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Abstract

Background: Signal peptides play an important role in protein sorting, which is the mechanism whereby proteins
are transported to their destination. Recognition of signal peptides is an important first step in determining the
active locations and functions of proteins. Many computational methods have been proposed to facilitate signal
peptide recognition. In recent years, the development of deep learning methods has seen significant advances in
many research fields. However, most existing models for signal peptide recognition use one-hidden-layer neural
networks or hidden Markov models, which are relatively simple in comparison with the deep neural networks that
are used in other fields.

Results: This study proposes a convolutional neural network without fully connected layers, which is an important
network improvement in computer vision. The proposed network is more complex in comparison with current
signal peptide predictors. The experimental results show that the proposed network outperforms current signal
peptide predictors on eukaryotic data. This study also demonstrates how model reduction and data augmentation
helps the proposed network to predict bacterial data.

Conclusions: The study makes three contributions to this subject: (a) an accurate signal peptide recognizer is
developed, (b) the potential to leverage advanced networks from other fields is demonstrated and (c) important
modifications are proposed while adopting complex networks on signal peptide recognition.
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Background
Protein sorting is the mechanism whereby proteins are
transported to their destination inside and/or outside cells.
Signal peptides play an important role in this process [1].
Proteins with signal peptides enter the secretory pathway
and are then be transported to appropriate organelles,
where the proteins fulfill their functions. Signal peptides
operate as a permission gateway for the transport of pro-
teins into the endoplasmic reticulum. Blobel and Sabatini
[2] observed an interaction between ribosome and endo-
plasmic reticulum in 1971. In 1972, Milstein et al. [3] pro-
posed that an extra sequence fragment might exist at the
N-terminus of a polypeptide, which serves as a signal
transmitter for the translocation of proteins. In 1975,

Blobel and Dobberstein [4, 5] proposed a signal hypothesis
that believed the signal sequence is located at the N-
terminus of a polypeptide and is downgraded after protein
translocation.
The term “signal peptide” was first coined in a study

by von Heijne [1], which defined some basic properties
of signal peptides. The study found that signal peptides
are short amino acid sequences that are located at the
N-terminus of proteins. The length of a signal peptide
ranges from 11 to 27 residues. From the N-terminus, a
signal peptide is composed of three sections. The first
section is a positively charged n-region with about 1~5
residues. The second section is a hydrophobic h-region
with about 7~15 residues. The final section is a polar
uncharged c-region with about 3~7 residues. The end of
signal peptides is called cleavage site.
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The recognition of signal peptides is an important first
step in determining the active locations and functions of
proteins [6]. An effective method of determining signal pep-
tide sequences is to read the sequences of a newborn protein
and the corresponding mature protein via in vitro experi-
ments. However, these in vitro experiments are considerably
costly. Therefore, many computational methods have been
proposed to facilitate signal peptide recognition. The first
computational method for signal peptide recognition was
proposed in 1983. Von Heijen proposed a statistical method
based on 78 eukaryotic proteins [7]. A (− 3, − 1)-rule was
proposed, which refers to a specific pattern at the first and
the third positions before the cleavage site. In 1986, the
same research group proposed an algorithm that uses a
weight matrix to recognize signal peptides [8]. In 1998, Niel-
sen and Krogh used a hidden Markov model (HMM) to fit
the three section-property and (− 3, − 1)-rule of signal pep-
tides [9]. In 1997, Nielsen et al. proposed a method that uses
a neural network (NN) and achieved much better perform-
ance than other contemporary methods [10]. In 2004, Bend-
tsen et al. proposed the SignalP 3.0 algorithm, which
combines HMM and NN [11]. In 2011, the same research
group proposed the SignalP 4.0 algorithm, which combines
two neural networks [12]. The SignalP 4.0 algorithm has be-
come a paradigm in the field of signal peptide recognition.
The study also showed that many methods produce high
false-positive rates for misclassified proteins that treat trans-
membrane helices as signal peptides.
In recent years, the development of deep learning

methods has seen significant advances in many research
fields. Specifically, convolutional neural networks (CNN)
[13] have been used to achieve excellent performance in
image classification [14, 15]. Recurrent neural networks
(RNN) [16] have been used for time series data [17]. In
addition, the networks have been used with great success
in the field of molecular biology [18, 19]. In 2017, Savo-
jardo et al. proposed the DeepSig algorithm [6], which is
the first CNN-based method that predicts whether an
amino acid sequence contains signal peptides.
This study proposes a CNN architecture without fully

connected layers for signal peptide recognition. Neural net-
works without fully connected layers have been widely
used in semantic segmentation of images with great suc-
cess. For example, the fully convolutional network (FCN)
[20], U-Net [21] and DeepLab [22] are three CNN archi-
tectures that are designed for semantic segmentation of
images. This study modifies U-Net to process protein
sequences. The modified network, named SigUNet in the
context, is different to U-Net in that it (a) processes one-
dimensional data, (b) adjusts the down-sampling strategy
to prevent the loss of information, (c) reduces model com-
plexity for small datasets and (d) is a trainable network
architecture. The experimental results in this study show
that SigUNet outperforms current signal peptide predictors

on eukaryotic data. This study also demonstrates how
model reduction and data augmentation helps the pro-
posed network to predict bacterial data.

Results
Experimental design
Similar to previous studies [6, 12], Matthews Correlation
Coefficient (MCC) and the false-positive rate for trans-
membrane proteins (FPRTM) are two main evaluation indi-
ces adopted in this study. MCC measures the correlation
between the observed and predicted classes. FPRTM mea-
sures the probability that a transmembrane protein is
misclassified as a signal peptide. Signal peptides and N-
terminal transmembrane helices are highly similar, except
that transmembrane helices usually have longer hydropho-
bic regions and have no cleavage sites. FPRTM is used to
measure the ability to discriminate signal peptides from
transmembrane proteins. This study also uses precision, re-
call and F1 measure as supplemental indices. Precision
measures the fraction of real signal peptides in samples that
are predicted to be signal peptides. Recall measures the
fraction of signal peptides that are correctly predicted to be
signal peptides. F1 measure is the harmonic mean of preci-
sion and recall. The three indices are widely used in binary
classification. The details of these evaluation indices are de-
scribed in the Materials and Methods section.
Table 1 shows the datasets that are used to evaluate

signal peptide recognition. The details of how the data-
sets are constructed are in the Materials and Methods
section. The SignalP dataset was constructed in 2011 by
Petersen et al. [12] and the SPDS17 dataset was con-
structed in 2017 by Savojardo et al. [6]. Petersen et al.
defined a subset of the SignalP dataset as a comparison
dataset. Savojardo et al. constructed the SPDS17 dataset
as another comparison dataset to accommodate newly
discovered proteins. Both datasets are separated into
Eukaryotes, Gram-positive bacteria and Gram-negative
bacteria subsets because Hejine showed that signal pep-
tides in different groups of organisms have different
lengths and amino acid compositions [1]. Pertersen el al.
and Savojardo et al. adopted a nested cross validation
procedure to evaluate their methods. The procedure
uses an inner cross validation to prevent peeking at the
comparison dataset while the hyper-parameters are
tuned. This study uses the same evaluation procedure.
The details of the dataset construction and the nested
cross validation are described in the Materials and
Methods section.

The performance on the eukaryotes datasets
Table 2 compares the results of ten alternative methods
and SigUNet on the Eukaryotes dataset. Of the 11 methods,
DeepSig and SigUNet use deep neural networks. The other
nine methods use one-hidden-layer NN or HMM models
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Table 2 The performance on the Eukaryotes datasets

Method MCC (%) FPRTM (%) Precision (%) Recall (%) F1 measure (%)

The SignalP dataset

Phobius 81.1 15.3 77.6 95.2 85.5

PrediSi 56.1 52.6 52.0 91.3 66.3

SignalP3.0-HMM 75.9 23.5 69.5 97.4 81.1

SignalP3.0-NN 56.2 64.1 48.4 98.8 65.0

PolyPhobius 80.6 12.5 79.5 91.9 85.2

Philius 80.4 13.4 77.8 93.7 85.0

SPOCTOPUS 80.1 14.0 79.0 91.7 84.9

SignalP 4.0 87.4 6.1 – – –

TOPCONS2 84.6 9.6 83.6 93.6 88.3

DeepSig 87.2 4.2 92.5 87.8 90.1

SigUNet 90.2 4.0 93.0 92.1 92.5

The SPDS17 dataset

Phobius 65.8 9.6 47.8 95.7 63.8

PrediSi 38.5 43.3 20.7 89.1 33.6

SignalP3.0-HMM 51.6 22.3 31.2 95.7 47.1

SignalP3.0-NN 36.0 59.1 17.5 95.7 29.5

PolyPhobius 72.0 8.0 56.4 95.7 71.0

Philius 62.3 6.5 44.3 93.5 60.1

SPOCTOPUS 54.0 16.4 37.9 84.8 52.3

SignalP 4.0 81.9 4.0 75.0 91.3 82.3

TOPCONS2 73.9 5.6 60.6 93.5 73.5

DeepSig 86.1 2.5 82.4 91.3 86.6

SigUNet 89.6 1.2 91.1 89.1 90.1

The performances of Phoibus, PrediSi and SignalP 3.0 are obtained from their online services (Phobius: http://phobius.sbc.su.se/; PrediSi: http://www.predisi.de/
predisi/; SignalP 3.0: http://www.cbs.dtu.dk/services/SignalP-3.0/) [11, 23, 24]. The performances of PolyPhobius, Philius, SPOCTOPUS and TOPCONS2 are obtained
from the TOPCONS2 software (https://github.com/ElofssonLab/TOPCONS2) [25–28]. The performance of SignalP 4.0 on the SignalP dataset is obtained from the
original paper [12] and the performance on the SPDS17 dataset is obtained from its online service (http://www.cbs.dtu.dk/services/SignalP-4.0/). The performance
of DeepSig on the SignalP dataset is obtained by reproducing the algorithm and the performance on the SPDS17 dataset is obtained using the source code
(https://github.com/BolognaBiocomp/deepsig). For each dataset, the best performance is highlighted in bold.

Table 1 Statistics of the datasets that are used in this study

Organism Signal Peptides Transmembrane Cytosolic or Nuclear Total

Train Comp Train Comp Train Comp

SignalP

Eukaryotes 1640 606 987 939 5133 1000 7760

Gram-positive 208 48 117 117 360 213 685

Gram-negative 423 104 523 523 912 260 1858

SPDS17

Eukaryotes – 46 – 323 – 689 1058

Gram-positive – 9 – 189 – 240 438

Gram-negative – 23 – 89 – 99 211

The SignalP dataset is from the UniProtKB/Swiss-Prot in accordance with the identity list in Pertersen et al.’s study [12]; The SPDS17 dataset is from the UniProtKB/
Swiss-Prot in accordance with the identity list in Savojardo et al.’s study [6].
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and SignalP 4.0 is the most accurate of them. SigUNet out-
performs the other models in terms of both MCC and
FPRTM. For the SignalP dataset, DeepSig achieves a com-
parable MCC and a better FPRTM than SignalP 4.0. SigU-
Net gives a similar FPRTM and a 3.0% better MCC than
DeepSig. The 4.3% gap in recall between SigUNet and
DeepSig shows that SigUNet captures more signal peptides.
For the SPDS17 dataset, DeepSig outperforms SignalP 4.0
in terms of both MCC and FPRTM. SigUNet gives a 3.5%
better MCC than DeepSig. Unlike the SignalP dataset, this
improvement is due to a low FPRTM and not a high recall.
Namely, SigUNet discriminates more transmembrane pro-
teins from signal peptides on the SPDS17 dataset. These re-
sults show that SigUNet performs well on eukaryotic signal
peptides, regardless of the dataset that is used.

The performance on the bacteria datasets
Table 3 shows the results on the Gram-positive datasets.
The performance of SignalP 4.0, DeepSig and SigUNet
shows no consistent order on the SignalP and SPDS17
datasets. DeepSig gives the worst MCC on the SignalP
dataset but the best MCC on the SPDS17 dataset. The

results on the Gram-negative datasets show a similar
phenomenon (Table 4). SignalP 4.0 gives the best MCC
on the SignalP dataset but the worst MCC on the
SPDS17 dataset. As a result, Tables 3 and 4 show that
SigUNet does not achieve a dominant performance as it
shows in Table 2. In comparison with the Eukaryotes
datasets, the bacteria datasets are smaller. The SignalP
Gram-positive dataset possesses 685 samples, which is
merely 8.8% in comparison with the 7760 samples of the
SignalP Eukaryotes dataset. It is speculated that the
small size of the bacterial datasets affects the perform-
ance of SigUNet. The next section discusses the size
issue in more detail.

Model reduction and data augmentation
The SignalP 4.0 model has only one hidden layer and
less than 20,000 trainable weights. The DeepSig model
uses convolutional layers and has 20,000~100,000 train-
able weights. SigUNet has 100,000~300,000 trainable
weights which is three to five folds more than that of
DeepSig. This study conducts two experiments to ex-
plore whether (a) model reduction and (b) data

Table 3 The performance on the Gram-positive datasets

Method MCC (%) FPRTM (%) Precision (%) Recall (%) F1 measure (%)

The SignalP dataset

Phobius 67.7 20.5 60.0 87.5 71.2

PrediSi 40.9 54.7 35.0 75.0 47.7

SignalP3.0-HMM 55.8 43.6 44.3 89.6 59.3

SignalP3.0-NN 47.2 56.4 34.9 91.7 50.6

PolyPhobius 71.1 16.2 66.1 85.4 74.5

Philius 69.6 15.4 64.1 85.4 73.2

SPOCTOPUS 73.9 15.4 67.2 89.6 76.8

SignalP 4.0 85.1 2.6 – – –

TOPCONS2 81.6 6.8 80.8 87.5 84.0

DeepSig 73.9 6.8 81.4 72.9 76.9

SigUNet 76.1 5.1 85.4 72.9 78.7

The SPDS17 dataset

Phobius 35.0 13.6 17.9 77.8 29.2

PrediSi 14.3 64.0 5.0 77.8 9.5

SignalP3.0-HMM 27.3 27.0 11.9 77.8 20.6

SignalP3.0-NN 16.1 45.5 5.7 77.8 10.7

PolyPhobius 34.5 13.2 17.5 77.8 28.6

Philius 30.3 79.0 16.2 66.7 26.1

SPOCTOPUS 30.3 13.8 16.2 66.7 26.1

SignalP 4.0 50.3 0.0 40.0 66.7 50.0

TOPCONS2 38.1 4.2 24.0 66.7 35.3

DeepSig 54.5 0.1 46.2 66.7 54.4

SigUNet 40.9 2.1 40.0 44.4 42.1

The best performance is highlighted in bold
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augmentation improves the performance of SigUNet on
the bacteria datasets. For the first experiment, a reduced
version of SigUNet, named SigUNet-light, is imple-
mented. The number of trainable weights of SigUNet-
light is reduced to 60,000~200,000. The model details
are described in the Materials and Methods section. The
reduced version gives a 0.8~2.3% increase in the MCC
over SigUNet on the bacteria datasets, but the same
effect is not observed on the SPDS17 Gram-negative
dataset (Table 5). The reduced version gives a worse

performance than SigUNet on the Eukaryotes datasets.
This reveals that the Eukaryotes data is sufficient to train
SigUNet and no model reduction is required.
For the second experiment, training data from dif-

ferent organisms is merged to construct larger train-
ing sets (Table 6 and Table 7). For the Eukaryotes
datasets in both tables, the best MCC is achieved by
training SigUNet using only the Eukaryotes data. This
echoes that the Eukaryotes data is sufficient to train
SigUNet. Adding bacteria data to the training set

Table 4 The performance on the Gram-negative datasets

Method MCC (%) FPRTM (%) Precision (%) Recall (%) F1 measure (%)

The SignalP dataset

Phobius 59.9 22.6 43.9 94.2 59.9

PrediSi 30.6 69.0 19.7 86.5 32.1

SignalP3.0-HMM 47.7 39.2 31.6 93.3 47.2

SignalP3.0-NN 36.7 61.0 22.1 95.2 35.9

PolyPhobius 60.7 21.4 45.0 94.2 60.9

Philius 65.9 14.9 51.3 94.2 66.4

SPOCTOPUS 64.7 17.0 50.8 92.3 65.5

SignalP 4.0 84.8 1.5 – – –

TOPCONS2 70.8 13.2 57.2 95.2 71.5

DeepSig 81.2 1.7 88.9 76.9 82.5

SigUNet 80.6 1.5 88.8 76.0 81.9

The SPDS17 dataset

Phobius 69.5 18.0 56.4 95.7 71.0

PrediSi 35.4 66.3 25.0 87.0 38.8

SignalP3.0-HMM 65.4 21.3 51.2 95.7 66.7

SignalP3.0-NN 49.1 44.9 33.8 95.7 50.0

PolyPhobius 75.9 13.5 62.2 100.0 76.7

Philius 88.7 2.2 84.6 95.7 89.8

SPOCTOPUS 62.5 20.2 50.0 91.3 64.6

SignalP 4.0 92.5 0.0 100.0 87.0 93.0

TOPCONS2 85.9 5.6 76.7 100.0 86.8

DeepSig 95.0 0.0 100.0 91.3 95.5

SigUNet 97.6 1.1 95.8 100.0 97.9

The best performance is highlighted in bold

Table 5 The performance of model reduction

Method Eukaryotes Gram-positive Gram-negative

MCC (%) FPRTM (%) MCC (%) FPRTM (%) MCC (%) FPRTM (%)

The SignalP dataset

SigUNet 90.2 4.0 76.1 5.1 80.6 1.5

SigUNet-light 89.4 4.3 77.7 5.1 82.9 1.9

The SPDS17 dataset

SigUNet 89.6 1.2 40.9 2.1 97.6 1.1

SigUNet-light 84.8 3.7 51.7 1.6 92.8 1.1

Performances that are improved after model reduction are highlighted in bold.
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introduces noises, which mitigate the benefit of data
augmentation.
If training involves all organisms, the FPRTM is

improved in three of the four scenarios (SigUNet and
SigUNet-light on the SignalP dataset and SigUNet-light
on the SPDS17 dataset). A better FPRTM indicates that
more transmembrane proteins are discriminated from
signal peptides. This suggests that the properties of
transmembrane proteins are less different to those of
signal peptides across organisms. On the Gram-positive
datasets, The best FPRTM is achieved using bacteria data
for training. This suggests that some Gram-positive
transmembrane proteins are similar to eukaryotic signal
peptides, which decreases the ability to discriminate
Gram-positive transmembrane proteins from signal pep-
tides. On the Gram-negative datasets, both data aug-
mentation strategies work. Training with bacterial data
gives the best MCC and FPRTM on the SignalP Gram-
negative dataset; while training with all organisms gives
the best MCC and FPRTM on the SPDS17 Gram-
negative dataset. These results reveal that data augmen-
tation improves the performance of SigUNet on the bac-
terial datasets.

In summary, SigUNet is suited to the recognition of
eukaryotic signal peptides. Its network architecture re-
quires a relatively large dataset for training. Model reduc-
tion and data augmentation are useful, but increasing the
amount of data is still required to ensure that SigUNet
recognizes bacterial signal peptides.

Discussion
The Results section compares the performance of the
methods and demonstrates the issues of SigUNet in
terms of data size. This section discusses the variation in
performance by analyzing the sequence composition.
Training speed, which is highly dependent on data size,
is also discussed in this section.
To analyze the sequence composition, the sequences

of each dataset are plotted into sequence logos as
shown in Fig. 1. The sequence logo for 96 positions
in Fig. 1a is too confusing to analyze, so the first 20
positions of each dataset are shown in Fig. 1b, c and
d for clarity. The top left subplot of Fig. 1b, c and d
are sequence logos plotted for the signal peptides in
the SignalP datasets. Although the sequences are from
different organisms, the three subplots exhibit a

Table 6 The performance of data augmentation on the SignalP dataset

Comp Eukaryotes Gram-positive Gram-negative

Train MCC (%) FPRTM (%) MCC (%) FPRTM (%) MCC (%) FPRTM (%)

SigUNet

As compa 90.2 4.0 76.1 5.1 80.6 1.5

All organismsb 89.9 3.2 80.9 3.1 82.1 3.6

Bacteriac – – 79.3 1.9 83.5 0.3

SigUNet-light

As comp 89.4 4.3 77.7 5.1 82.9 1.9

All organisms 88.9 3.9 82.5 3.1 81.4 3.5

Bacteria – – 80.2 1.9 83.9 2.7
aThe model is trained using the same organism as the comparison dataset. bThe model is trained using all organisms. cThe model is trained using all of the
bacteria data. The best performance is highlighted in bold

Table 7 The performance of data augmentation on the SPDS17 dataset

Comp Eukaryotes Gram-positive Gram-negative

Train MCC (%) FPRTM (%) MCC (%) FPRTM (%) MCC (%) FPRTM (%)

SigUNet

As compa 89.6 1.2 40.9 2.1 97.6 1.1

All organismsb 89.2 2.2 46.1 1.6 100.0 0.0

Bacteriac – – 49.5 1.1 97.6 1.1

SigUNet-light

As comp 84.8 3.7 51.7 1.6 92.8 1.1

All organisms 89.1 2.2 43.3 1.6 100.0 0.0

Bacteria – – 49.5 1.1 100.0 0.0
aThe model is trained using the same organism as the comparison dataset. bThe model is trained using all organisms. cThe model is trained using all of the
bacteria data. The best performance is highlighted in bold

Wu et al. BMC Bioinformatics 2019, 20(Suppl 24):677 Page 6 of 14



similar pattern. The pattern begins with a fixed M in
position one followed by charged (red) amino acids
and then by non-polar (green) amino acids. This is
consistent with the current knowledge that signal
peptides comprise a charged n-region, a hydrophobic
h-region and a polar c-region.

The sequence logos of SPDS17 show a larger vari-
ation than those of SignalP across organisms. The top
right subplot of Fig. 1c is more random than other
sequence logos that are plotted for signal peptides.
This explains why no method gives satisfactory results
on the SPDS17 Gram-positive data. Conversely, both

Fig. 1 Sequence logos generated by WebLogo [29]. The x-axis indicates the position of the amino acid and the y-axis shows the probabilities of
amino acids across a given sequence set. a Sequence logo for 96 positions for the SignalP Eukaryotes dataset. b Sequence logos for the first 20
positions for the Eukaryotes datasets. c Sequence logos for the first 20 positions for the Gram-positive datasets. d Sequence logos for the first 20
positions for the Gram-negative datasets. Non-polar, charged and polar amino acids are respectively colored green, red and blue
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of the top left and top right subplots of Figure 1d
have three obvious ‘K’s in positions 2, 3 and 4. This
explains why SigUNet and other methods perform
well on the SPDS17 Gram-negative data.
To analyze the training speed, SigUNet was trained

using datasets of different sizes. Figure 2 shows the
epoch-loss plots. Figure 2a shows that SigUNet stops
after a similar number of epochs when 100, 80 and 60%
of the data is used. As the time that is required to train
an epoch is proportional to the size of the dataset, the
training time for SigUNet is linearly proportional to the
size of the dataset. The validation losses of the three
lines are similar, which shows that 60% of Eukaryotes
data is sufficient to train SigUNet. When only 40% or
20% of the data is used, the validation loss is bumpy and
SigUNet requires more epochs to train. SigUNet-light
gives a similar result. Figure 2b shows that SigUNet-light
stops after a similar number of epochs when 100, 80, 60
and 40% of the data is used. Namely, 40% of the Eukary-
otes data is sufficient to train the reduced version of
SigUNet.
Figure 2c compares the training speed of SigUNet with

that for DeepSig. DeepSig stops earlier than SigUNet,
but SigUNet gives a lower validation loss. SigUNet is
more complex than DeepSig, so these observations are
consistent with the common knowledge that simpler
models converge faster but perform worse. An interest-
ing observation is that the validation loss of DeepSig is
bumpier than that of SigUNet. This shows that SigUNet
has more stable training process than DeepSig. In
addition to network architecture, there is an obvious dif-
ference between DeepSig and SigUNnet in terms of the
loss function. The loss function of DeepSig calculates
the protein-level cross entropy and SigUNet calculates
the amino acid-level cross entropy. Figure 2c shows that
the gradient that is generated by the loss function of
SigUNet updates the model more smoothly. This obser-
vation is pertinent to future signal peptide studies for
the development of loss functions.

Conclusions
This study proposes a new deep learning model for sig-
nal peptide recognition. The proposed model is more
complex than those of previous studies by leveraging
network improvements that have been developed in
computer vision. This study also proposes network mod-
ifications to enhance the performance on protein data.
The experimental results show that the proposed model
outperforms conventional neural networks. This conclu-
sion is consistent with SignalP 5.0 [30], which was pub-
lished on 18 February 2019. Although SignalP 5.0 uses a
different evaluation procedure, it gives similar results
when advanced network architectures are used.

Materials and methods
Evaluation indices
This work uses the Matthews Correlation Coefficient
(MCC) to evaluate signal peptide recognition. The MCC
measures the correlation between two series of binary
data. In practice, the MCC is usually used as an overall
index for binary classification by establishing the ob-
served classes as one data series and the predicted clas-
ses as the other data series. The MCC is shown as
below:

The definition of the Matthews Correlation Coefficient

MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ � TP þ FNð Þ � TN þ FPð Þ � TN þ FNð Þp

ð1Þ

In Eq. 1, TP indicates true positive, which is the
number of signal peptides that are correctly predicted
to be signal peptides; TN indicates true negative,
which is the number of non-signal peptides that are
correctly predicted to be non-signal peptides; FP indi-
cates false positive, which is the number of non-signal
peptides that are incorrectly predicted to be signal
peptides; and FN indicates false negative, which is the
number of signal peptides that are incorrectly pre-
dicted to be non-signal peptides. The characteristics
of signal peptides and N-terminal transmembrane
helices are similar, so signal peptide predictors must
be able to discriminate signal peptides from trans-
membrane proteins. This study uses the false positive
rate for transmembrane proteins (FPRTM) to measure
this ability:

The definition of the false positive rate for
transmembrane proteins

FPRTM ¼ FPTM

NTM
ð2Þ

In Equation 2, NTM represents the total quantity of
transmembrane proteins and FPTM represents the
number of transmembrane proteins that are misclassi-
fied as signal peptides. MCC and FPRTM are the main
evaluation indices adopted in SignalP 4.0 and Deep-
Sig. This study also uses precision, recall and F1
measure, which are widely used evaluation indices for
binary classification:

The definition of precision

Wu et al. BMC Bioinformatics 2019, 20(Suppl 24):677 Page 8 of 14



Fig. 2 Epoch-loss plots of training SigUNet. a Training SigUNet using different ratios of SignalP Eukaryotes data. b Training SigUNet-light using
different ratios of SignalP Eukaryotes data. c Training DeepSig and SigUNet using the SignalP Eukaryotes data
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Precision ¼ TP
TP þ FP

ð3Þ

The definition of recall

Recall ¼ TP
TP þ FN

ð4Þ

The definition of F1 measure

F1 ¼ 2� Precision� Recall
Precisionþ Recall

¼ 2� TP
2� TP þ FN þ FP

ð5Þ

Precision measures the ratio of correctness when a
protein is reported to be a signal peptide; recall mea-
sures the fraction of signal peptides that are correctly
captured. Precision is an index of exactness or quality
and recall is an index of completeness or quantity. F1
measure, which is the harmonic mean of precision and
recall, is commonly optimized to balance precision and
recall.

Datasets
Two datasets are used in this study: the SignalP and
SPDS17 datasets (Table 1). The SignalP dataset contains
three subsets: Eukaryotes, Gram-positive and Gram-
negative bacteria. It uses proteins from the UniProtKB/
Swiss-Prot release 2010_05 [31] and excludes hypothet-
ical proteins and proteins with less than 30 amino acids.
Positive samples in the SignalP dataset are signal pep-
tides with experimentally verified cleavage sites. Negative
samples are (a) proteins whose subcellular locations are

only nuclear or cytosolic and (b) proteins whose first 70
amino acids are tagged as a transmembrane region. A
homology reduction algorithm that was proposed by
Hobohm et al. [32] is applied to the first 70 amino acids.
This algorithm considers two proteins for which the local
alignment has more than 17 identical amino acids as re-
dundant for Eukaryotes and two proteins for which the
local alignment has more than 21 identical amino acids as
redundant for bacteria. A small part of the SignalP dataset
was used as a comparison dataset by Petersen et al. [12].
The SPDS17 dataset was constructed by Savojardo

et al. [6]. It contains proteins from UniProtKB/Swiss-
Prot releases 2015_06 to 2017_04. Similar to the SignalP
dataset, the SPDS17 dataset separates proteins into three
subsets: Eukaryotes, Gram-positive bacteria and Gram-
negative bacteria. The definitions of positive and nega-
tive samples are identical to those in the SignalP dataset.
Namely, the SPDS17 dataset is a comparison dataset for
the SignalP dataset that accommodates newly discovered
proteins. The homology of the SPDS17 is reduced using
the blastclust algorithm with an E-value of 0.001 [33].
Proteins with greater than a 25% similarity are consid-
ered as redundant. Proteins with a similarity higher than
25% to any protein in the SignalP dataset are removed.

Data preprocessing
Signal peptides only appear at the front of amino acid
chains, so only a fixed number of amino acids from each
protein sequence are used as an input. This study uses 96 as
the input length, which is the same as DeepSig. The first 96
amino acids of a protein are one-hot encoded. Namely,
every amino acid is encoded into a 20-dimensional binary
vector, where 19 positions are zero and only the position
that corresponds to the amino acid is one. An uncommon
or unknown amino acid such as ‘X’ is encoded as a zero vec-
tor. To encode all proteins into a 96 × 20 matrix, zeros are

Fig. 3 The network architecture of U-Net [21]

Wu et al. BMC Bioinformatics 2019, 20(Suppl 24):677 Page 10 of 14



padded to vectors for proteins that have less than 96 amino
acids. To determine the ability to discriminate signal pep-
tides from transmembrane proteins, this study classifies
amino acids into three classes. If an amino acid is located in
a signal peptide region, it is labeled ‘S’. If an amino acid is lo-
cated in a transmembrane region, it is labeled ‘T’. If an
amino acid is not located in a signal peptide nor a trans-
membrane region, it is labeled ‘N’. The class of a protein is
one-hot encoded as a 96 × 3 matrix. In summary, given a
protein sequence, this study encodes it into a 96 × 20 matrix
as the input. The output is a 96 × 3 matrix, which includes
amino acid-level predictions for the given protein sequence.

Network architecture
The network architecture of this work is based on U-
Net, which achieves excellent results for the semantic
segmentation of medical images [21]. Medical image
datasets are much smaller than other common computer
vision datasets and U-Net is tailored to this situation.
Figure 3 shows the architecture of U-Net. The model in-
put is a 572 × 572 grey scale image and the output is a
388x388x2 semantic segmented image. Convolutional
layers (denoted as ‘conv 3x3 ReLU’ blue arrows and
‘conv 1 × 1’ teal arrows in Fig. 3) use filters to recognize
local patterns [13]. A filter is a matrix that is convolved

across the width and height of the input image to gener-
ate a feature map. The suffix (‘3x3 ReLU’ and ‘1 × 1’) in-
dicates the size of the filter and the activation functions
of the corresponding convolutional layers. The ‘copy and
crop’ gray arrows in Fig. 3 copy the output of a source
layer (the left end of the arrow) and crop it to fit the size
of the destination layer (the right end of the arrow).
Pooling layers (denoted as ‘max pool 2x2’ red arrows in
Fig. 3) merge adjacent output values from previous
layers into one value to reduce network complexity [34].
Max pooling uses the maximum value of a local area as
the output. The suffix (‘2x2’) indicates the size of each
local area that is to be merged. Up-convolutional layers
(denoted as ‘up-conv 2x2’ green arrows in Fig. 3), which
perform an inverse operation to convolutional layers, ex-
pand the information that is compressed by convolu-
tional and pooling layers [35].
U-Net is used for two-dimensional images, so this study

refines it for use with one-dimensional protein sequences.
Each two-dimensional operation becomes one-dimensional
and each position in a sequence is represented by a 20-
channel vector. However, this trivial one-dimensional U-Net
does not allow efficient signal peptide recognition (Table 8).
To solve the problem, this study refines the number of chan-
nels in each layer (Fig. 4). The network architecture is named

Fig. 4 The network architecture of SigUNet

Table 8 The performance of different network architectures on the SignalP Eukaryotes dataset

Architecture MCC (%) FPRTM (%) Recall (%) Precision (%) F1 measure (%)

U-Net-1Da 84.1 6.8 87.3 88.5 87.9

SigUNet-maxb 88.6 5.0 91.4 91.3 91.3

SigUNet 90.2 4.0 92.1 93.0 92.5
aA one-dimensional U-Net that has the same network configuration as Fig. 3, but the input and output layer are modified for protein sequences. bThe max
pooling layers in Fig. 4 are replaced with average pooling layers
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Fig. 5 The network architecture of SigUNet-light, which is a reduced version of SigUNet

Fig. 6 The pseudo code of nested cross validation
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SigUNet. The original U-Net fixes the channel size of the
first convolutional layer to 64 and doubles the channel size
to 128, 256, 512 and 1024 after each pooling layer. This
made number of parameters of U-Net increases exponen-
tially. In SigUNet, the channel size starts from m and in-
creases linearly by n. Both m and n are hyper-parameters
that are determined using nested cross validation. Unlike
pixels in an image, it is hypothesized that each amino acid
contains important information and is not disposable. Using
max pooling, the information in an amino acid can be lost if
its neighbor has a large value. Therefore, average pooling is
adopted in SigUNet. Table 8 shows the performance of using
different pooling operations. A reduced version of SigUNet
for bacteria signal peptides is shown in Fig. 5. The reduced
SigUNet is named SigUNet-light.
The architecture of SigUNet outputs a 96 × 3 matrix that

represents the probabilities of the 96 amino acids being clas-
sified as either a signal peptide, a transmembrane region or
neither. The loss function is cross entropy shown as below:

The loss function of SigUNet

Loss x; yð Þ ¼ −
X96
i¼1

X3
j¼1

yij ln h xð Þij
� �

ð6Þ

Here x represents an input sample, which is a 96 × 20
matrix; y represents the real class of the input sample,
which is one-hot encoded to a 96 × 3 matrix; yij is a bin-
ary value that indicates whether the i-th amino acid is of
the j-th class; h(x) represents the network output, which
is a 96 × 3 matrix; and h(x)ij represents the probability of
the i-th amino being of the j-th class. The 96 × 3 output
matrix for an input sequence is then transformed to a
binary prediction. If the probability of any four consecu-
tive amino acids being a signal peptide is greater than a
threshold, the input sequence is classified to be a signal
peptide. The threshold is a hyper-parameter of SigUNet
and is determined using nested cross validation.

Nested cross validation
Cross validation is used in machine learning to prevent
overfitting. For a k-fold cross validation, the data is split
into k partitions. Each partition is used for testing and
the remaining k-1 partitions are used to train a model.
However, if the performance of cross validation is used
to determine hyper-parameters, it is no longer an appro-
priate indicator for model performance. To solve this
issue, this work adopts a nested cross validation proced-
ure (Fig. 6), whereby hyper-parameters are determined
using an inner k-1-fold cross validation on the k-1 train-
ing partitions. For each testing partition, the inner k-1-
fold cross validation constructs k-1 models and their

predictions on the testing partition are averaged. This
procedure does not peek at the testing partition when
the hyper-parameters are tuned. Therefore, the perform-
ance of the outer cross validation can be used to repre-
sent the model performance. The nested cross validation
and k = 5 are the same as the evaluation procedure in
SignalP 4.0 and DeepSig.
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