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Abstract

Background: RNA sequencing technologies have allowed researchers to gain a better understanding of how the
transcriptome affects disease. However, sequencing technologies often unintentionally introduce experimental error
into RNA sequencing data. To counteract this, normalization methods are standardly applied with the intent of
reducing the non-biologically derived variability inherent in transcriptomic measurements. However, the
comparative efficacy of the various normalization techniques has not been tested in a standardized manner. Here
we propose tests that evaluate numerous normalization techniques and applied them to a large-scale standard
data set. These tests comprise a protocol that allows researchers to measure the amount of non-biological
variability which is present in any data set after normalization has been performed, a crucial step to assessing the
biological validity of data following normalization.

Results: In this study we present two tests to assess the validity of normalization methods applied to a large-scale
data set collected for systematic evaluation purposes. We tested various RNASeq normalization procedures and
concluded that transcripts per million (TPM) was the best performing normalization method based on its
preservation of biological signal as compared to the other methods tested.

Conclusion: Normalization is of vital importance to accurately interpret the results of genomic and transcriptomic
experiments. More work, however, needs to be performed to optimize normalization methods for RNASeq data.
The present effort helps pave the way for more systematic evaluations of normalization methods across different
platforms. With our proposed schema researchers can evaluate their own or future normalization methods to
further improve the field of RNASeq normalization.
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Background
Several RNA sequencing (RNASeq) technologies provide
transcriptomic expression data, but the data may vary based
on a variety of often-uncontrollable experimental condi-
tions [1]. Consequently, RNASeq raw data needs to be ad-
justed so that comparisons are based on biological truth.
This mathematical adjustment is known as normalization.
Multiple normalization methods exist and method selection
depends on 1) the type of genomic data, 2) the platform
(e.g. Illumina, Life Sciences, or ArrayCGH) originally used

to collect the data, 3) the scale of the data, and 4) the
planned downstream analyses.
Previous studies have compared normalization methods

to determine which method best preserves biological real-
ity while reducing experimental noise [2]. Most of these
experiments were conducted on small, heterogeneous data
sets that were not collected for the specific purpose of sys-
tems level evaluation [3, 4]. Rather, they were conducted
on publicly available, secondary data, which often lacked
an a priori experimental structure, an adequate sample
size, and/or sufficient technical replicates for meaningful
results at multiple scales. The a priori experimental struc-
ture is especially important because very few datasets are
designed for evaluation of sequencing technologies and
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algorithms. Critically, there is also a lack of standardized
tests to evaluate the various normalization methods com-
monly employed.
The most common way to evaluate normalization

techniques is to compare the results of raw and normal-
ized data to quantitative real-time PCR (qPCR), which is
considered the gold standard in terms of true expression
values [2]. With respect to processed sequencing data,
qPCR can be used as a ground truth. However, this is
only one facet of how normalization should be evaluated
because it is only looks at one aspect of a multifaceted
statistical problem.
In this article, we demonstrate the utility of combining

large, standardized data sets and comprehensive, stan-
dardized tests to evaluate the efficacy of different RNASeq
normalization methods at different scales of analysis. We
combined these tests into a single protocol to facilitate
future research.

Results
We performed two experiments to assess the validity of
common normalization methods (see methods section)
on a data set generated by the Sequencing Quality Con-
trol (SEQC) consortium. Experiment 1 was designed to
quantitatively assess the relative contributions of biology
and technology as sources of variability. Experiment 2
was designed to test the internal linear logic of each
normalization method by analyzing individual genes
from the same sequencing facility.

Experiment 1: global assessment of normalization
The three forms of variability that we identified are (1) site
dependent batch affect, (2) biological differences, and (3)
residual or unexplained. The decomposition into sources
of variation as a proportion of total signal is presented in
Table 1 and, as an overall stacked bar plot, in Fig. 1. We
found that (94%) of the genes tested had significant associ-
ation between site and gene expression and (37%) of genes
tested had significant association between sample and
gene expression using a two-way ANOVA.
Based on these results, TPM is the best performing

normalization method because it increases the propor-
tion of variation attributable to biology compared to the

raw data (90% of genes had a significant association be-
tween site and gene expression and 49% of genes had a
significant association between sample and gene expres-
sion). It is the only normalization method tested that
meets this basic criterion increasing biological variability
from 41% (raw) to 43% (TPM). TPM does increase site
dependent error (Raw: 41% to TPM: 45%) but also re-
duces the residual variability (Raw: 17% to TPM:12%).
This observation is important since residual variability is
the worst form of the three types of error to have be-
cause it is created solely by uncontrollable experimental
conditions. This is unlike biological variability, which is
desired, or site dependent variability, which is traceable
and therefore often correctable. Residual variability
comes from non-desirable experimental problems that
are not easy to identify or correct. TPM, Quantile, and
Log2 are the only tested methods that reduced residual
variability. However, based on our results, Log2 trans-
formation reduces the biological signal to practically
nothing making it one of the worst methods possible for
normalizing data when the goal is downstream biological
analysis. Quantile, though it reduces residual variability,
also slightly reduces biological variability (Raw: 41%,
Quantile: 40%).
If the majority of variability after normalization cannot be

attributed to biology, then the majority of what the re-
searcher is measuring is not grounded in underlying bio-
logical truth. Instead, they are measuring experimental bias
either from batch effect or other non-biological sources of
error. This is highly problematic if biological results are to
be concluded from experiments where the majority of the
measurable variability is not caused by biology. Conse-
quently, a normalization method should increase the pro-
portion of biological variability so that researchers are
measuring biological truth and not experimental error
when addressing their biological hypotheses.

Experiment 2: effects of normalization on single genes
The second experiment was designed to test whether
normalization preserved linearity by analyzing four indi-
vidual genes chosen for their common study and/or use
in medical sciences. TP53 (tumor suppressor), GAPDH
(house-keeping gene), CD59 (hemophilia related), and

Table 1 Percentage of total genes with a significant p-value after each normalization technique. Site p-values correspond to the
association of site with gene expression and Sample p-value corresponds to the association of sample and gene expression.

Raw TMM DESeq Quant RPKM TPM Log2

% site p-values<0.05 0.95 0.95 0.94 0.92 0.87 0.90 1.00

% sample p-values<0.05 0.37 0.27 0.35 0.34 0.36 0.49 0.69

Variance site p-values 1.40E-02 1.30E-02 1.39E-02 2.00E-02 2.73E-02 2.28E-02 4.44E-77

Variance sample p-values 8.73E-02 8.78E-02 8.61E-02 8.42E-02 8.62E-02 8.12E-02 6.37E-02

Median site p-value 2.28E-59 1.11E-64 5.22E-51 2.60E-58 1.64E-20 1.85E-35 0.00E+00

Median sample p-value 2.00E-01 2.98E-01 2.17E-01 2.30E-01 2.13E-01 5.71E-02 1.28E-05
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POLR2A (RNA synthesis) were all used from the same
site source (the Australian Genome Research Facility).
We performed individual gene experiments by compar-
ing two independent gene sample preps and their mix-
ture models. This created a linear relationship between
samples A and B, with mixture samples C (=75% A and
25%B) and D (=25% A and 75% B) lying on the linear fit
(Fig. 2).
Results of experiment 2 are shown for four individual

gene in Fig. 3a-d. These results illustrate several import-
ant patterns. First, no normalization method perfectly
met the goal of normalizing data at the individual gene
level at a single data source site. All normalization
methods tested (see methods section) fell short of this
goal; however, they fell short in different ways and to
varying degrees. The quantile normalization repeatedly
failed the linearity test, as demonstrated here by CD59
(Fig. 3c). This is a significant problem since it implies
that these normalization methods imposed new struc-
ture on the data that should neither be there nor was
originally present in the raw data. No normalization
method should break the linearity rule under any cir-
cumstances given the mixture nature of the C and D
samples and their inherent relationship to A and B.

Further, most methods did not address the batch effect
problems created by the four library preps used within
each sample (see methods section). As an example, com-
paring TMM and raw data it is readily observable that
individual clusters representing different library preps
are still evident after TMM normalization. This is a
problem since normalization should remove such non-
biologically founded artifacts in RNASeq experiments.
The gene GAPDH was not consistent between samples

A and B. This indicates that GAPDH, often used as a
control gene, is not an ideal gene for use as an internal
control since its expression level varies widely between
different tissue types as indicated in Fig. 3d. For this rea-
son we recommend not using GAPDH either as a con-
trol gene for wet lab experiments or in any form of
normalization procedures since its differential expression
is likely to skew any normalization or control procedure.
Finally, of the biologically oriented normalization

methods, transcripts per million (TPM) was amongst the
highest performers. TPM did not introduce new or un-
wanted structure to the data. Further, it did reduce the
noise generated from the library preps in all four of the
gene cases. This is also true of the total read count
normalization, a similar simple biologically oriented

Raw TMM DESeq Quant RPKM TPM Log2
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Fig. 1 Bar Plot of Normalization Methods and their relative errors from a two-way ANOVA. The MSE for each of the features (site and biological
condition) can be used to measure the amount of variance attributed to that specific feature. The top narrow striped bar is site dependent
variability (batch effects); the solid bar is biological variability; and the bottom, wide striped bar is the residual variability
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normalization technique. This leads to the observation
that the most effective normalization method applied to
RNASeq data should be the least complex method and
should be biologically rather than purely mathematically
or statistically driven.

Discussion
In this paper we proposed a methodological protocol for
the systematic evaluation of normalization methods for
RNASeq analyses. We presented both a standardized
data set designed to perform systematic evaluations
along with two tests to determine the underlying validity
of different normalization criteria. One of these criteria
was the analysis of variance of site and sample type. Re-
lated to this we address another fundamental point that
site dependent variability is quantifiable and therefore
could be addressed during analysis especially when using
joint distributions in linear models (like generalized lin-
ear models in both EdgeR and DESeq packages). These
considerations should be taken into account when evalu-
ating the effectiveness of normalization methods since
theoretically a perfect model could completely eliminate
the site dependent error downstream. In our case TPM

had higher siteþbiology
residual and biology residual than all other

methods except for Log2, which is just a simple trans-
formation. However, since Log2 highly inflated site
dependent error we conclude that TPM is the preferred
method for normalizing RNASeq data.
While some methods tested better than others, the

aim of this research was to offer a protocol for

normalization evaluation; that is, other normalization
methods not utilized in this article should be tested with
this large standardized set of data and evaluated in this
standard manner. To that end, we are publishing all of
our code and data from this project in Supplemental
files so that other researchers will be able to evaluate
their own normalization methods for any RNASeq data.
One limitation of our study was that it only applied to
normalization methods for RNASeq data, which are plat-
form specific. However, we have proposed a set of math-
ematical methods and tests that should translate to
other platforms.

Conclusion
Normalization is of vital importance to accurately inter-
pret the results of genomic and transcriptomic experi-
ments since normalization controls for experimental
error while preserving biological truth. In this study we
presented two tests to assess the validity of various
normalization methods applied to a large-scale data set
collected for systematic evaluation purposes. We tested
different RNASeq normalization procedures and con-
cluded that TPM was the most effective normalization
method. More work, however, needs to be performed to
optimize normalization methods for RNASeq data. The
present effort helps pave the way for more systematic
evaluations of normalization methods across different
platforms. With our proposed protocol researchers can
evaluate their own or other normalization methods that
were not tested in this article to further improve the
field of RNASeq normalization.

Fig. 2 Raw read counts for the gene TP53 from the Australian Genome Research Facility site arranged by sample types (a, c, d, and b). The Y axis
shows the read counts. The blank space in the middle represents where a 50–50 mixture of (a and b) would be located if one had been created
and measured. By leaving this blank space, a visual interpretation can be made for the linearity between (a and b) by whether (c and d) mixture
models fall on this linear line. If C or D do not fall on the linear relationship of A and B then the normalization method is imposing unwanted
structure on the data. If all four samples (a, b, c and d) form a clear linear relationship then that normalization method is representing the true
biological structure of the data
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Methods
Data
The Sequencing Quality Control (SEQC) consortium is a
large, diverse, and trusted collaboration that includes
many participating academic, government, and industry
partners. The organization is well established and has
been evaluating transcriptomic technologies since 2006,
when it was called the MAQC (microarray quality control)
consortium [5]. The consortium’s current focus is the un-
biased evaluation of RNASeq technologies from start to
finish of the RNASeq pipeline and has even been used to
study the effectiveness of spike-ins in normalization [6].
The consortium recently used well-characterized RNA
samples to perform quality tests on various sequencers,
microarrays, qPCR, genome annotations, and aligners
regularly used in transcriptomics [5]. To attain results
with the highest possible internal and external validity, the
consortium mixed two samples (human reference RNA
and human brain reference RNA) in known ratios (0:100,
25:75, 75:25, and 100:0) and used PCR validation to vet
the various normalization methods being evaluated. Be-
cause of the complex nature of the study design, a large
standardized set of runs was performed on multiple se-
quencing platforms across multiple sites “comprising >100
billion reads (10Tb), [providing] unique resources for
evaluating RNASeq analysis for clinical and regulatory
settings” [7]. From this data set, we used the read count
files to conduct a comparative analysis of downstream
normalization techniques regularly used specifically in
RNASeq experiments.
The large, standardized data sets provided by SEQC

facilitate the development of a systematic approach to
evaluate the technologies used in RNA-Seq. Along with
the aforementioned pipeline methods the data sets are
well-suited for evaluating normalization methods be-
cause they were specifically designed for reproducible
comparative analyses. Unlike past studies to evaluate
normalization methods, ours is unique in the quality,
consistency, completeness, and scope of the data, enab-
ling us to perform a broad range of tests. The import-
ance of using standardized methods, well-documented
RNA, and extensive replicates cannot be overstated.
Mixing samples in fixed ratios allows for an internal
validation of the normalization techniques using linear-
ity. Matching qPCR was conducted on all of the samples,
facilitating evaluation against external “ground truth”.
Cross-site read count files are also available, allowing for
the evaluation of normalization across multiple sites.
The specific data used in our analysis was 10 data

matrices consisting of raw RNASeq counts per transcript
from the SEQC study, 10 random data matrices (uni-
formly randomized without replacement of the 10 SEQC
data matrices), and one data matrix consisting of a ran-
dom Poisson distribution of counts. Since all of the

A: TP53

B: POLR2A

C: CD59

D: GAPDH

Fig. 3 a TP53. b POLR2A. c CD59. d GAPDH
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values contained within the 10 randomized files are the
same, the overall distribution of the values is the same
as the nonrandom files except that all of the patterns in
the data have been randomized. In this way, the over-
dispersion problem can be ignored for the 10 random-
ized datasets. Of the 14 original site files that SEQC gen-
erated, four had to be excluded from the analysis. Three
of the files from the ROCHE 454 platform were ex-
cluded due to the lack of technical replicates (1 replicate
per site per sample). Without technical replicates, the
normalization methods, especially TMM and DESeq, will
not function properly. Additionally, the New York Gen-
omics (NYG) file had to be excluded from our analysis
due to inconsistencies in annotation. Unlike the other
Illumina and Life Sciences read count files, the NYG site
used gene symbols instead of RefSeq IDs and included
fewer genes. The following normalization methods were
employed in Experiment 1 in addition to the raw count
data:

Experiment 1 Normalization methods: Between Site
Variability Test

1. Raw counts (no normalization);
2. TMM - the trimmed mean of means, as

implemented in edgeR [8];
3. The size factors, as implemented in DESeq [9];
4. RPKM, reads per kilobase transcript per million

mapped reads [10];
5. TPM, transcripts per million mapped reads [11];
6. Quantile normalization [12];
7. Log2 transformation

These normalization methods were selected based on
several criteria. They are most often used in other
normalization method comparison studies and are the most
commonly used in practice. They provide a variety of ap-
proaches to addressing the question of normalization. Two
of the methods (Quantile and Log2) are purely mathemat-
ical non-biological approaches to normalization whereas
TPM and RPKM are biological transformations based on
transcript size. Specifically, Log2 may not be strictly defined
as normalization but is included since it is so commonly
used in research. The other two -- TMM and DESeq -- use
a combination of both biologically based and mathematic-
ally based approaches to normalization. Although both
methods are not designed to directly normalize data they
are both commonly used methods for normalization and
differential expression analysis, and thus were included in
the study. Raw counts are used both as a control and be-
cause some researchers do not perform any normalization
on the data prior to analysis. All of the normalization
methods are implemented in R by our group with the

exception of TMM (EdgeR package) and size factors
(DESeq package).

Experiment 1: Test of between site variability
This statistical test measures the amount of variability
and identifies the source of that variability. There are
three main sources of variability in genomic data: (1) site
dependent or batch effect variability (2) biological vari-
ability, and (3) residual or other variability. Any
normalization method should decrease the amount of
variability attributable to site dependence and residual
variability and thus increase the proportion of variability
attributed to biology. To test this we performed a two-
way ANOVA across our feature set where one variable
was the different sites and the other was the four differ-
ent samples, A, B, C and D. This allowed us to isolate
the source of variability and its proportional weight of
total variability.
After having performed the two-way ANOVA three

different forms of error were identified; 1) site
dependent error, 2) biologically dependent error and 3)
residual error. Site dependent error is error from be-
tween different sites and institutions. Specifically these
measurements were recorded as MSE (variance) and p-
values for each gene across all samples. We took the me-
dian of both MSE p-value for inclusion in the figures
and tables. Biological error is determined to be changes
based on the biological differences of the four sample
types. Residual error is any form of error that is not at-
tributable either biology or site. Looking across the en-
tire genome in increasing gene size we could access how
each normalization method was able to deal with these
three different forms of error. It is important to note
that a good normalization technique should decrease site
dependent and residual error while increasing the pro-
portion of total signal that is attributable to biology. This
is because biological signal is the only form of signal that
we wish to preserve after normalization, so site and re-
sidual errors should, theoretically, decrease as a propor-
tion of the total amount of error after normalization.

Experiment 2 Normalization methods: Test of internal
linearity

1. Raw counts (no normalization);
2. TMM - the trimmed mean of means, as

implemented in edgeR [8];
3. The size factors, as implemented in DESeq [9];
4. RPKM, reads per kilobase transcript per million

mapped reads [10];
5. TPM, transcripts per million mapped reads [11];
6. Quantile normalization [12];
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We performed these individual gene experiments using
only the Australian Genome Research Facility data to keep
the site source consistent for this experiment. We used
the same normalization methods as for use in experiment
1, with the exception of a log2 transform. This is because
a log2 transform will not change any linear relationships
in the data, and this experiment is designed to see how
normalization affects internal linearity.
The four genes we selected were TP53, GAPDH,

CD59, and POLR2A. TP53 was chosen since its relation-
ship to cancer is well established. GAPDH was selected
because it is commonly relied upon as a constitutively
expressed housekeeping gene used as a control in many
experiments. CD59 and POLR2A were chosen due to
their high and consistent median expression across all
four samples (A-D). For this reason the raw data does
not indicate that there is any significant expression dif-
ference between A and B for either of these genes, mak-
ing them good test cases.

Abbreviations
CD59: Gene name for the MAC-inhibitory protein; DESeq: Differential
expression analysis for sequence count data; GAPDH: Glyceraldehyde 3-
phosphate dehydrogenase; MAQC: Microarray quality control; POLR2A: RNA
Polymerase II Subunit A; RPKM: Reads per kilobase transcript per million
mapped reads; SEQC: The Sequencing Quality Control; TMM: The trimmed
mean of means; TP53: Tumor protein 53; TPM: Transcripts per million
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