
RESEARCH ARTICLE Open Access

An improved clear cell renal cell carcinoma
stage prediction model based on gene sets
Fangjun Li1, Mu Yang2, Yunhe Li1, Mingqiang Zhang1, Wenjuan Wang2, Dongfeng Yuan1* and Dongqi Tang2*

* Correspondence: dfyuan@sdu.edu.
cn; tangdq@sdu.edu.cn
Fangjun Li and Mu Yang are co-first
author.
1School of Information Science and
Engineering, Shandong University,
supported by Shandong Provincial
Key Laboratory of Wireless
Communication Technologies, Jinan
250100, China
2Center for Gene and
Immunothererapy, The Second
Hospital of Shandong University,
Jinan 250033, China

Abstract

Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of
renal cell carcinoma and accounts for cancer-related deaths. Survival rates are very low
when the tumor is discovered in the late-stage. Thus, developing an efficient strategy
to stratify patients by the stage of the cancer and inner mechanisms that drive the
development and progression of cancers is critical in early prevention and treatment.

Results: In this study, we developed new strategies to extract important gene features
and trained machine learning-based classifiers to predict stages of ccRCC samples. The
novelty of our approach is that (i) We improved the feature preprocessing procedure by
binning and coding, and increased the stability of data and robustness of the classification
model. (ii) We proposed a joint gene selection algorithm by combining the Fast-
Correlation-Based Filter (FCBF) search with the information value, the linear correlation
coefficient, and variance inflation factor, and removed irrelevant/redundant features. Then
the logistic regression-based feature selection method was used to determine influencing
factors. (iii) Classification models were developed using machine learning algorithms. This
method is evaluated on RNA expression value of clear cell renal cell carcinoma derived
from The Cancer Genome Atlas (TCGA). The results showed that the result on the testing
set (accuracy of 81.15% and AUC 0.86) outperformed state-of-the-art models (accuracy of
72.64% and AUC 0.81) and a gene set FJL-set was developed, which contained 23 genes,
far less than 64. Furthermore, a gene function analysis was used to explore molecular
mechanisms that might affect cancer development.

Conclusions: The results suggested that our model can extract more prognostic
information, and is worthy of further investigation and validation in order to understand
the progression mechanism.
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Introduction
Clear cell renal cell carcinoma (ccRCC) accounts for 60–85% of RCC [1, 2], which rep-

resents 2–3% of all cancers with a general annual increase of 5% [3, 4]. ccRCC is usu-

ally asymptomatic in the early stages, with about 25–30% of patients having metastasis

by the time of diagnosis [5]. Moreover, patients who had localized ccRCCs removed by

nephrectomy have a high risk of metastatic relapse [6]. ccRCC has high resistance to
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chemotherapy and radiotherapy, leading to poor prognosis [7, 8]. Detecting ccRCC in

the early stage can help prevent and treat cancer at early stages. Also, understanding

key genetic drivers for progression can help to develop new treatments.

Gene expression profiling has the potential for the classification of different tumor types

since they play an important role in tumor development and metastasis. Machine learning-

based methods which make use of gene expression profiling have been developed for discrim-

inating stages in various cancers [9], including ccRCC [10, 11]. Rahimi [9] recommended using

a multiple kernel learning (MKL) formulation on pathways/gene sets to learn an early- and

late-stage cancer classification model. Jagga [10] and Bhalla [11] trained different machine

learning models using genes selected by Weka and achieved a maximum AUROC of 0.8 and

0.81 on ccRCC respectively. Although some researchers have distinguished early and ad-

vanced stages of ccRCC using the classification models, the stability of the classification model

is not guaranteed and there is still room for improvement in model performance.

This work aimed to extract significant features from high-dimensional gene data

using data mining techniques and make more accurate and reliable predictions of

ccRCC tumor stages with machine learning algorithms. For data preprocessing, we used

the Chi-merge binning and WOE encoding algorithm to accomplish data discretization,

thus reducing the impact of statistical noise and increasing the stability of the classifica-

tion model. For gene selection, a joint selection strategy to remove irrelevant/redundant

features was proposed, and the final FJL-set with 23 genes was derived as an aggregated

result. Specifically, we aggregate Fast-Correlation-Based Filter search (FCBFSearch),

joint statistical measures (the information value, the linear correlation coefficient, and

variance inflation factor) and logistic regression-based feature selection. For the classifi-

cation model, five different supervised machine learning algorithms were evaluated on

an independent testing set. Finally, a simple and comprehensible SVM based prediction

model using 23 selected genes performed best with an accuracy of 81.15% and AUC

0.86 — higher than the state-of-the-art method with fewer genes.

Materials
The RNAseq expression data along with their clinical information for Kidney Renal

Clear Cell Carcinoma (KIRC) samples from The Cancer Genome Atlas (TCGA) project

were used to distinguish between early- and late-stage ccRCC. RSEM values of KIRC

used as gene expression values and clinical annotations for cancer patients were derived

from UCSC Xena (https://xenabrowser.net/datapages/). FPKM values of KIRC were de-

rived in TCGA for comparison with RSEM.

Samples with Stage I and II were considered as early-stage (i.e. localized cancers) and

the remaining samples with Stage III and IV were labeled as late-stage cancers. After this

processing, 604 samples from early- and late- stages were retained. 80% samples (482

samples) were picked randomly as the training set and the remaining 20% (122 samples)

were used as the independent test set. Table 1 shows the datasets used in this study.

Methods
Feature selection and classification algorithms with preprocessed gene expression pro-

files were used to detect early- and late-stage samples. Due to the wide range and

highly correlated nature of gene expression data, the performance of classification

models with raw features were not robust. Therefore, feature selection was conducted
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before classification, and only on the training set. Five supervised machine learning al-

gorithms were used on gene sets to predict their pathological stages. Figure 1 demon-

strates the overall algorithm framework used in this work.

Feature preprocessing

To increase the stability and robustness of the classification model, Chi-merge binning and

WOE encoding for discretizing genetic features were conducted. The range of each numeric

RSEM attribute for different genes can be very wide. While some extremely large values sel-

dom appear, they can cause prediction impairment because of seldom reversal patterns and

extreme values. Grouping similar properties with similar predictive intensity will increase the

instability of models and allow the understanding of the logical trend of “early−/ late-stage”

bias of each feature.

Discretization

Chi-merge binning Binning and encoding are techniques purposed to reduce the im-

pact of statistical noise. It is widely used in credit risk prediction and other applications.

Table 1 Summary of TCGA - KIRC that was used in the training and test set

Stage Sample Number Training set Testing set

Early Stage I 361 293 288 234 73 59

Stage II 68 54 14

Late Stage III 243 139 194 111 49 28

Stage IV 104 83 21

Fig. 1 The overall algorithm framework
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However, no prior works apply this method to cancer classification problems. Instead,

they put the normalized genetic features into machine learning models directly.

Chi-merge is the most widely used automatic grading algorithm. It is partitioned in

such a way that the early-stage and late-stage samples are as different as possible in the

proportion of adjacent boxes. The disadvantage of Chi-merge is that it requires mass

computation, so it may not be a good choice for selecting features from all genes.

WOE encoding After binning, the original numeric characteristics are transformed

into categorical ones, and it is impossible to put the discretized variables directly into

the model. Therefore, variables of discrete type need to be coded. WOE encoding was

used in our experiments to encode these categorical variables.

Weight of evidence (WOE) is based on the ratio of early-stage to late-stage samples

at each level. It weighs the strength of feature attributes to distinguish between early-

and late-stage accounts.

WOEi ¼ 1n
Ei=E
Li=L

� �
¼ 1n

Ei=Li
E=L

� �
¼ 1n

Ei

Li

� �
−1n

E
L

� �
ð1Þ

Here Ei is the number of early-stage samples in bin i, Li is the number of bad early-

stage samples in bin i, E is the total number of early-stage samples, and L is the total

number of bad early-stage samples.

Standardization

In the second set of experiments, the RSEM values were transformed using log2 after

adding 1.0. Then the log2 transformed values were normalized. The following equa-

tions were used for computing the transformation and normalization:

x ¼ log2 RSEM þ 1ð Þ ð2Þ

z ¼ x−x
s

ð3Þ

Where x is the log-transformed gene expression, x is the mean of training samples,

and s is the standard deviation of the training samples.

Feature selection

A hybrid feature selection method was developed which aimed to produce a feature

subset from aggregated feature selection algorithms. All these algorithms were con-

ducted on the training set. The feature selection method was composed of three parts:

(1) FCBFSearch, (2) joint statistical measures, and (3) logistic regression-based feature

selection. In this way, irrelevant/redundant attributes in data sets can be removed, the

instability and perturbation issues of single feature selection algorithms can be allevi-

ated, and the subsequent learning task can be enhanced.

Fast correlation-based filter search

When there are a lot of variables, there is a strong relevance/redundance between the

variables. If all the variables are put together into classification models, the significance

of important variables is reduced, and in extreme cases, sign distortion occurs. The Fast

Correlation-Based Filter (FCBF) Search algorithm is a feature selection algorithm based
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on information theory [12], which takes into account both feature correlation and fea-

ture redundancy. It uses dominant correlation to distinguish related features in high-

dimensional datasets.

FCBFSearch was performed on the original training data without data preprocessing.

In addition, a random sampling method was used to select the robust features.

FCBFSearch was conducted 10 times with random sampling 10-fold cross-validation

every time on the training dataset, after which 10 subsets of features were obtained.

The features with an overlap number of more than 8 were selected for the data prepro-

cessing and the following joint statistical measures processions.

Joint statistical measures

Joint statistical feature selection was done on preprocessed FCBFSearch features. The

method combines various statistical measures to assess feature importance and rele-

vance and filter out redundant features.

(1) Univariate Analysis

The information value (IV) is used to assess the overall predictive power of the fea-

ture, i.e. the ability of the feature to separate early-and late-stage samples. It expresses

the amount of information of the predictor in separating early- from late-stage in the

target variable.

IV ¼ PðGi
G − Bi

BÞ lnðGi=G
Bi=B

Þ IV ¼ PðGi
G − Bi

BÞ lnðGi=G
Bi=B

Þ (4).
Where Gi is the proportion of early-stage samples of bin i in all early-stage samples

and Bi is the proportion of late-stage samples of bin i in all late-stage samples.

IV < 0.02 represents an unpredicted variable, 0.02–0.10 is weakly predictive, 0.10–

0.30 is moderately predictive, and > 0.30 is strongly predictive. In the experiment, we

rejected variables whose IV was lower than 0.1.

(2) Multivariate Analysis

The linear correlation coefficient was used to measure the correlation between two vari-

ables. The larger the absolute value of the linear correlation coefficient is, the more likely

it is to be a linear expression for another variable. Linear correlation has two meanings:

positive correlation and negative correlation. It is desirable to avoid both of these situa-

tions because it is hoped that the correlation between the two variables is as small as pos-

sible. In the present study, 0.7 was chosen as the baseline. If the absolute value of the

correlation coefficient was greater than 0.7, the one with lower IV score was selected.

After this, collinearity analysis was performed since the collinearity problem tends to

reduce the significance of a variable. The Variance Inflation Factor (VIF) was used to

evaluate multivariate linear correlation.

VIFi ¼ 1

1−R2
i

ð5Þ

Where Ri is the R2 value of xi and {x1, x2,…, xi − 1, xi + 1, xi + 2,…, xN} . When the calcu-

lated VIF is far less than 10, there is no collinearity problem.
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Logistic regression-based feature selection

In the present study, logistic regression (LR) was used as the classification model in fea-

ture selection progress in order to find which factors were influential in discriminating

early- and late-stage samples, and how these factors quantitatively affect the model.

To guarantee the validity and significance of the variables sent to the logistic regres-

sion model, we checked the coefficients and p values of the input variables which indi-

cate the influence of the independent variable on the dependent variable and whether

early- and late-stage genetic expression significantly change. Some variables’ p values

are higher than 0.1 before checking, and it means that there is no obvious correlation

between the two parameters. In our study, we filtered variables whose p-value exceeded

the threshold 0.1 and the values of coefficients were positive.

Classification algorithm

Five machine learning algorithms: Support Vector Machine (SVM), Logistic Regression,

Multi-Layer Perception (MLP), Random Forest (RF) and Naive Bayes (NB) were used

for generating the classification models. RBF kernel of SVM at different parameters,

gamma∈[10− 9, 10− 7, ..., 10, 103], c∈[− 5, − 3, ..., 13, 15] was used for optimizing the

SVM performance. SVM, MLP, RF, and NB were implemented using the Sklearn pack-

age in Python.

10-fold cross-validation

The five supervised machine learning algorithms were trained on the subset features

from feature selection and further validated by 10-fold cross-validation.

Independent dataset test

An independent testing set is used to exclude the “memory” effect or bias for trained

classification models. We did not use this testing set for feature selection or model

training. We only evaluated the performance of the classification model on it, and the

model was trained on the training set.

Analysis of selected genes

The Database for Annotation, Visualization and Integrated Discovery (DAVID, version

6.7) [13] and KEGG [14] database was used to explain the meaning of functional from

the molecular or higher levels and associate the genes with related pathways. As a main

bioinformatics database for analyzing gene function and understanding the biological

functions, GO is integrated with other databases in DAVID [15]. A meaningful bio-

logical explanation for the selected genes through the enrichment analysis, and correl-

ating genes with diseases in the mechanism is needed. P < 0.05 was considered

statistically significant.

Results
Experiments were performed on the TCGA - KIRC dataset that was constructed with

labeling strategies shown in Table 1. The results of every feature selection procedures

and performance of the classification algorithm are shown.
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Experiment settings

The feature selection process and classification models were conducted on the training

set while the performance of models was evaluated using 10-fold cross-validation on

the training set as well as on the independent testing set. We implemented the initial

FCBFSearch in Weka 3.8, and the attribute evaluator ‘SymmetricalUncertAttributeSetE-

val’ with the search method of ‘FCBFSearch’ was used to accomplish this process. All

data preprocessing feature extraction, joint statistical feature selection measures, and

classification algorithms were in Python programming language, and the related code is

publicly available in the github (https://github.com/lfj95/FJL-model). The details of ex-

perimental settings in compared methods are described in the Supplementary Methods.

Data preprocessing results

Binning and encoding deals with the long tail data distribution

To show the role of binning and encoding, the data distribution of 3 representative

genes were plotted. Expression values of these 3 genes (Fig. 2) shows that the original

dataset had long tail distributions, and the probability of occurrence of maximum value

was very small. In addition, this kind of data distribution can cause great interference

to the classification procedure so that it is unstable. After Chi-merge binning and WOE

encoding, the training data were discretized and mapped to values between − 3 and 3.

These results indicate that binning and encoding could normalize variables to similar

scales and reduce the effect of the data distribution.

Feature selection results

In this section, the results of each feature selection step: (1) FCBFSearch, (2) joint stat-

istical measures, and (3) logistic regression-based feature selection are shown.

FCBFSearch

The selection frequencies of genes selected by FCBFSearch are shown in Table S2. The

101 genes that were selected more than 8 times are marked in bold. FCBFSearch was

conducted on gene data without preprocessing, following the discretization process

which eliminated 6 genes whose maximum bin occupied more than 90% during the

preprocessing process. So only 95 genes went to joint statistical measures.

Fig. 2 Comparison of data distribution of 3 representative genes before and after binning and encoding
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Joint statistical measures

The information value was employed for finding the importance of genes, linear correl-

ation coefficient, and the variance inflation factor for discovering associations among

genes. Thirty genes whose IV score was lower than 0.1 were removed (Table S3) since

the predictor was not useful for modeling. After this process, there were 65 genes left,

and gene MFSD2A had the highest IV 0.455. In addition, 27 genes reached an IV score

of 0.2, as shown in Fig. 3A. Therefore, the prediction ability of individual variables col-

lected was strong, and the prediction ability of selecting the appropriate feature com-

bination was available.

Correlation coefficients between genes were all lower than the threshold value 0.7

and the calculated VIF were all far less than 10. So, no genes were removed in this step,

indicating that genes included in the classification model all had high importance and

low correlation.

Logistic regression-based feature selection

To guarantee the correctness and significance of the variables sent to the logistic re-

gression model, the coefficients and p values of the input variables were checked to

eliminate variables that were not valid and not significant, respectively. Figure 3B shows

variables before and after filtering, the coefficients and p values which indicate the in-

fluence of the independent variable on the dependent variable and whether early- and

late-stage genetic expression significantly changed. As can be seen, some variables’ p

values were higher than 0.1 before checking. This means that there is no obvious

Fig. 3 Performance of feature selection algorithms. (a) IV score of 95 genes (higher than 0.1 in blue, lower
than 0.1 in red). (b) Validity and significance test of variables. The coefficients of all selected variables are
negative but the p values of some genes are higher than 0.1. After the phase-out, the significance of
residual variables are guaranteed
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correlation between the two parameters. The variable size was reduced from 65 to 23

after stepwise iteration removed insignificant variables, while the remaining p-values

did not exceed the threshold 0.1 and the values of coefficients were all negative.

Classification results

In this section, the classification results of the model and the baseline models are

shown. Prediction models on the independent test set with 122 samples, in terms of

area under the receiver operating characteristic curve (AUC), accuracy, Matthews Cor-

relation Coefficient (MCC), specificity, and sensitivity were evaluated. The

generalization ability of the algorithm was also reflected by a 10-fold cross-validation

experiment. For each fold, separate classifiers were trained, and the result finally ob-

tained was the average of 10-folds.

FJL-set-based models

Twenty-three genes in the FJL-set with the preprocessing method shown in 3.1.1 were

used to classify “early- and late-stage” on the five machine learning algorithms -- SVM,

MLP, Random Forest, Decision Tree, and Naive Bayes (Table 2).

Sensitivities of all the models were in the range of 0.612–0.776 with the highest sensi-

tivity of 0.776 for MLP. Specificities of the models varied in a range with the lowest of

0.767 for logistic regression and the highest of 0.877 for SVM. The best sensitivity-

specificity trade-off was observed for the SVM Classifier with a sensitivity of 0.714 and

specificity of 0.877. The classification accuracy of the generated prediction models

ranged from 76.23% for Random Forest to 81.15% for SVM, and the AUC score ranged

from 0.819 for Naive Bayes to 0.860 for SVM. Based on accuracy and AUC, we inferred

the SVM based prediction model outperformed the other four machine learning algo-

rithms implemented in the study. The MCC of the models developed in the study was

between 0.496 and 0.609. It is notable that among the four evaluated prediction models,

the model based on SVM had the highest specificity, accuracy, AUC.

Table 2 The performance of machine learning based-models developed using FLJ-set of 23
selected features on the training set with 10-fold cross-validation set and independent testing set
for gene data without discretization

Algorithms Methods Performance Measures on test set

Sensitivity Specificity Accuracy(%) MCC AUC

Logistic Regression 10-fold 0.750 0.805 78.45 0.556 0.855

Testing 0.756 0.767 77.87 0.554 0.860

SVM 10-fold 0.680 0.868 79.27 0.562 0.852

Testing 0.714 0.877 81.15 0.603 0.860

MLP 10-fold 0.706 0.828 77.83 0.508 0.840

Testing 0.776 0.836 81.15 0.609 0.858

Naive Bayes 10-fold 0.695 0.820 77.17 0.519 0.828

Testing 0.735 0.836 79.51 0.572 0.819

Random Forest 10-fold 0.499 0.866 71.75 0.398 0.764

Testing 0.612 0.863 76.23 0.496 0.828
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The ROC curve (Fig. 4) was plotted to summarize the performance of different

models in discriminating early- and late-stage ccRCC in the preprocessed test data sets.

One hundred and twenty-two test samples were used to evaluate the prediction power

of the five classifiers with two preprocessing methods. Among the prediction models,

SVM and Logistic Regression achieved the maximum value of 0.860 for AUC. Naive

Bayes had the least AUC of 0.819, about 0.04 lower than SVM. In real-word applica-

tions, logistic regression is also a good choice.

No feature selection based models

We first conducted experiments without feature selection to explain the performance

of models developed using machine learning techniques. We used 20,530 gene features

with the preprocessing method as shown in 3.1.2. The classification result on the test-

ing set is shown in Table 3.

The performance of AUC on the testing set was 0.806 in SVM and 0.768 in LR. The

results of traditional machine learning algorithms before feature selection were not

high, especially for logistic regression, whose performance was highly affected by the

wide range and highly correlated gene expression data. Therefore, feature selection is

essential to improve prediction accuracy.

RCSP-set-Weka-hall based models

The best results were compared with Bhalla’s results. The research [11] that Bhalla

et al. did selected a subset of genes that are components of cancer hallmark processes

and obtained a good performance of the model. We conducted experiments with these

38 genes on both training set with 10-fold cross-validation and on a test set. The pre-

processing method used is as described in 3.1.2, the same as that used in their study.

The classification result on the testing set is shown in Table 3.

As reported in their paper, they achieved an accuracy of 77.7% with AUC 0.83 on

their training data and accuracy of 72.64% with AUC of 0.78 on their validation data

with 104 test samples. In the present experiment, their method was repeated in Python

Fig. 4 Receivers Operating Characteristic curve (ROC) for all the five classifiers with discretization
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and an accuracy of 77.87% with AUC of 0.844 with SVM on our test data with 122 test

samples was obtained, while the results on the training set using 10-fold cross-

validation were 70.35% in accuracy and 0.769 in AUC (Table 3).

FCBF-set-based models

In this section, the feature selection was performed by Weka on preprocessed data with the

method described in 3.1.2 and the number of features was reduced from 20,530 to 101 fea-

tures (FCBF-set). LR based models did not perform well with these 101 genes, with an accur-

acy of 72.95% and AUC of 0.789 on the test set. SVM based models gave the best

performance with an accuracy of 74.23% with AUC 0.793 on the training data using 10-fold

cross-validation and an accuracy of 75.41% with AUC of 0.826 on the testing set (Table 3),

which were higher than the results of RCSP-set-Weka-Hall based model. For certainty of re-

sults, we made 100 random sets from 60% validation samples to test the biomarkers in these

random sets as well, and the mean of randomized experiments is shown in Table 3.

It can be seen that FJL set-based models perform best, which confirms that the genes

selected with our method have a certain significance for the division of pathological

stages. Also, there is a consistency between the results of 10-fold cross-validation and

results on the testing set.

Besides, FPKM values were experimented in the same process with RSEM. Accuracy

and AUC are also better than RCSP-set-Weka-Hall set, as were shown in the Table S5,

indicating that the experimental method is also applicable to FPKM and it also can get

a good classification result.

Table 3 The performance of machine learning-based models developed using different sets of
selected features, which include whole gene sets without feature selection, RCSP-set-Weka-Hall,
FCBF-set, and FJL-set

Features Algorithms Methods Performance Measures

Sensitivity Specificity Accuracy(%) MCC AUC

Whole gene set
(20,530 genes)

SVM 10-fold 0.182 0.943 63.25 0.198 0.709

Testing 0.020 1.000 60.66 0.111 0.806

LR 10-fold 0.590 0.777 69.91 0.370 0.683

Testing 0.673 0.863 78.69 0.551 0.768

RCSP-set-Weka-Hall
(38 genes)

SVM 10-fold 0.696 0.697 70.35 0.386 0.769

Testing 0.735 0.808 77.87 0.541 0.844

FCBF set
(101 genes)

SVM 10-fold 0.727 0.758 74.23 0.475 0.793

Testing 0.776 0.740 75.41 0.506 0.826

LR 10-fold 0.678 0.742 71.57 0.415 0.768

Testing 0.612 0.808 72.95 0.429 0.789

FJL set
(23 genes)

Discretization
+SVM

10-fold 0.680 0.868 79.27 0.562 0.852

Testing 0.714 0.877 81.15 0.603 0.860

Discretization
+ LR

10-fold 0.750 0.805 78.45 0.556 0.855

Testing 0.756 0.767 77.87 0.554 0.860

Discretization
+SVM

100 random test sets 0.710 0.788 75.64 0.496 0.831

Discretization
+ LR

100 random test sets 0.647 0.876 78.32 0.542 0.842
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Biological mechanisms identified by selected genes

Many filtered genes in our method were confirmed to associate with tumor in the pre-

vious literature. UFSP2 combined with the nuclear receptor coactivator ASC1 is in-

volved in the development of breast cancer [16]. GPR68 is a mediator interacting with

pancreatic cancer-associated fibroblasts and tumor cells [17]. RXRA mutation drives

about a quarter of bladder cancer [18]. CACNA1D mutation causes increased Ca2+ in-

flux, further stimulating aldosterone production and cell proliferation in adrenal glo-

merulosa [19]. CASP9 expression has an apoptosis-inducing and anti-proliferative

effect in breast cancer [20]. High expression of PLA2G2A can cause short survival in

human rectal cancer [21]. KIAA0652 (ATG13) mediates the inhibition of autophagy in

DNA damage via the mTOR pathway [22]. CTSG (Cathepsin G) is thought to be an ef-

fective therapeutic target in acute myeloid leukemia patients [23] and could rapidly en-

hance NK cytotoxicity [24]. HUS1b is confirmed to have the function of checkpoint

activation in the response to DNA damage, and its overexpression induces cell death

[25]. Saitohin polymorphism is associated with the susceptibility of late-onset Alzhei-

mer’s disease [26] and does not associate with the cancer. RNF115 is broadly overex-

pressed in ERα-positive breast tumors [27]. Wintergerst L et al. [28] reported that

CENPBD1 can predict clinical outcomes of head and neck squamous cell carcinoma

patients. Tumor cells produce IL-31, and IL-31 and its receptor are confirmed to affect

the tumor microenvironment [28].

Functional roles of the 23 hub genes are shown in Table S4. The results in GO ana-

lysis showed that the biological processes (BP) were proteolysis, G-protein coupled re-

ceptor signaling pathway, and regulation of insulin secretion (Fig. 5). G-protein coupled

receptor signaling mediates kidney dysfunction [29]. Also, elevated circulating levels of

urea in chronic kidney disease can cause the dysfunction of secretory insulin [30]. Gen-

etic changes in molecular function (MF) show that there are enrichment terms includ-

ing protein kinase binding and peptidase activity. The most varied term in cell

component (CC) was the extracellular region. KEGG analysis found that the selected

genes were mostly enriched in the Neuroactive ligand-receptor interaction.

Discussion
In this study, we presented an effective computational framework with a higher capabil-

ity to discriminate the stage of ccRCC tumor samples. Previous work identified a panel

with these genes that can use gene expression data to effectively distinguish between

early and late ccRCC patients [11]. Different machine learning algorithms have also

been applied [9, 11]. However, given the selected gene set, we speculated that the pre-

diction performance can be improved with better feature processing methods. The

major contributions of the proposed method are (1) an improved feature preprocessing

method by discretization of gene expression data through Chi-merge binning and

WOE encoding, (2) gene panel selection through FCBFSearch, joint statistical measures

(IV, the linear correlation coefficient and VIF), and logistic regression-based feature se-

lection. We eliminated noisy and extraneous genetic features during this process and fi-

nally obtained a hub gene set (FJL-set) which consists of 23 genes, (3) validation of the

performances of machine learning algorithms. Our model can achieve a higher predict-

ive accuracy than baseline models while using less selected genes, and (4) analyzation
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of the genes’ functions. It was found that the targeted genes were confirmed to associ-

ate with cancer in the existing research.

There are two main directions of our future work. We will first try other basic feature

selection methods other than FCBFSearch on the whole gene set, leading to more ac-

curate classifiers. Then this discrimination algorithm will be applied to other diseases

and datasets. By doing so, we will be able to validate the generalization ability of our

model.
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