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Abstract

Background: Partial Least-Squares Discriminant Analysis (PLS-DA) is a popular machine learning tool that is gaining
increasing attention as a useful feature selector and classifier. In an effort to understand its strengths and weaknesses,
we performed a series of experiments with synthetic data and compared its performance to its close relative from
which it was initially invented, namely Principal Component Analysis (PCA).

Results: We demonstrate that even though PCA ignores the information regarding the class labels of the samples,
this unsupervised tool can be remarkably effective as a feature selector. In some cases, it outperforms PLS-DA, which is
made aware of the class labels in its input. Our experiments range from looking at the signal-to-noise ratio in the
feature selection task, to considering many practical distributions and models encountered when analyzing
bioinformatics and clinical data. Other methods were also evaluated. Finally, we analyzed an interesting data set from
396 vaginal microbiome samples where the ground truth for the feature selection was available. All the 3D figures
shown in this paper as well as the supplementary ones can be viewed interactively at http://biorg.cs.fiu.edu/plsda

Conclusions: Our results highlighted the strengths and weaknesses of PLS-DA in comparison with PCA for different
underlying data models.
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Background
Partial Least-Squares Discriminant Analysis (PLS-DA) is
a multivariate dimensionality-reduction tool [1, 2] that
has been popular in the field of chemometrics for well
over two decades [3], and has been recommended for
use in omics data analyses. PLS-DA is gaining popularity
in metabolomics and in other integrative omics analyses
[4–6]. Both chemometrics and omics data sets are char-
acterized by large volume, large number of features, noise
and missing data [2, 7]. These data sets also often have lot
fewer samples than features.
PLS-DA can be thought of as a “supervised” ver-

sion of Principal Component Analysis (PCA) in the
sense that it achieves dimensionality reduction but
with full awareness of the class labels. Besides its
use for dimensionality-reduction, it can be adapted
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to be used for feature selection [8] as well as for
classification [9–11].
As its popularity grows, it is important to note that

its role in discriminant analysis can be easily misused
and misinterpreted [2, 12]. Since it is prone to overfit-
ting, cross-validation (CV) is an important step in using
PLS-DA as a feature selector, classifier or even just for
visualization [13, 14].
Furthermore, precious little is known about the perfor-

mance of PLS-DA for different kinds of data. We use a
series of experiments to shed light on the strengths and
weaknesses of PLS-DA vis-à-vis PCA, as well as the kinds
of distributions where PLS-DA could be useful and where
it fares poorly.
The objective of dimensionality-reduction methods

such as PCA and PLS-DA is to arrive at a linear trans-
formation that converts the data to a lower dimensional
space with as small an error as possible. If we think of the
original data matrix to be a collection of n m-dimensional
vectors (i.e., X is a n×mmatrix), then the above objective
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can be thought of as that of finding a m × d trans-
formation matrix A that optimally transforms the data
matrix X into a collection of n d-dimensional vectors S.
Thus, S = XA + E, where E is the error matrix. The
matrix S, whose rows correspond to the transformed vec-
tors, gives d-dimensional scores for each of the n vectors
in X.
The new features representing the reduced dimensions

are referred to as principal components (PC). In PCA,
the transformation preserves in its first PC as much
variance in the original data as possible. On the other
hand PLS-DA preserves in its first PC as much covari-
ance as possible between the original data and its label-
ing. Both can be described as iterative processes where
the error term is used to define the next PC. Figure 1
highlights the differences showing an example of a syn-
thetic data set for which the PC chosen by PCA points
to the bottom right, while the one chosen by PLS-
DA is roughly orthogonal to it pointing to the bottom
left.
It is also important to note that a higher explained vari-

ance or higher correlation for both PCA and PLS-DA
doesn’t always mean a better model, even though they
are many times linked [14]. The following paragraphs give
a more thorough description of the methods and their
differences:

PCA Informally, the PCA algorithm calculates the
first PC along the first eigenvector by minimizing
the projection error and then iteratively projects all
the points to a subspace orthogonal to the last PC
and repeats the process on the projected points.
An alternative formulation is that the principal
component vectors are given by the eigenvectors of the
non-singular portion of the covariance matrix C given by:

C = 1
n − 1

XTCnX, (1)

where Cn is the n × n centering matrix. The loading
vectors, denoted by L1, . . . , Ln, are given in terms of the
eigenvectors, e1, . . . , en and the eigenvalues, λ1, . . . , λn, of
C as follows:

Li = √
λi ei, i = 1, . . . , n, (2)

PLS-DA In its standard variant the components are
required to be orthogonal to each other. In a manner sim-
ilar to Eq. (1), the first PC of PLS-DA can be formulated
as the eigenvectors of the non-singular portion of C, given
by:

C = 1
(n − 1)2

XTCnyyTCnX, (3)

where y is the class label vector.

Fig. 1 Comparing the first principal component computed by PCA (pink) versus that computed by PLS-DA (orange) shows a data set where PLS-DA
picks the direction that helps best separate the labels, while PCA picks the direction that least helps separate them
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The iterative process computes the loading vectors
a1, . . . , ad, which give the importance of each feature
in that component. In iteration h, it has the following
objective:

max
(ah,bh)

cov(Xhah, yhbh), (4)

where bh is the loading for the label vector yh, X1 =
X, and Xh and yh are the residual (error) matrices after
transforming with the previous h − 1 components.
sPLS-DA Variant of PLS-DA that makes a sparsity
assumption, i.e., that only a small number of features are
responsible for driving a biological event or effect under
study has been devised [15, 16] and shown to be suc-
cessful with applications where the number of features far
outnumber the number of samples [17]. Using lasso penal-
ization, these methods add penalties (L1 or L0 norm) to
better guide the feature selection and model fitting pro-
cess and achieve improved classification by allowing to
select a subset of the covariates instead of using all of
them.

Methods
In this section, we discuss the aim, design and settings of
the experiments.

Synthetic data for the experiments
The following describes a standard experimental setup.
Clarifications are provided wherever the experiments dif-
fered from this norm. For each of the experiments, labeled
synthetic data were generated as follows. The basic input
parameters for each experiment are the number of sam-
ples n and the number of features of each sample m.
Every data set assumed that there was a rule (e.g., a linear
inequality), which was a function of some subset of the m
features (i.e., signal features), while the rest were consid-
ered as noise features. The input parameter also included
the rule and consequently the set of signal features. This
rule will be considered as the ground truth. PLS-DA was
then applied to the data set to see how well it performed
feature selection or how well it classified. All experiments
were executed using PCA and sPLS-DA, where the load-
ing vector is only non-zero for the selected features. Both
are available in the mixOmics R package [18], which was
chosen because it is the implementation most used by
biologists and chemists. The noise features of all points
are generated from a random distribution that is specified
as input to the data generator. The default is assumed to
be the uniform distribution. The satisfied rule dictates the
generation of the signal features.

Performance metrics for the experiments
As is standard with experiments in machine learning, we
evaluated the experiments by computing the following

measures: true positives (tp), true negatives (tn), false pos-
itives (fp), false negatives (fn), precision (tp÷(tp+fp)), and
recall (tp÷ (tp+ fn)). Note that in our case precision and
recall are identical. This is because of their formula is the
same if fp = fn. The data is created with s signal features
and s features are selected. Because s is the number of sig-
nal features, regardless of whether they were selected or
not, s = tp+ fn. Also, because only s features are selected,
s = tp + fp. Making both equations equal, we get that
fp = fn.
Since tn is large in all our feature extraction exper-

iments, some of the more sophisticated measures are
skewed and therefore not useful. For example, the F1 score
will be necessarily low, while accuracy and specificity will
be extremely high. When the number of noise features is
low, precision could be artificially inflated. However, this
is not likely in real experiments.
Graphs are shown as 3D plots where the z axis rep-

resents the performance measure (percentage of signal
features in the features marked as important by the tools),
and the x and y axes show relevant parameters of the
experiment.

Experiments varying n/m
We first show how the ratio of the number of samples,
n, to the number of features, m affects the apparent
performance of PLS-DA and the number of spurious
relationships found.
As described earlier, we generated n random data points

inm-dimensional space (from a uniform distribution) and
labeled them randomly. The ratio n/m was reduced from
2:1 to 1:2 to 1:20 to 1:200. Given the data set, it is clear that
any separation of the data found by any method is merely
occurring fortuitously. When we have at least twice as
many features as samples, PLS-DA readily finds a hyper-
plane that perfectly separates both merely by chance. As
shown in Fig. 2, the two randomly labeled groups of
points become increasingly separable. This is explained
by the curse of dimensionality, that predicts the sparsity
of the data to grow increasingly faster with the number
of dimensions.These executions only range in ratios from
2:1 to 1:200. In many current omics data sets, ratios can
even exceed 1:1000 (i.e., data sets with 50 samples and
50,000 genes are common). This is one of the reasons of
the need of sample size determination when designing an
experiment [19].
If any separating hyperplane is used as a rule to discrim-

inate blue points from orange points, then even though
the apparent error rate (AE) decreases for this set, its abil-
ity to discriminate any new random points will remain
dismal [20]. In fact, the CV error rates using 1000 repe-
titions for the first PC in the four experiments shown in
Fig. 2 were 0.53, 0.53, 0.5 and 0.48 respectively, showing
that even though separability increased, the errors remain
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Fig. 2 Separability of random points as the ratio of number of samples to features decreases

unreasonably large. CV errors vary with the seed used to
initialize the matrix but the trend remains.

Results
In this section, we discuss a variety of experiments with
synthetic and real data that will help us explain the
strenghts and weaknesses of PLS-DA vis-á-vis PCA and
other tools.

Experiments using PLS-DA as a feature selector
We used 3 sets of methods for generating the synthetic
points. In the first set, we consider point sets that are lin-
early separable. In the second data set we assume that
the membership of the points in a class is determined by
whether selected signal features lie in prespecified ranges.
Finally, we perform experiments with clustered points.

Experiments with Linearly Separable Points
For these experiments we assume that the data consist of
a collection of n random points with s signal features and
m− s noise features. They are labeled as belonging to one
of two classes using a randomly selected linear separator
given as a function of only the signal features. The experi-
ments were meant to test the ability of PLS-DA (used as a
feature extractor) to correctly identify the signal features.
The performance scores shown in Fig. 3 were averaged
over 100 repeats. Note that the linear model used imple-
ments the following rule R1, where C is a constant set to
0.5:

R1 :
s∑

i=1
si ≥ C ⇒ class 0, else class 1 (5)

Two sets of experiments were performed. In the first set,
s was fixed at 10, but n and m were varied (see Fig. 3). In
the second set n was fixed at 200, but s and m were var-
ied (see Additional file 1). PCA consistently outperformed
PLS-DA in all these experiments with linear relationships.
Also, when the number of samples was increased, the per-
formance of PCA improved, because there is more data

from which to learn the relationship. However, it did not
help PLS-DA, because the model is not designed to cap-
ture this kind of relations. Note that PCA is successful only
because the features that are the signal are the only ones
correlated.
The loading vector is a reflection of what PCA or

PLS-DA guessed as the linear relationship between the
features. We, therefore, set out to verify how far was
the linear relationship that was guessed by the tools
used. Even if the tools picked many noise features, we
wanted to see how they weighted the noise and sig-
nal features they picked. Toward this goal, we ran an
extra set of experiments with the model shown above
to see if the loading vector from PLS-DA indicated a
better performance than what might be suggested by
Fig. 3. Note that ideally the loading vector should have
zeros for the noise features and ones for the signal fea-
tures. We computed the cosine distance between the
loading vector computed in the experiment and the
vector reflected by the true relationship. As shown in
Additional file 2, we see that the loading vectors of both
PCA and PLS-DA failed to reflect the true relationship.
These experiments were performed using n = 200 aver-
aged over 100 repetitions. Even though PCA success-
fully selected many of the signal features during feature
selection, it was unable to get sufficiently close to the
underlying linear relationship, perhaps due to the compo-
sitional nature of the signal variables, which gives rise to
correlations.
Other experiments carried out with the same results

include changing the magnitude of constant in the
inequality and changing the relationship from a linear
inequality to two linear equalities, i.e., the points lie on
two hyperplanes.

Cluster model
For these experiments, the signal features of the points
were generated from a clustered distribution with two
clusters separated by a prespecified amount. All noise
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Fig. 3When signal features were connected by a linear relationship, PCA outperformed PLS-DA as the number of samples increased

features were generated from a uniform distribution. The
R package clusterGeneration was used for this purpose,
which also allows control over the separation of the clus-
ters. Cluster separation between the clusters was varied
in the range [−0.9, 0.9]. Thus when the points are viewed
only with the noise features, they appear like a uniform
cloud, and when viewed only with the signal features, the
members of the two classes are clustered. Note that cluster
separation of -0.9 will appear as indistinguishable clus-
ters, while a separation of 0.9 will appear as well-separated
clusters. The experiments were executed with s = 10, n =
200, averaged over 100 repetitions.
The executions with clustered data showed PLS-DA to

be clearly superior to PCA. As shown in Fig. 4, while it is
true that the difference narrows when the number of sam-
ples is made very large or the clusters are widely separated
(i.e., cleanly separated data),it still remains significant.
PLS-DA is able to select the correct hyperplane even
with few samples and even when the separation between
the clusters is low (values close to 0). PCA needs both
an unreasonably large number of samples and very well
separated clusters to perform respectably in comparison.
However, data with high separation values are embar-
rassingly simple to analyze with a number of competing
methods.

Interval model
In this set of experiments the rules that determined class
membership are often encountered in biological data sets.
We used two different methods to generate data from this
model. In the first one, we constrained the signal fea-
tures and in the second we constrained the noise ones.
To generate such data sets, members of one class had
the constrained features selected uniformly at random
from prespecified intervals, while all other features were
generated from a uniform distribution in the range [ 0, 1].
We divided the range [ 0, 1] into subintervals of width

1/p. Experiments were carried out with p = 3, 5 and 10.
Depending on the experiment, signal and noise feature
were assigned to either a subinterval of width 1/p or the
entire interval of [ 0, 1].
The results are shown in Additional file 3. When the

signal features are constrained, PLS-DA consistently out-
performs PCA. This due to the strong correlation between
the signal features for class members that PLS-DA is able
to detect. On the other hand, when the noise features are
constrained, PCA consistently outperforms PLS-DA. The
latter performs poorly when the number of signal features
is 1 and p = 3, because the distribution of values for the
single signal is not very different from the distribution of
the noise.
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Fig. 4When data points came from a clustered distribution, PLS-DA outperformed PCA as the number of samples increased

Experiments as a classifier
Our final set of experiments with synthetic data was to
see how PLS-DA fared as a classifier. The following exper-
iments were executed 100 times each, with 10 signal
features. For the cross-validation error calculation, 5 folds
and 10 repetitions were used. In all of the experiments
there is a correspondence between a high performance as
feature selector and a low CV error.
As shown in Additional file 4a for the linear relation-

ship model, its performance is no better than chance for a
2-class experiment. This corroborates the poor perfor-
mance of PLS-DA as a feature selector for this model.
For the results with the cluster model shown in

Additional file 4b, the CV error is almost 0 in every
case, except when the number of samples is low, which
is again consistent with what we saw in the feature selec-
tion experiments. The performance gets noticeably worse
when, in addition to a low number of samples, the num-
ber of noise features is large. This is because the signal
is hidden among many irrelevant features, something that
one has come to expect with all machine learning algo-
rithms. Additional file 4c and d show the results for
the interval model. As in the case of the feature selec-
tion experiments, both versions performed roughly the
same, classifying much better than chance and having
their best performance when the number of samples
was large and the number of noise features was low, as
expected.

Comparisons with other methods
To compare the PLS-DA with other known feature selec-
tors, we applied 3 more methods to the previous data
models: Independent Component Analysis (ICA), as a fea-
ture extraction method that transforms the input signals
into the independent sources [21]. Sparse Principal Com-
ponent Analysis (SPCA) via regularized Singular Value
Decomposition (SVD) [22] was built by adding spar-
sity constraint. Regularized Linear Discriminant Analysis
(RLDA) was computed by using L2 regularization to sta-
bilize eigendecomposition in LDA [23].
We found that PCA-based algorithms (PCA and SPCA)

have similar overall performance among the three exper-
iments. The same happens with LDA-based models
(RLDA and sPLS-DA).
As Additional files 5 and 6 show, PLS-DA, ICA and

RLDA are not able to detect linear relationships, while
SPCA and PCA are. For the interval model with p =
3, either to constrain signal or noise doesn’t seem to
change the behavior of the LDA-based models, being out-
performed by PCA when noise is constrained as shown
Additional files 7 and 8. The performance of everymethod
except for ICA goes down as s becomes small. The perfor-
mance of ICA depends on the number of noise features for
both the interval and linear models. In the cluster model
experiment as shown in Additional file 9, SPCA performs
better than PCA as the separation between the cluster
gets higher. The separation between the cluster does not
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affects the performance of ICA, that stays near 0. RLDA’s
and PLS-DA’s performance excel, with similar behavior
(Fig. 5).

Novel analysis of a real dataset
Bacterial Vaginosis (BV) is the most common form of
vaginitis affecting a large number of women across the
world [24]. BV is associated with an imbalance of the vagi-
nal flora and damage to the epithelial and mucus layer
compromising the body’s intrinsic defense mechanisms.
This can result in adverse sequelae and increasing the risk
of many STIs [25].
In a landmark paper, human vaginal microbial com-

munities were classified into five community state types
(CSTs) [26]. CSTs I, II, III, and V are dominated by differ-
ent Lactobacillus species, whereas CST IV has no specific
dominant species and is regarded as the heterogeneous
group. While this CST classification has enhanced our
understanding of bacterial vaginosis [26–28], a quanti-
tative method to reliably distinguish the CSTs was not
available until the development of the specificity aggre-
gation index [29] based on the species specificity [30].
The values of this index range from 0, indicating that the
species is absent in that CST to 1, indicating that that OTU
is always detected and only detected in that CST.
We used the abundance matrix from [26] (394 sam-

ples, 247 OTUs), and with a one vs all approach we
devised a simple scheme to differentiate each CST from
all of the others using the abundance of each taxon. The

importance of each feature given by the specificity index
computed in [29] was used as the ground truth. Only the
top 10 OTUs for each CST were considered and their
importance values were normalized.
Results are summarized in Fig. 6. As PLS-DA and PCA

return a ranked list of features, a varying threshold on
the percentage of features selected is shown on the X
axis of Fig. 6. The Y axis represents the sum of the
specificity indices achieved by the best features at that
cutoff. Note that by just selecting half of the features, a
cumulative specificity of 0.9 is achieved by both meth-
ods. PLS-DA reaches specificity values over 0.8 with less
than 5 features selected, which means that in all of the
cases, PLS-DA’s top features are indeed the right set of fea-
tures. In contrast, PCA’s specificity has a slower growth
at the beginning (selects the wrong features), but when
half of them are selected both methods achieve the same
specificity.

Discussion
Our work sheds light on the kind of relationships and
data models with which PLS-DA can be effective both
as a feature selector as well as a classifier. In particu-
lar, we claim that when classes are determined by linear
or non-linear relationships, PLS-DA provides almost no
insight into the data. But it is effective when the classes
have a clustered distribution on the signal features, even
when these features are hidden among a large number
of noise attributes. PLS-DA retains a strong performance

Fig. 5 Five methods compared under the interval model. PCA-based algorithms have comparable behavior to each other. The same happens with
LDA-based algorithms
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Fig. 6 Performance of the features selected by PLS-DA and PCA for different Community State Types

also when the classes are contained in n-orthotopes (i.e.,
rectangular boxes in the subspace of the signal features).
In all of the experiments carried out there was a cor-

respondence between performance of the tools as fea-
ture selector and CV error. This reinforces the argument
that the CV error is an excellent way to differentiate
a good model from a bad one and every paper using
PLS-DA must report it to have any validity. Moreover,
just-by-chance good behaviors are commonplace when
using this tool because the sparsity of the data grows
increasingly faster with the number of dimensions and it
becomes easier for PLS-DA to find a perfectly separating
hyperplane.
Also even though PCA ignores the information regard-

ing the class labels of the samples, it can be remarkably
effective as a feature selector for classification problems.
In some cases, it outperforms PLS-DA which is made
aware of the class labels in its input.

Conclusions
The obvious conclusion from our experiments is that it is
a terrible idea to use PLS-DA blindly with all data sets. In
spite of its attractive ability to identify features that can
separate the classes, it is clear that any data set with suf-
ficiently large number of features is separable and that
most of the separating hyperplanes are just “noise”. Thus
using it indiscriminately would turn into a “golden ham-
mer”, i.e., an oft-used, but inappropriate tool. Fortunately,
the use of CV would readily point to when it is being used
ineffectively.
Our work sheds light on the kind of relationships and

data models with which PLS-DA can be effective and

should be used both as a feature selector as well as a
classifier in the case that the underlying model of the data
is known or can be guessed. When it is not possible, one
should rely on the CV error and use extreme care when
making conclusions and extrapolations.
Also, one should take advantage of the multitude of

tools available and use different methods depending on
the dataset, as the simple PCA was able to outperform
PLS-DA depending on the conditions.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-019-3310-7.

Additional file 1: Figure S1. Performance for linearly separable points
model, varying signal and noise.

Additional file 2: Figure S2. Performance for linearly separable points
model with the cosine model, varying signal and noise.

Additional file 3: Figure S3. Performance table for different
configurations of the interval model.

Additional file 4: Figure S4. Classification accuracy for the different data
models.

Additional file 5: Figure S5. Performance for linearly separable points
model, varying signal and noise.

Additional file 6: Figure S6. Performance for linearly separable points
model, varying samples and noise.

Additional file 7: Figure S7. Performance of other methods, signal
constrained interval with p=3.

Additional file 8: Figure S8. Performance of other methods, noise
constrained interval with p=3.

Additional file 9: Figure S9. Performance of other methods for the
cluster model, High number of samples.
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