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Abstract

Background: The aim of gene expression-based clinical modelling in tumorigenesis
is not only to accurately predict the clinical endpoints, but also to reveal the
genome characteristics for downstream analysis for the purpose of understanding
the mechanisms of cancers. Most of the conventional machine learning methods
involved a gene filtering step, in which tens of thousands of genes were firstly
filtered based on the gene expression levels by a statistical method with an arbitrary
cutoff. Although gene filtering procedure helps to reduce the feature dimension and
avoid overfitting, there is a risk that some pathogenic genes important to the disease
will be ignored.

Results: In this study, we proposed a novel deep learning approach by combining a
convolutional neural network with stationary wavelet transform (SWT-CNN) for
stratifying cancer patients and predicting their clinical outcomes without gene
filtering based on tumor genomic profiles. The proposed SWT-CNN overperformed
the state-of-art algorithms, including support vector machine (SVM) and logistic
regression (LR), and produced comparable prediction performance to random forest
(RF). Furthermore, for all the cancer types, we firstly proposed a method to weight
the genes with the scores, which took advantage of the representative features in
the hidden layer of convolutional neural network, and then selected the prognostic
genes for the Cox proportional-hazards regression. The results showed that risk
stratifications can be effectively improved by using the identified prognostic genes
as feature, indicating that the representative features generated by SWT-CNN can
well correlate the genes with prognostic risk in cancers and be helpful for selecting
the prognostic gene signatures.

Conclusions: Our results indicated that gene expression-based SWT-CNN model can
be an excellent tool for stratifying the prognostic risk for cancer patients. In addition,
the representative features of SWT-CNN were validated to be useful for evaluating
the importance of the genes in the risk stratification and can be further used to
identify the prognostic gene signatures.
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Background
For the past decade, the gene expression-based models had been widely used in the

cancer researches for predicting the clinical outcomes and made considerable progress

[1, 2]. A number of machine learning algorithms had been proposed to construct pre-

dictive models and validated in various cancer types [3–7], for the purpose of identify-

ing the genome characteristics, e.g. cancer-related differentially expressed genes or

structural variations, as well as predicting the clinical outcomes, such as the risk strati-

fication for the patients in cancers. Although the performance of the predictive models

largely depends on the number of samples collected for model training and is restricted

by the endpoint predictability to a certain extent [8], the feature selection is also a vital

step the gene expression-based modeling in the clinical outcomes prediction. In most

cases, genes are firstly filtered by comparing the expression levels between two pheno-

typic conditions in clinics with a statistical method and using an arbitrary cutoff, e.g. p

value < 0.05, and then only the rest of genes are applied to the model construction as

features. Based on the filtered gene list, a series of variable selection methods, such as

stepwise regression [9], simulated annealing [10] and variable combination population

analysis (VCPA) [11], are also developed to identify the useful features for model con-

struction [12, 13].

However, considering the fact that the statistics-based method with a ‘hard’ cutoff

doesn’t necessarily evaluate the contribution of a gene to the clinical prediction, it is

not a reasonable way to filter out genes before model construction, which may result in

the omission of a part of genes that are still important to the disease. Therefore, we

suggested a deep learning-based strategy as an alternative, which combined the convo-

lutional neural network [14–16] with stationary wavelet transform [17] (SWT-CNN), to

predict the survival in different cancer patients by using as many genes as possible to

reduce the loss of feature information. In recent years, the emerging deep learning

technique [18] has achieved rapid development in image processing field [19] as well as

in the related areas, such as voice recognition [20], nature language processing [21] and

chemical pattern recognition [22], in virtue of its representation learning strategy [23],

which is announced to be superior to the conventional predictive learning because of

its powerful ability to generate more complex representations of the target objectives

by combining the simple features [24]. As a result, the representation learning algo-

rithms are expected to perform better in variable selection procedure than other con-

ventional methods. Several studies had also utilized the deep learning methods to

predict the cancer prognosis with the genomics [25–30] data as well as reported the

evaluation of the predictive performance of deep learning methods when compared

with conventional machine learning models [31]. These studies only focused on the

performance of deep learning algorithms on predicting the clinical endpoints and paid

little attention on discussing the contribution of the genes in the prediction procedure,

which isn’t conductive to improving predictive results and seeking the key diagnostic

gene signatures for better understanding the disease mechanism.
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In this study, we proposed SWT-CNN to stratify the prognostic risk for cancer pa-

tients by using as many genes as possible and validated it with the gene expression data

of multiple cancer types downloaded from The Cancer Genome Atlas (TCGA) database

[32]. Based on the evaluation of 15 tumor genomics datasets in TCGA, SWT-CNN pro-

vided superior performance compared to support vector machine (SVM) and logistic

regression (LR), and yielded a comparable performance to random forest (RF). In

addition, we also attempted to extract the representative features from the hidden

layers of the CNN for evaluating the importance of the genes in risk stratification and

prediction. In fact, when generating representative features, CNN tends to give heavy

weights to those features with large values while ignoring some small ones. It is not a

problem for image recognition and classification, but it is not suitable for genomics

data modeling, because genes with relatively low expression levels may still be closely

related to the clinical outcomes. Therefore, we introduced the wavelet transform algo-

rithm, which is successfully used for the gene expression data analysis in previous stud-

ies [33–41], to enhance the significance of genes with relatively low expression levels in

the gene list, so that CNN can give appropriate weight when abstracting and extracting

features. For all the cancer types, we first evaluated the relationship between each gene

and clinical outcome by scoring the gene based on the representative features in CNN,

then selected those closely related to clinical outcome for the subsequent Cox

proportional-hazards regression and prediction. Our results show that compared with

SWT-CNN results, the risk prediction is further improved. The median overall survival

time of high-risk patients stratified by Cox regression was lower than that of the pa-

tients classified by SWT-CNN. It demonstrates that representative features are useful

for identifying the diagnostic genes and improving stratification of the cancer patients.
Results
Study design

In this study, the RNA-sequencing data and the clinical information of all cancer types

were collected from The Cancer Genome Atlas (TCGA) [32] database and the patients

were categorized into low- and high-risk groups according to their tumor stages and

overall survival times respectively. The gene expression profile of each patient was

firstly decomposed by SWT, and then the wavelet coefficients were inputted into CNN

for predictive model construction. The comparative analysis of the model performance

was conducted among SWT-CNN, SVM, RF and LR. More importantly, in order to ex-

plore the effectiveness of representative features in identifying diagnostic genes, we pro-

posed a scoring function to estimate the weights of genes based on the representative

features extracted from the hidden layer of CNN and selected the gene signatures for

stratifying the patients in all the cancer types. The overview of our study was depicted

in Fig. 1.
Selection of wavelet functions

Considering the fact that different wavelet functions are suitable for different signals

and different wavelet coefficients will be generated, we applied 12 commonly used

wavelet functions (4 wavelet families × 3 wavelets functions per family) in decomposing

the gene expression profiles of the patients and investigated the predictive performance



Fig. 1 The workflow of our study
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of SWT-CNN. The AUCs of predicting risk stratification on the basis of tumor stages

and 3-year overall survivals across different cancer types in validation set were shown

in Fig. 2a and b, respectively. It can be seen from Fig. 2 that the difference of AUCs for

the prediction of tumor stages and overall survivals mainly existed in different cancer

types. For the prediction of tumor stages and 3-year overall survivals, the best AUCs

were achieved for KIRP (AUC = 0.83) and LGG (AUC = 0.89), respectively.

In addition, constructing models with the wavelet coefficients decomposed by differ-

ent wavelet functions also had a certain impact on the prediction results. For each can-

cer type, we choose the most appropriate wavelet function to predict the tumor stages

and overall survivals according to the AUCs. The optimal wavelet function as well as

the corresponding best AUC in the prediction of the risk differentiated by tumor stages

and 3-year overall survivals were listed in Tables 1 and 2, respectively. When predicting

the tumor stages, the performance of CNN models with the wavelet coefficients

decomposed by different wavelet functions in the wavelet families is different for 12

cancer types (Table 1). Interestingly, for the prediction of the overall survival after 3



Fig. 2 The AUCs achieved by using different wavelet functions for the prediction of tumor stages and 3-
year overall survival. a The AUCs of predicting the tumor stages across different cancer types in validation
set. b The AUCs of predicting the 3-year overall survivals across different cancer types in validation set
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years, more than half of cancer types achieved the best AUC when using Daube-

chies wavelet family to generate the wavelet coefficients (Table 2). Compared with

the functions in other wavelet families, the wavelet functions in Daubechies wavelet

family were simple with minimum support width, indicating that after the decom-

position by the Daubechies wavelet functions, the fluctuation of the wavelet coeffi-

cients is small. Although the magnitude of wavelet coefficients of the original gene

expression profiles became weaker after the decomposition by Daubechies wavelets,

the prediction results of CNN model became better, which meant that Daubechies

wavelet decomposition can better highlight the expression signals than the func-

tions in other wavelet families when predicting the overall survival. On the con-

trary, the performance of the functions in the symlets wavelet family is relatively

poor in predicting tumor stages and overall survival. Finally, as listed in Tables 1

and 2, we used the optimal wavelet function for each cancer type in the subse-

quent analysis.
Table 1 The detailed information of the data sets for tumor stage prediction

Cancer
Type

#of all
samples

#of samples Proportion
of 1/0
samples

Wavelet
Function

AUC

positive negative

BLCA 403 271 132 1:0.49 sym2 0.72

BRCA 1055 267 788 1:2.95 coif1 0.64

COAD 442 190 252 1:1.33 bior3.1 0.65

HNSC 430 336 94 1:0.28 db5 0.69

KIRC 524 204 320 1:1.57 db3 0.75

KIRP 259 66 193 1:2.92 bior3.1 0.83

LIHC 347 88 259 1:2.94 db3 0.63

LUAD 505 110 395 1:3.59 sym6 0.59

LUSC 492 91 401 1:4.41 coif5 0.57

SKCM 424 195 229 1:1.17 coif3 0.62

STAD 350 186 164 1:0.88 coif5 0.60

THCA 503 167 336 1:2.01 sym6 0.64



Table 2 The detailed information of the data sets for 3-year overall survival prediction

Cancer
Type

#of all
samples

#of samples Proportion
of 1/0
samples

Wavelet
Function

AUC

positive negative

BLCA 248 161 87 1:0.54 bior3.5 0.61

HNSC 311 178 133 1:0.75 coif1 0.61

KIRC 400 109 291 1:2.67 db3 0.71

LGG 240 79 161 1:2.04 bior3.1 0.89

LIHC 196 104 92 1:0.88 sym4 0.65

LUAD 267 134 133 1:0.99 db3 0.67

LUSC 302 154 148 1:0.96 db5 0.61

OV 274 112 162 1:1.45 db3 0.59

SKCM 340 112 228 1:2.04 db3 0.66

UCEC 279 70 209 1:2.99 db1 0.64
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Performance of SWT-CNN on clinical prediction

After SWT decomposition, the wavelet coefficients of the gene expression profiles were

inputted into a one-layer CNN model, which was announced to be sufficient for gene

expression data modeling [31]. The area under the receiver operating characteristic

curve (AUC) was used as performance metric for evaluating the predictive models. At

the same time, as a comparison, we used SVM to predict the tumor stages and overall

survivals. The AUCs achieved by SWT-CNN and SVM for predicting tumor stages of

12 cancer types and 3-year overall survival of 10 cancer types were shown in Fig. 3.

In general, the model performance largely depended on the predictability of the end-

points, which was consistent with previous study [8], even if the RNA-sequencing data

was used. The tumor stages of KIRP and the 3-year overall survival of LGG were easier

to predict and both mean AUCs achieved by SWT-CNN and SVM were higher than

0.7. By contrast, the tumor stages of LUSC and the 3-year overall survival of OV were

the most difficult to predict. Both mean AUCs achieved by SWT-CNN and SVM were

near 0.5 (Fig. 3a and c). Compared with the results of SVM, the AUCs achieved by

SWT-CNN were higher, except for the prediction of 3-year overall survival of BLCA.

In terms of details, for the easily predicted cancer types, the performance of SWT-

CNN was better than that of SVM. It can be seen from Fig. 3a and c, the mean AUCs

of predicting the tumor stages of KIRP and the 3-year overall survival of LGG achieved

by SWT-CNN (mean AUCs = 0.82 and 0.85, resp.) were 0.1 higher than those achieved

by SVM (mean AUCs = 0.71 and 0.74, resp.). For some cancer types that were difficult

to predict by SVM, SWT-CNN can still perform better. When predicting the tumor

stages of KIRC, the mean AUC achieved by SWT-CNN (mean AUC = 0.74) was 0.19

higher than that achieved by SVM (mean AUC = 0.55). Almost all the AUCs from 100

random sampling achieved by SWT-CNN were higher than those achieved by SVM

(Fig. 3b). Similar results can be found in the prediction of the tumor stages of COAD

(mean AUCs for SWT-CNN and SVM= 0.64 and 0.51, resp.). As to the prediction of

3-year survival of KIRC, although the prediction results of SWT-CNN (mean AUC =

0.66) were 0.14 higher than that of SVM (mean AUC = 0.52), the AUCs of 100 random

sampling achieved by SWT-CNN were scattered (Fig. 3d), indicating that the prediction

of this cancer by SWT-CNN might be not stable enough.



Fig. 3 The mean AUCs as well as the distribution of AUCs achieved by SWT-CNN and SVM with 100
sampling times for the prediction of tumor stages and 3-year overall survival. a Mean AUCs achieved by
SWT-CNN and SVM for predicting the tumor stages. b The distribution of AUCs achieved by SWT-CNN and
SVM for predicting the tumor stages. c Mean AUCs achieved by SWT-CNN and SVM for predicting the 3-
year overall survivals. d The distribution of AUCs achieved by SWT-CNN and SVM for predicting the 3-year
overall survivals
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Some cancer types were difficult to predict by both models. When predicting the

tumor stages of LUAD and LUSC, the mean AUCs achieved by SWT-CNN were only

0.55 and 0.53, respectively. The prediction results of SVM were similar to random re-

sults (mean AUCs = 0.50 and 0.51 for LUAD and LUSC, resp.). Similar results can be

found in the prediction of 3-year overall survival of OV (mean AUCs = 0.53 and 0.48

for SWT-CNN and SVM, resp.) and LUSC (mean AUCs = 0.54 and 0.48 for SWT-

CNN and SVM, resp.). For such cancer types that were difficult to be predicted, it may

be necessary to further select key genes for prediction so as to eliminate the interfer-

ence of useless gene signatures. The mean AUCs and standard errors of AUCs on pre-

dicting the tumor stages and 3-year overall survivals were listed in the Additional file 1.

The comparison results with RF and LR were shown in Additional file 3. The perform-

ance of RF was similar to that of SWT-CNN on predicting the tumor stages, and

slightly better than that of SWT-CNN on predicting 3-year overall survival. In the sub-

sequent analysis, we continued to investigate the utility of the representative features

on selecting important genes and improving the prediction of such cancers. In addition,

Kaplan-Meier survival analysis was conducted for all the cancer types. Figure 4 showed

the survival curves of the patients in all the cancer types that were predicted to be

high-risk or low-risk. The log-rank p values for all the cancer types were less than

0.0001, indicating that the survival times of the predicted high-risk patients were sig-

nificantly different than those of the predicted low-risk patients.



Fig. 4 The results of Kaplan-Meier survival analysis of all cancer types
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Identification of prognostic genes for further risk stratification

In the previous prediction, SWT-CNN model used all the genes as features for the clin-

ical prediction. For each cancer type, we tried to apply our proposed scoring method to

evaluating the importance of genes in the gene list and use the genes highly associated

with the cancer to predict the overall survivals in the patients. We randomly selected

70% samples from the data set as the training set to build the model and left the rest

samples as validation set. For each cancer type, the SWT-CNN model was firstly con-

structed and then, the representative features were extracted from the hidden layer of

CNN to scoring the genes. Finally, the genes were ranked by their scores and the top n

genes were used in the Cox proportional-hazards regression for the prediction of over-

all survival after treatments. We applied Kendal-Tau measure to compare top 100

genes in gene lists generated from the 5 bootstrap for 10 TCGA datasets (see Add-

itional file 6). For example, the Kendal-Tau values are all more than 0.78 with corre-

sponding p values less than 0.001 for the 5 gene lists in LGG, indicating the high

stability of gene lists generated by the proposed SWT-CNN.

We took the gene expression data of OV as an example, for which the worst result

was achieved by SWT-CNN in Fig. 3c. From the 274 samples, 191 samples were
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randomly selected as the training set and the original gene expression matrix Y (26,

270 genes × 191 samples) was constructed. The SWT-CNN had been run for 100 times

on the training set and the best model was kept for extracting the representative fea-

tures, which was a three dimensional matrix (191 samples × 3284 convolutional fea-

tures × 64 channels) obtained by the treatment of pooling layer in CNN. Then, we

averaged the data on 64 channels and obtained the representative feature matrix X,

which contained 3284 features in rows and 191 samples in columns. According to our

proposed method, the mapping coefficients from X to Y (matrix B with 26, 270 genes

in rows and 3284 representative features in columns) were calculated. Finally, the

matrix B was averaged by rows and a score vector with order 26, 270 × 1 was obtained,

denoting the importance of the 26, 270 genes in the classification. The genes were

ranked by their scores and the top 700 genes were used in the modeling procedures of

univariate Cox regression and multivariate Cox regression. The genes significantly asso-

ciated with the overall survival were listed in Table 3. In total, 67 genes were consid-

ered to be significantly associated with the 3-year overall survival of OV by univariate

Cox regression and 11 genes were considered to be significant by the multivariate Cox

regression. The genes selected by univariate and multivariate Cox regression for the

other types of cancers were listed in Additional file 2. These genes might be considered

as the diagnostic genes in the future studies.

After assigning the risk score for each of the patients by multivariate Cox regression,

the receiver operating characteristics curve (ROC) was employed on the training set to

determine the cutoff of risk score for the stratification of the patients. The patients with

the risk score higher than the cutoff were assigned to the high-risk group and the rest

were assigned to the low-risk group [42]. The stratification model was validated by

using the validation set. Figure 5 showed the stratification results for OV data set. It

can be seen from the K-M survival curves (Fig. 5a) that there was a more significant

difference (log-rank test p value < 0.0001) in overall survival time between the high-risk

and low-risk patient groups divided by the risk scores. The median overall survival time

for the high-risk and low-risk groups was 850.5 and 1355 days, respectively. Figure 5b

showed the distribution of the survival time of the high- and low-risk groups divided

by risk score and SWT-CNN. Compared with the results by SWT-CNN, the mean sur-

vival time of the high-risk patients predicted by risk score was lower than that pre-

dicted by SWT-CNN. The distribution of the overall survival time for other types of

cancers was shown in Fig. 6. In general, the risk stratification for patients by risk score

with the diagnostic genes was more accurate than that by SWT-CNN with all the

genes. The median survival time of the high- and low-risk groups divided by risk score

and SWT-CNN for all the cancer types were listed in Table 4. Using the same labels

defined in the previous prediction step, we evaluated the prediction performance of the

risk score model on predicting the 3-year overall survivals of all the data set. For OV

data set, Fig. 5c showed the ROC curves achieved by the risk score model (AUC = 0.66)

and 100 runs of SWT-CNN (mean AUC = 0.53). It can be seen that the prediction of

3-year overall survival was obviously improved by the risk score model with the diag-

nostic genes as features. Figure 7 showed the AUCs achieved by risk score model as

well as the mean AUCs of SWT-CNN. In general, compared with the prediction results

of SWT-CNN, the prediction performance of the risk score model for all the cancer

types has been improved except for LGG, demonstrating that the representative



Table 3 The genes considered to be significantly associated with the 3-year overall survivals of OV
by the univariate Cox regression

Characteristics P.Value

SACS 0.0002

SSC5D 0.0002

TSHRa 0.0003

CTD-2006C1.13 0.0004

LATS1 0.0008

HSPG2a 0.0008

AGPAT9 0.0019

STK38L 0.0032

CACNA1C 0.0033

AC005330.2a 0.0034

RP11-254F7.2 0.0047

MYH2 0.0048

ALDOA 0.0049

HIGD2A 0.0075

COL1A1 0.0101

ANAPC7a 0.0103

GIP 0.0110

BRD1 0.0117

MCL1 0.0126

IGDCC4 0.0137

FABP4a 0.0142

CHCHD10 0.0147

C12orf5 0.0148

COL3A1 0.0152

FAM196B 0.0171

CTD-2583A14.10 0.0181

DLX4 0.0182

ANKRD46 0.0183

ABHD15 0.0189

COX4I1a 0.0191

EPHB4 0.0202

RP5-1024G6.5 0.0204

RPL10 0.0218

GP9 0.0221

RPL15 0.0231

SLC34A2a 0.0243

LINC00891 0.0246

CD81 0.0247

B4GALT4 0.0253

BEST3 0.0254

ARHGAP5 0.0262

CCDC38 0.0263

RP11-77 K12.10a 0.0269
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Table 3 The genes considered to be significantly associated with the 3-year overall survivals of OV
by the univariate Cox regression (Continued)

Characteristics P.Value

MMP2 0.0284

GLMN 0.0337

MAFA 0.0343

NCBP2a 0.0348

DOK6 0.0379

P2RY6a 0.0380

RP11-282O18.3 0.0381

FOLR1 0.0394

ORAI2 0.0411

FNBP1L 0.0412

NLGN2 0.0413

LL22NC03-2H8.4 0.0421

IER3IP1 0.0424

TRPC4 0.0427

RPS6 0.0429

RP11-894P9.2 0.0435

RPS25 0.0438

FTH1 0.0448

RP11-867G23.10a 0.0453

NPM2 0.0467

AP001372.2 0.0468

HOXD3 0.0469

XX-C283C717.1 0.0477

RGMB-AS1 0.0500
amarked the genes selected by multivariate Cox regression
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features generated by CNN can be helpful for identifying the disease-related genes.

More importantly, risk score model generated a relatively small gene set, which can

provide a more precise set of candidate genes for the subsequent biological interpret-

ation and experimental verification in clinics. For the data sets of OV, LUAD, LIHC

and BLCA, the AUC increased by 0.13, 0.06, 0.05 and 0.08. To some extent, the predic-

tion performance of the risk score model for the other cancer types had also been

improved.

Discussion
Considering the fact that deep learning has been widely used in pattern recognition

and started to be applied in cancer prognosis prediction, we proposed a method called

SWT-CNN and thoroughly investigated the performance of the model on the clinical

cancer prediction. In our study, the gene expression profiles of the patients were firstly

decomposed into the wavelet coefficients by the stationary wavelet transform for the

purpose of enhancing the weights of genes with relatively low expression levels in the

gene list, and then were subsequently applied to the model construction and clinical

prediction by using the convolutional neural network. In the modeling procedures,

CNN algorithm can efficiently abstract the representative features from the gene



Fig. 5 The results of risk score model for predicting the 3-year overall survivals of OV. a The survival curves
of high-risk and low-risk patients in OV data set stratified by risk score model. b The distribution of survival
times of high-risk and low-risk patients stratified by the risk score model and SWT-CNN. (c) The ROC curves
achieved by the risk score model and 100 runs of SWT-CNN
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expression patterns that highly associated with the cancer type by using a representa-

tion learning strategy, which has been considered to be superior to the conventional

feature selection procedures. For the evaluation of the models, we followed the analyt-

ical pipeline in MAQC-II study [8] and used AUC as the metric to evaluate the model

performance. Note that, for the prediction of continuous values related to the survival,

Harrell’s c-index would be more suitable than AUC on assessing the performance of

the models [43].

In general, the significant discrepancy in the prediction results mainly existed among

different cancer types, which depended on the predictability of the clinical endpoints

(Fig. 3a and c). In addition, the partition of data sets also has a certain impact on the

prediction results, indicating that more samples should be added to improve the stabil-

ity of the model (Fig. 3b and d). SWT-CNN showed superior prediction performance

when comparing with SVM. For the cancer types that were easy to predict, both SWT-

CNN and SVM achieved satisfied prediction results. The mean AUCs for predicting

the tumor stage of KIRP and the 3-year overall survival of LGG achieved by SWT-

CNN and SVM were higher than 0.80 (mean AUCs = 0.82 and 0.85, resp.) and 0.70

(mean AUCs = 0.71 and 0.74, resp.), respectively. However, for some cancer types, the

prediction performance of SVM is obviously insufficient. When predicting the tumor

stage and the 3-year overall survival of KIRC, the mean AUCs achieved by SVM were

only 0.55 and 0.52, respectively, while the mean AUCs achieved by SWT-CNN were

0.74 and 0.66, respectively. For the cancer types that were difficult to predict, neither



Fig. 6 The distribution of survival times of high-risk and low-risk patients for the other cancer types
stratified by the risk score model and SWT-CNN
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method can achieve satisfied results, even if the prediction results of SWT-CNN were

slightly better than those of SVM. It is worth noting that almost all the gene

expression-based prediction models are data dependent. To elucidate this point, we

conducted the prediction of tumor stages and 3-year overall survivals of all the cancer

types by using other two popular machine learning algorithms, namely random forest

and logistic regression. The AUCs of predicting the tumor stages and 3-year overall

survivals of all the cancer types were shown in the Additional file 3. It can be seen that

the performance of random forest was comparable with that of the SWT-CNN and was

superior to the performance of SVM and logistic regression. Therefore, except for the

prediction accuracy, it is necessary to pay more attention to whether the model can

generate an interpretable gene set for the subsequent downstream analysis.

For the gene expression-based prediction in clinics, people not only expect that the

model performance is as good as possible, but also expect to obtain the interpretable

gene features, which is not only convenient for subsequent biological analysis of cancer

mechanisms, but also provides candidates for the discovery of valuable clinical diagno-

sis genes. To improve the prediction performance, more reliable candidate genes

should be selected for model construction. Therefore, in this study, we also proposed a

strategy to map the representative features in CNN to the original genes and weighted

them with the scores. The higher score of a gene indicated that its expression level in

the genome was more important for the clinical prediction. Considering the fact that

CNN algorithm tends to give heavy weights to those features with large values while ig-

noring some small ones, we introduced SWT to enhance the significance of genes with



Fig. 7 The AUCs achieved by risk score model and the mean AUCs achieved by 100 runs of SWT-CNN for
predicting the 3-year overall survivals of all the data set

Table 4 Median survival time of the high-risk and the low-risk patients that divided by the risk
score model and SWT-CNN

Type Risk
stratification

Median survival time

Risk Score SWT-CNN

BLCA Low Risk 715 1401

High Risk 413 508

HNSC Low Risk 1218 1157

High Risk 556 862

KIRC Low Risk 1876 1614

High Risk 1019 787.5

LGG Low Risk 1341 1423.5

High Risk 722 560

LIHC Low Risk 1566 1172.5

High Risk 412 425

LUAD Low Risk 1268 1125.5

High Risk 719.5 807

LUSC Low Risk 1190 1111

High Risk 927 1004

OV Low Risk 1355 1238

High Risk 850.5 1155

SKCM Low Risk 1814 1716

High Risk 1154 1093

UCEC Low Risk 1700 1559.5

High Risk 1249 1223
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relatively low expression levels in the gene list and make CNN algorithm weight the

genes objectively. The prediction results of 3-year overall survival by using CNN with

and without SWT were shown in Additional file 4. The performance of the models was

comparable. However, when extracting the genes from the representative features gen-

erated by CNN alone and ranking them by their scores, the mitochondrial function re-

lated genes, namely MT-CO1, MT-ND4, MT-CO3, MT-ND1, MT-ND3, MT-CO2,

MT-ND2, MT-ATP6, MT-ND4L and MT-CYB, were ranked in the top of the gene list

in most of the models because their expression levels were pretty higher than those of

other genes. When transforming the gene expression profile by using SWT before

CNN modeling, the candidate genes can be correctly ranked in the gene list. By using

these genes as features in the univariate and multivariate Cox regression, we finally

established the risk score models for predicting the 3-year overall survivals of all the

data set. For the data sets of BLCA, LIHC, LUAD and OV, the performance of risk

score models (AUCs = 0.65, 0.70, 0.67 and 0.66, resp.) was higher than that of SWT-

CNN (mean AUCs = 0.57, 0.65, 0.61 and 0.53, resp.). Note that, for the other cancer

types, the prediction performance of risk score model was only slightly improved when

comparing with that of SWT-CNN. The reason may be that the representative features

cannot extract the gene expression patterns effectively. In addition, by using the candi-

date genes generated by the risk score model as features, we reconstructed the SVM

models for predicting the 3-year overall survivals of all cancer types. The results

showed that the performance of SVM is improved to some extent after using the new

features when comparing with the original SVM models (Additional file 5), indicating

the effectiveness of candidate genes generated from the representative features of CNN.

In order to facilitate interpretation, we used a single-layer network for all data sets. In

fact, for some cancer types that were hard to predict, we can appropriately increase the

number of layers to ensure the effectiveness of representative feature extraction. More

detailed researches on the adjustment of CNN parameters for specific endpoints can be

conducted in the future work.

To further validate the function of the genes that were selected as features in univari-

ate and multivariate Cox regression modeling, we mapped the genes to the Cancer

Gene Census (CGC) data set in the Catalogue Of Somatic Mutations In Cancer (COS-

MIC release v90) database [44]. For the data set of OV, 67 genes were identified by uni-

variate Cox regression to be significantly associated with the cancer (Table 3) and

seven of them, namely COL1A1, COL3A1, RPL10, ARHGAP5, LATS1, TSHR and

SLC34A2, were found in the CGC data set. Genes COL1A1 and COL3A1 are demon-

strated that played an unfavorable role in the development of ovarian cancer, and could

be considered as the prognostic genes of OV [45]. Moreover, COL1A1 has also been

found to be positively related with the degree of invasion, metastasis, and advanced

stages of gastric cancer [45, 46]. COL3A1 can also be considered to be a potential bio-

marker for colon cancer [47], breast cancer [48] and brain tumor [49]. ARHGAP5 was

identified as an oncogene which can promote tumor metastasis and proliferation [50,

51]. It was also proved that ARHGAP5 could be a prognostic marker of gastric cancer

[50] and the expression level of it was associated with invasive and migrative ability of

nasopharyngeal carcinoma cells [51]. LATS1 is one of family proteins of large tumor

suppressor (LATS) and has been proposed to be a tumor suppressor [52]. It had been

found that the expression level of LATS1 had decreased in serous ovarian cancer
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patients but this gene highly expressed in normal ovarian tissue [52, 53]. SLC34A2 was

proved to have an evident effect in the progression of several types of cancers, such as

in ovarian cancer [54, 55], breast cancer and non-small cell lung cancer [56, 57]. The

gene fusion of SLC34A2 and ROS1 played an important role in the progression of non-

small cell lung cancer [58]. In addition, genes LRP1B and CCR4 were identified by

univariate Cox regression from the BLCA and HNSC data sets (Additional file 2), re-

spectively, which were reported in the COSMIC database. LRP1B is one of the top ten

genes mutated in human cancers [59, 60] and might be a potential contributor to the

emergence of chemotherapy resistance [59]. Gene CCR4 was reported to be associated

with adult T-cell leukaemia and lymphoma in the COSMIC database. The ligands for

CCR4 are produced by tumor cells or the microenvironment, and can attract CCR4-

expressing T regulatory cells and create a good survive environment for tumor cells

[61]. Moreover, genes SMARCD1 were identified by univariate Cox regression from

both the KIRC and LIHC data sets, and gene TSHR were identified by univariate Cox

regression from the LUAD data sets (Additional file 2). These results indicated that that

our proposed scoring method can effectively screen the diagnostic genes for clinical

cancer prediction by using representative features to evaluate the importance of genes.

In addition, some caveats were still necessarily discussed: 1) The performance of

SWT-CNN was comparable to CNN (Fig. 1 in Additional file 4), indicating that the

main contribution of SWT in the model was to enhance the significance of genes with

relatively low expression levels. 2) Only a small proportion of genes identified by our

strategy were included in the current version of the COSMIC database, and further

experimental verification of the causal relationship of remaining genes and cancer eti-

ology is needed. 3) To facilitate the evaluation of the performance of SWT-CNN, SVM,

RF, and LR, we categorized the patients into two groups (high/low-risk groups) accord-

ing to their tumor stages or survival times. The prediction results of multivariate Cox

regression were also dichotomized by using a risk score cutoff. In fact, for the predic-

tion of the survival, both deep learning-based algorithms (e.g., DeepSurv [43]) and Cox

regression can directly use continuous values (e.g., survival time) for modeling. The

prediction results can be evaluated by AUC [62] or c-index [63]. 4) Compared to AUC,

c-index is a more statistically stringent performance metric for evaluating the survival

models. Specifically, the c-index measure inspects the consistency of predicted and the

actual labels (i.e., clinical outcomes), but also inspects the correlation between the

predicted values and their survival time. For the binary classification, the result of the

c-index is almost equivalent to that of AUC, e.g., evaluating the performance of lo-

gistic regression in binary classification. 5) As a classical signal processing method,

Fourier transform can also obtain the Fourier coefficients by convoluting the ori-

ginal signal with Fourier functions. Compared with Fourier transform, wavelet

transform has some advantages [64–66]. In this study, we used wavelet transform

to decompose the gene expression profile, because the low frequency part of the

wavelet coefficients was the approximation of the original signal, which can facili-

tate us to map the score matrix back to original gene list. The Fourier coefficients

can only reflect the frequencies of sin/cos functions and it is difficult to match the

Fourier coefficients with the original genes. Further researches can also explore

whether it is possible to combine Fourier transform with CNN to identify the

disease-related genes.
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Conclusions
In our study, we proposed a gene expression-based method called SWT-CNN as an al-

ternative for stratifying the prognostic risk for cancer patients and thoroughly investi-

gated the performance of the model in the large data sets. Our results indicated that

SWT-CNN can be an excellent tool for risk stratification in cancers. When evaluating

the genes by using the representative features in CNN, the diagnostic genes that were

highly associated with the cancers can be effectively identified and used as features for

improving the prediction performance of the models. In addition, these diagnostic

genes can also be helpful for better understanding the mechanism of the diseases.
Methods
Data sets

The RNA-sequencing data in FPKM format as well as the clinical information of the

patients were downloaded from The Cancer Genome Atlas (TCGA) database [32]

(https://portal.gdc.cancer.gov/). The summarized fragments per kilobase million

(FPKM) of 60,483 transcripts (data in level 3) were firstly mapped to the unique genes

by using the comprehensive gene annotation file (ftp://ftp.ebi.ac.uk/pub/databases/gen

code/Gencode_human/release_22/gencode.v22.annotation.gtf.gz). In total, the expres-

sion data of 34,534 unique protein coding genes and lncRNA genes were generated for

the subsequent predictive model construction. We removed the genes, for which the

expression levels were zero in over half of the patients [67]. As a result, a subset of

genes was kept for the subsequent analysis. We downloaded all the data sets from

TCGA. After data processing, the gene expression data of twelve cancer types, namely

BLCA, BRCA, COAD, HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, SKCM, STAD, THCA

were used for the prediction of tumor stage, and the data of ten cancer types, namely

BLCA, HNSC, KIRC, LGG, LIHC, LUAD, LUSC, OV, SKCM, UCEC were used for the

prediction of 3-year overall survival.

To investigate the model performance on predicting clinical endpoints, we catego-

rized the patients into two compared groups with different clinical information. For

tumor stage prediction, the patients with the tumor stages of III and IV were catego-

rized into the high-risk group and those with the stages I and II were categorized into

the low-risk group. As for 3-year overall survival prediction, the patients, whose sur-

vival times were less than 3 years, were categorized into the high-risk group, and the

rest were categorized into the low-risk group. Note that the patients, whose survival

times were less than 3 years but still alive, were removed from the data sets. For both

tumor stage and 3-year overall survival, the patients in high-risk group were considered

as the positive samples. The number of samples and the proportion of positive and

negative samples in each cancer data set were listed in Tables 1 and 2.
Support vector machine

Support vector machine (SVM) [68, 69] is a popular machine learning algorithm, which

was firstly proposed by Vapnik [70] and has been widely used in binary classification

for decades. SVM can well classify the samples via projecting the samples to the

higher-dimensional space from the original space and searching for an optimal hyper-

plane for classifying the samples. Before model construction, the genes were filtered by

https://portal.gdc.cancer.gov/
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_22/gencode.v22.annotation.gtf.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_22/gencode.v22.annotation.gtf.gz
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using Student’s t-test and a fold change cutoff. Only the genes, for which the p values

< 0.05 and the absolute values of fold change > 2, were kept for the subsequent model-

ing. In our study, we used rbf as the kernel function in SVM and optimized the param-

eters (c and gamma in kernel function) by a grid search approach. In order to reduce

the impact of data partitioning on results, we randomly selected 70% samples as the

training set and validated them by using the rest 30% samples. This procedure had been

run for 100 times. The SVM modeling procedure was conducted in python 2.7 by using

the sklearn package.

Stationary wavelet transform

The concept of wavelet was firstly introduced by Morlet and Grossmann [71] and had

been successfully applied in signal processing field for decades. In a square integrable

space L2(ℝ), the wavelet function is defined as:

φa;b tð Þ ¼ 1
ffiffiffi

a
p φ

t−b
a

� �

; a; b∈R ð1Þ

Where a and b represent the scale and translation parameters, respectively. A wavelet

family can be generated by means of translations and dilations of φ. The continuous

wavelet transform procedure can be described by a following equation:

FCWT a; bð Þ ¼ 1
ffiffiffiffiffiffiffiffij a jp

Z þ∞

−∞
f tð Þφ t−b

a

� �

dt ð2Þ

Where f(t) is the original signal. It can be seen that the transformed signal (wavelet

coefficients) FCWT(a,b) is the result of convolution between the original signal and the

wavelet function. It is also a function of scale parameter a and translation parameter b.

The inverse continuous wavelet transform can be easily conducted by calculating the

convolution of transformed signal and the wavelet function:

f tð Þ ¼ 1

C2
φ

Z þ∞

−∞

Z þ∞

−∞
FCWT a; bð Þ 1

a2
φ

t−b
a

� �

dbda ð3Þ

where Cφ is the admissibility constant, which depends on the chosen wavelet function.

In general, the eq. (1) is discrete by using:

a ¼ 2− j; b ¼ 2− jk j; k∈Zð Þ ð4Þ

Then, the Discrete Wavelet Transform (DWT) can be defined as:
F DWTð Þ j; kð Þ ¼ 2 j=2
Z þ∞

−∞
f tð Þφ 2 j−k

� �

dt ð5Þ

After transformation, the original signal has been decomposed into the wavelet coeffi-
cients of the first layer, which represents the information of the low frequency part

(approximate profiles) and the high frequency part (details) in the original signal, re-

spectively. Then, the low frequency part can be further decomposed into the wavelet

coefficients of the second layer and so on. As the number of decomposition layers in-

creases, the degree of signal approximation increases. The loss of information is also in-

creasing. We tested the prediction results by using the wavelet coefficients decomposed

from 3 to 5 layers respectively (data not shown), and found that it had little influence
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on the prediction performance of the models. So, we chose a smaller number of de-

composition layers to keep the original information as much as possible. In most cases,

e.g. in the chemical signal processing, the low frequency part of the wavelet coefficients

is the approximation of original signal and can reflect the profile of original signal to a

certain extent. The high frequency part of the wavelet coefficients is usually considered

to be related to the noise of the original signal. This is the reason why the high-

frequency part of the coefficients is usually discarded when using the wavelet transform

for signal denoising. In our study, we only used the low frequency part of the wavelet

coefficients for the subsequent analysis. In addition, in order to maintain the number of

features, we used stationary wavelet transform (SWT), also known as undecimated

wavelet transform, which does not decimate coefficients at every transformation level.

It is a translation-invariance modification of the DWT [72]. Due to the up-sampling

operation of the filter coefficients, the SWT has the advantage of being shift-invariant

compared with DWT [73, 74].

In this study, SWT can make generalization of the expression profiles of grouped

genes and denoise the gene expression signal. When the gene expression profile was

decomposed into the wavelet coefficients, we kept the low frequency part of the coeffi-

cients to obtain a cleaner signal, which was the approximation of original gene expres-

sion profile. Meanwhile, the difference in expression levels of different genes will be

reduced in the process of approximation, which is conducive to generating the repre-

sentative features by CNN. The gene expression profile of a patient was firstly decom-

posed into a certain layer by the stationary wavelet transform and then, the wavelet

coefficients were subsequently input into the convolutional neural network. For in-

stance, a gene expression matrix X contains n samples in rows and p genes in columns.

The wavelet transform will decompose the gene expression data by samples. For each

sample, the gene expression profile is a vector with order 1 × p (1 sample × p genes). If

we decompose the profile into m layers, the wavelet coefficients matrix will be m × p

(m layers × p wavelet coefficients). This decomposition procedure has been repeated

for n times and the gene expression profiles of all samples have been transformed to

the wavelet coefficients. As a result, the final wavelet coefficients matrix should be n ×

p ×m (n samples × p wavelet coefficients × m layers). Subsequently, the wavelet coeffi-

cients matrix is input into CNN for modeling. Note that the wavelet coefficients are

only the result of mathematical transform, which is the approximation of the original

gene expression profile but cannot be directly associated with the biological meaning of

the genes. Decomposing the signal with different wavelet functions may obtain different

wavelet coefficients, it is necessary to investigate the impact of the wavelet coefficients

calculated by different wavelet functions on the predictive models. After decades of de-

velopment, many wavelet functions have been proposed for signal processing. Here, we

chose four most commonly used wavelet families to test. Considering that there is little

difference in wavelet basis functions in the same family, we selectively chose three

wavelet basis functions from each family. Consequently, twelve commonly used wavelet

functions were chosen and examined in this study including Daubechies wavelet family

(db1, db3 and db5), Coiflets wavelet family (coif1, coif3 and coif5), biorthogonal wavelet

family (bior3.1, bior3.3 and bior3.5) and symlets wavelet family (sym2, sym4 and sym6).

The number of decomposition layers was set to 3. The wavelet decomposition proce-

dures were conducted with a python package called PyWavelets [75]. To choose the
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optimal wavelet function, for each cancer type, we randomly selected 70% samples as

training set and used the rest samples as the validation set. The twelve wavelet func-

tions were separately used to decompose the gene expression profile of the sample and

the wavelet coefficients were input into the CNN for modeling by using the training

set. The validation set was used to evaluate the performance of the models. It can be

decided which wavelet function combined with CNN was optimal for the current can-

cer type.
Convolutional neural network

As one of the classical deep learning algorithms, convolutional neural network (CNN)

[76, 77] is widely used in image processing. Similar to the conventional neural network,

CNN includes an input layer, an output layer and a number of hidden layers. Among

the hidden layers, CNN usually involves the convolutional layers and pooling layers,

which can efficiently reduce the connections between the neurons and extract the fea-

tures from the original image, respectively. In our study, we constructed the CNN

models involving an input layer, a convolutional layer, a pooling layer, a full connective

layer and an output layer. The architecture of the CNN model and the used parameters

were shown in Fig. 8. The wavelet coefficients matrices of the patients were directly in-

put into the CNN models for classification. The functions for optimizer, loss, activation

and output were separately set to RMSprop, binary_crossentropy, relu and softmax. All

the calculations of CNN modeling were conducted in python 2.7 by using the tensor-

flow and keras packages. Similarly, we randomly selected 70% samples as the training

set to construct the models and validated them by using the rest 30% samples. The

sampling procedure had been repeated for 100 times. In addition, The Kaplan-Meier

survival analysis was applied in evaluating the stratification of the patients. The
Fig. 8 The architecture of the SWT-CNN model in our study
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calculation was conducted in GraphPad Prism 8 software (https://www.graphpad.com/

scientific-software/prism/).

Scoring approach for evaluating gene importance

We proposed a scoring approach to identify the diagnostic genes for improving the per-

formance of prediction. For each cancer type, 70% samples were randomly selected as

training set, which was firstly used to construct the SWT-CNN model. The modeling

procedure had been repeated for 100 times and the best model was kept for extracting

the representative features. We extracted the coefficients after the treatment of pooling

layer of the best model and averaged the coefficients for all channels to obtain the

representative feature matrix X. Then, according to the principle of least squares, we

calculated the scores for all genes as follows:

B ¼ Y∙XT X∙XT
� �−1 ð6Þ

where matrix Y was the wavelet coefficient matrix that input into the CNN model, and

the result B was the score matrix for the wavelet coefficients with the number of coeffi-

cients in rows and the number of representative features in columns. Because the wave-

let coefficients were the approximation of original gene expression profile, the score

matrix of wavelet coefficients can also be regarded as the score matrix of genes. Then,

we averaged each row of matrix B and obtained the scores for all genes, which indi-

cated the importance of the genes to the cancer.

Cox proportional-hazards regression

We extracted the top n genes ranked by the scores for the Cox proportional-

hazards regression. The number n was tested from 100 to 1000 genes with a step

of 100 and the optimal value was determined by using the training set. Univariate

Cox regression was conducted by using the expression data of the top n genes

combined with patient survival time for gene selection (p < 0.05). Then, the selected

genes were used in the multivariable Cox regression. Note that, for the limited

sample size and larger gene set, the multivariable Cox regression may be unstable

and cannot converge. The penalized Cox regression [78] should be used instead.

Finally, the genes significantly associated with the overall survival (p < 0.05) were

considered as the diagnostic genes. To use these genes as features for the predic-

tion of 3-year overall survival, we calculated the risk scores for the patients and

summarized them as the probability of overall survival from the cancer data set as

follow [42, 79, 80]:

Risk score ¼ β1x1 þ β2x2 þ β3x3 þ…þ βNxN ð7Þ

where xi is the gene expression value of the ith gene and β is the corresponding Cox co-

efficient. Then, receiver operating characteristics curve (ROC) was employed on the

training set to determine the optimal cut-off points for classification [81]. And the cut-

off was used to stratify patients into low- and high-risk groups in the validation set.

The source code can be downloaded from GitHub (https://github.com/zyrr183/

TCGA_SWT-CNN-Risk-score-Method).

https://www.graphpad.com/scientific-software/prism/
https://www.graphpad.com/scientific-software/prism/
https://github.com/zyrr183/TCGA_SWT-CNN-Risk-score-Method
https://github.com/zyrr183/TCGA_SWT-CNN-Risk-score-Method
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