest-order digit of this sum.

Modeling of similar gene networks and corresponding experiments can be used in
construction of artificial genetic systems, in particular, in design of specialized genetic
computers.

4. Nonstationary dynamics in models of circular gene networks with negative feedback
mechanisms appears for high level of the Hill’s parameter h. In the case of eukaryotes
and prokaryotes, the necessary value of this nonlinearity parameter is achieved by mul-
timerization of the transcriptional factors and/or by presence of several binding sites in
DNA.

5. Nonstationary dynamics in these circuits is provided by the phenomenon of regu-
latory signal delay. In eukaryotes, this regulatory delay is achieved by cascade reactions
in signaling pathways, separation of mRNA and protein synthesis into different compart-
ments and transport of substances from one compartment to another. For one eukaryotic
system, somitogenesis of vertebrata, as it is well-known, its development is regulated by
an auto-oscillating process, controlled by autorepressor HES7 [24, 54–56]. Decreasing of
the delay of autorepression signal of the gene HES7 as a result of introns deletion for this
gene, leads to distortions of oscillation period, and even to their disappearance, if all the
introns are removed [57, 58].

Analysis of stability of oscillations in this system shows that the cooperativity coefficient
h for HES1 self-repression should be sufficiently large (i.e. h ≥ 4) and the duration of the
repression loop is between 40 and 60 min [59].

In the case of the prokaryotes, there is a great deal of examples of the negative autoreg-
ulation of gene expression efficiency [1–9], but no examples of stable self-oscillating
functioning regimes in these autorepressilators are known.

Thus, it is natural to suppose that for prokaryotes, due to the coupling of transcription
and translation processes, the time period between the beginning of gene expresion and
appearence of the active form of the transcriptional factor is too short for formation of
oscillations.

Analysis of dynamics of synthetic constructions based on the prokaryotic genes and
regulatory circuits with both, positive and negative loops shows that the regulatory signal
delay that appears due to the negative autoregulatory loop is the key element of the oscil-
lating construction design [60]. Moreover, numerical experiments show that extension of
this loop leads to stable oscillations even in absence of positive regulatory loops [39].

From a theoretical viewpoint, the necessary value of the time lag can be realized by
moving of the regulatory factor translation frame far enough from the transcription start.
This can be done by long nucleotide sequence insertion between the promoter and tran-
scription factor gene encoding. So, transcription of such long segments will imply the
delay of appearence of the end product. Variations of the lengths of these insertions allow
to control the time lag of the process.

This approach can be used in construction of synthetic gene networks with target func-
tions. Corresponding mathematical models allow to find out structural, functional and
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parametric characteristics which provide necessary properties of the gene networks and
give possibilities to plan strategy of their genetic synthesis.

Conclusions
We have proposed two algorithms of construction and localization of limit cycles in these
gene networks models. Existence and stability of some of these cycles have been shown
analytically [45], and for this gene networks model we have solved an inverse problem
of parameters identification. Several natural questions on behavior of trajectories of the
system (12) remain still open. In particular, stability of cycles of this system is not proved;
here, we have just some results of numerical experiments.

The modeling results demonstrate that non-stationary dynamics in the models of
circular gene networks with negative feedback loops is achieved by a high degree of
non-linearity of the mechanism of the autorepressor influence on its own expression, by
the presence of regulatory signal delay, the value of which must exceed a certain crit-
ical value, and transcription/translation should be initiated from a sufficiently strong
promoter/Shine-Dalgarno site. We believe that the identified patterns are key elements of
the oscillating construction design.

Existence of asymmetric limit cycles in the symmetric systems of the types (3) and (12)
is also unclear. We plan to consider these questions in our forthcoming studies.

Methods

The main aim of our investigations is nonlocal analysis of some gene networks models
represented by dynamical systems of kinetic type, and combimatorial structure of their
phase portraits. In particular, we study here conditions of existence, stability, and (non)-
uniqueness of cycles of the models as well as periods of these cycles, and their geometric
location in phase portraits of the dynamical systems.

Description of a model of simplest autorepressilator
The equation

dx(t)
dt

= f (x(t − τ)) − x(t); f (x) = α

1 + xh ;

corresponds to a subsystem containing just one gene that encodes protein with concen-
tration x = x(t) acting as the regulator of its own expression by repression mechanism
(autorepressor). The parameters of this model (1) of the simplest circular regulatory cir-
cuit are interpreted as follows: the constant α describes efficiency of the gene expression,
h is a Hill coefficient, it determines degree of non-linearity of positive monotonically
decreasing function f, which describes negative feedback mechanism of gene expression
regulation. The parameter τ is the lag in the delay of the argument, the subtrahend in this
equation and in higher-dimensional models corresponds to velocity of natural loss in the
network (degradation, dissipation etc).

Methods of analysis of higher-dimensional models
Our analysis of phase portraits of the higher-dimensional gene networks models with

negative feedback loops, delayed arguments phenomena, and studies of corresponding
inverse problems were based on classical methods of the qualitative theory of ordinary
differential equations, and on our recent results [44, 45] concerning monotonicity of the
Poincaré map (the so-called succession map). Geometric arguments, topological fixed
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point theorem, and analytical calculations allow to prove stability of cycles and their non-
uniqueness for some low-dimensional gene networks models.

At the same time, these geometric considerations show that phase portraits of n-
dimensional dynamical systems of the type (10) contain invariant domains which can be
decomposed to unions of 2n parallelepipeds (blocks) such that solutions of such systems
have very simple analytic form in each block (Fig. 2). So, the parameters identification
inverse problems for the systems (10) can be reduced to combinatorial description of
transitions of their trajectories from block to block. In the case n = 3, the solution is
given in Proposition 1. Higher-dimensional versions of this inverse problem require more
combinatorial efforts even in the case n = 4, see [49].

Calculation method
The methods of integrating the systems of differential equations with delayed argu-

ments are classical as well, see [28, 30]. In our numerical experiments with these systems,
we used the semi-implicit difference scheme with variable step. Corresponding calcula-
tions and construction of the graphs on the Figs. 2 and 3 which illustrate our mathematical
results were carried out on personal computers of the first author.
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