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Abstract

Background: Ribosome profiling brings insight to the process of translation. A basic step in profile construction at
transcript level is to map Ribo-seq data to transcripts, and then assign a huge number of multiple-mapped reads to
similar isoforms. Existing methods either discard the multiple mapped-reads, or allocate them randomly, or assign
them proportionally according to transcript abundance estimated from RNA-seq data.

Results: Here we present DeepShape, an RNA-seq free computational method to estimate ribosome abundance of
isoforms, and simultaneously compute their ribosome profiles using a deep learning model. Our simulation results
demonstrate that DeepShape can provide more accurate estimations on both ribosome abundance and profiles
when compared to state-of-the-art methods. We applied DeepShape to a set of Ribo-seq data from PC3 human
prostate cancer cells with and without PP242 treatment. In the four cell invasion/metastasis genes that are
translationally regulated by PP242 treatment, different isoforms show very different characteristics of translational
efficiency and regulation patterns. Transcript level ribosome distributions were analyzed by “Codon Residence Index
(CRI)” proposed in this study to investigate the relative speed that a ribosome moves on a codon compared to its
synonymous codons. We observe consistent CRI patterns in PC3 cells. We found that the translation of several
codons could be regulated by PP242 treatment.

Conclusion: In summary, we demonstrate that DeepShape can serve as a powerful tool for Ribo-seq data analysis.
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Background
Regulation of mRNA translation is critical to the coordi-
nated and controlled expression of many important bio-
logical pathways, which have great impact on human
health states [1, 2]. The ribosome, a complex molecular
machine, plays a central role in the translation process
[3]. A ribosome binding to a transcript implies the syn-
thesis of a new peptide. Multiple factors can influence
ribosome binding and also ribosome distribution at

transcripts, including composition of nucleotides along
its current, upstream, and downstream RNA sequences
[4, 5]; instantaneous environmental stress [6, 7]; and
state of the cell [8]. Therefore, distributions of ribosome
binding in a transcriptome reflect underlying translation
process, and thus is strongly related to phenotype state.
Ribosome sequencing (Ribo-seq) is an important ap-

proach to obtain ribosome distributions by sequencing
“ribosome-protected fragments” (RPFs) [9]. Computa-
tional analysis involves mapping sequencing Ribo-seq
reads into transcripts and counting number of reads at
each position to obtain distributions of ribosomes along
the whole transcriptome. The sites where Ribo-seq reads
are piled up suggest ribosome stalling or translation
slow-down, which could be caused by factors such as
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codon usage bias [10], codon co-occurrence bias [5] and
proline codons [11]. The stalling events can be related to
translation regulation [12, 13]. Besides ribosome stalling,
ribosome profiles also reveal unexpected translation
events on non-coding regions [14]. Overall, ribosome
profiling brings insight to the process and regulation of
translation.
Computational tools, or pipelines, have been devel-

oped for the analysis of Ribo-seq data, including Ribo-
map [15], RiboProfiling [16], RiboSeqR [17], Plastid [18]
and Ribogalaxy [19]. However, most of these tools were
targeted at gene-level ribosome analysis, instead of more
informative transcript-level analysis. The challenge is
that Ribo-seq reads (~ 30 bp) are too short to be mapped
accurately to multiple alternatively spliced transcripts,
resulting in a large proportion of multiple mapped reads
[15]. This has become the main barrier against obtaining
precise ribosome profiling at transcript level. A simple
strategy is to discard these multiple-mapped reads. How-
ever, as Wang et al. show in their study [15], there may
be less than 10% of all reads can be mapped to unique
positions on transcript sequences. Discarding all mul-
tiple mapped reads would lose major information in this
process. Another strategy is to allocate multiple-mapped
reads randomly, as adopted by RiboSeqR [17], or the
“star prime” method evaluated in the work of Wang
et al. [15], but this may introduce bias to transcripts of
low-abundance genes, and in addition, it has been shown
that this strategy does not perform well on transcript
level analysis [15]. A more robust strategy, adopted by
Ribomap [15], is to take advantage of RNA-seq data
generated simultaneously with Ribo-seq and allocate
multiple-mapped reads to transcripts according to the
transcript abundance estimated from the RNA-seq data.
However, this would involve two assumptions: (1) trans-
lation activity is coherent to the abundance of mRNA
molecules, and (2) that ribosome profiles at regions
shared by two different isoforms of a gene are exactly
the same. Strictly speaking, for the first assumption,
mRNA abundance is not equal to the translating mRNA
abundance because some of the mRNAs may be unoccu-
pied by any ribosomes, which is linked to different levels
of initiation efficiency [9, 20], and neither is translating
mRNA abundance equal to ribosome abundance on
them because different translating mRNAs have different
elongation velocities which lead to different ribosome
densities on them [20–22]. For the second assumption,
as many studies have shown, the upstream and down-
stream sequence compositions are important and can
affect how fast ribosomes move along a transcript [4, 5].
If a frame shift exists between two isoforms because of
different upstream exons, their ribosome profiles are
most likely to be different. Figure 1 shows an example in
which two isoforms, 1 and 2, share the same exon, C,

which is connected to different upstream exons, A and
B; therefore, we observe different ribosome profiles for
these two isoforms, which is not considered by existing
methods.
Another way to analyze ribosome profiles is to predict

ribosome distributions according to transcript sequence.
Liu and Song developed an effective model, RiboShape,
by transforming the ribosome profiles into a low-
dimensional space using a wavelet transformation and
then building a sparse model to predict the transformed
footprint [4]. Their predicted profiles are in a low-
dimensional space from wavelet transformation, instead
of at nucleotide-level resolution. This work inspired us
to calculate ribosome distributions for transcripts by
combination of allocating Ribo-seq reads to isoforms
and predicting ribosome profile from isoform sequence.
Here, we present our model, called DeepShape, to

analyze Ribo-seq data without the help of RNA-seq data.
We introduced a deep learning ribosome distribution
shape model to overcome heterogeneity of ribosome
profiles by incorporating different upstream or down-
stream sequences as features to predict ribosome abun-
dance. Multiple-mapped reads are allocated according to
both pre-estimated ribosome abundances and distribu-
tions. Iteration mechanism was used for more accurate
estimation of ribosome abundances and distributions for
transcripts. Testing DeepShape on synthetic data shows
that it can provide more accurate estimation on ribo-
some abundance and more precise ribosome distribution
profiles than state-of-the-art methods. Using DeepShape,
we analyzed a Ribo-seq dataset of the PC3 human pros-
tate cancer cells [23] in transcript level. Isoforms of the
four cell invasion/metastasis genes, which were reported
to be regulated in translation by PP242 treatment in the
original paper, show distinct translational efficiencies
and regulation patterns. We proposed “Codon Residence
Index” (CRI), which reflects the relative speed when a
ribosome going through a codon compared with its syn-
onymous codons. The CRI values between synonymous
codons are significant. Several codons show at least 20%
slower (higher-CRI) or faster (lower-CRI) in ribosome
speed compared with the average of their synonymous
codons in all the four experiments. After PP242 treat-
ment, twelve codons represent consistently and statisti-
cally significant speed up or slowing down in both
replicates. The observations validate the necessity of
analyzing Ribo-seq data to produce transcript-level
profiles.

Implementation
Synthetic data and real data used in this study
In this study, we generated a pair of synthetic Ribo-seq/
RNA-seq sequence data to test the performance of our
DeepShape method and other state-of-the-art methods
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(Additional file 1: Figure S1). To generate the synthetic
Ribo-seq data, firstly we used published RNA-seq data
from human HeLa cells (GSM546921) to calculate
ground-truth transcript abundance. The transcript abun-
dances are length-normalized, which is defined as

ti ¼ cti=ltiP
k∈T ctk=ltkð Þ � 106;

where cti is the number of RNA-seq reads on transcript
i, lti is the length of the i-th transcript, and T is the set
of all transcripts. This index also has a name of “Tran-
scripts Per Million (TPM)”, which is widely used in
RNA-seq analysis. Human tRNA and rRNA reads were
filtered out before clean reads were mapped to human
HG38 transcriptome reference by STAR [24] and quan-
tified by Salmon [25]. Secondly, we randomly generated
a set of synthetic transcript efficiency (TE) values, which
is the ratio of relative ribosome abundance over tran-
script abundance. The ribosome abundance values are
normalized by coding region (CDS) length, and is de-
fined as

ri ¼ cri=lriP
k∈T crk=lrkð Þ � 106;

where ri is the CDS-length normalized abundance, cri is
the number of Ribo-seq reads on transcript i (ribosome
count abundance), lri is the length of the coding region
of the i-th transcript, and T is the set of all transcripts.
And the TE values are ri/ti. TE values are generated fol-
lowing a log-normal distribution, thereby enabling calcu-
lation of Ribo-Seq reads counts. Thirdly, we calculated a
synthetic ribosome distribution for every transcript using
a ribosome flow model [26]. Finally, we generated the
synthetic Ribo-Seq reads according to their reads counts,
ribosome distribution and reference transcriptome, using
the “footprint_generator” program from Ribomap. To
generate synthetic RNA-seq data, we applied the rlsim
program [27] on the TPM obtained above. The synthetic

data generation pipeline is a simulation of the real trans-
lation and sequencing process.
To show the usefulness of our DeepShape, we also rea-

nalyzed a published PC3 human prostate cancer cell
dataset [23]. The dataset consists of two replicates of
PP242-treated samples and two replicates of control
samples. Each of these four samples was sequenced to
generate Ribo-seq and RNA-seq data. We analyzed the
isoform-level translation efficiency and potential transla-
tional regulatory events using this dataset. This dataset
is called “PC3 dataset” in this study.
The accuracy of the shape model in DeepShape was

compared to RiboShape, using the same dataset [4]. The
original Ribo-seq data come from four published data-
sets of S. cerevisiae (yeast) treated with CHX [9, 28, 29].
Liu et al. (2016) calculated gene-level ribosome distribu-
tion using RiboShape. Genes with more than 10 continu-
ous zero-read covered bases were discarded, resulting in
80 genes filtered out and a total of 2458 genes passing
quality control. We randomly split the gene set into 3
subsets: 90% genes (2212) for training, 5% genes (124)
for validation, and 5% genes (122) for testing. This data-
set is called “yeast dataset” in this study. Besides, we also
downloaded ribosome distribution data of three other
model organisms (E. coli [30], mouse [31] and human
[32]) from GWIPS (https://gwips.ucc.ie/) to test the per-
formance of our shape model. As E. coli and yeast do
not have alternative splicing, their datasets reflect real
ribosome distribution on genes/transcripts. For alterna-
tively spliced transcripts in mouse and human datasets,
we simply joined the ribosome values in different exons
to generate the ribosome distribution of transcripts.

Designing of DeepShape-prime and DeepShape
Our method contains two separate programs. The first
one is named DeepShape-prime, which can be used for
fast estimating of ribosome abundances on transcripts
without considering the heterogeneity of ribosome pro-
files from the same exons shared by different isoforms.

Isoform 1

Isoform 2
Exon A

Exon A

Exon A

Exon B

Exon B

Exon C

Exon C

Exon C

Fig. 1 An example of ribosome distribution calculation on two isoforms. There are two isoforms from a gene. With existing methods that allocate
multiple-mapped reads proportionally to each transcript, the central part (where reads are completely within the exon, not on the junction) of an
exon in two isoforms will have the same ribosome distributions, regardless of ribosome context (e.g., the shaded area in Exon C)
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DeepShape-Prime takes CDS-length-normalized ribo-
some abundance (see Section 2.1) as guidance of allocat-
ing multiple-map reads and updates the abundance
iteratively.
As shown in Fig. 2a, initially, CDS-length-normalized

ribosome abundance are set uniformly. Then, at each
iteration, multiple-mapped reads are allocated propor-
tionally to transcripts according to the current normal-
ized ribosome abundance, and then, new ribosome
abundance values are updated using the newest distribu-
tions of reads on transcripts.
The other program is called DeepShape, which differs

from DeepShape-prime in that it aims to calculate more
precise ribosome distributions along transcripts by allo-
cating reads not only according to ribosome abundance,
but also an instructive ribosome shape that were pre-
dicted from transcript sequences by a “shape model” that
was trained from the Ribo-seq data being processed (Fig.
2b). At initiation, the normalized ribosome abundances
are set uniformly, or given abundance values (say, from
results of DeepShape-prime), and the instructive ribo-
some shapes are also set uniformly. In each iteration,

DeepShape performs three tasks. At Step 1, it assigns
reads according to current normalized ribosomal abun-
dances and instructive ribosome shape values to obtain a
temporary ribosome distribution. At Step 2, it trains the
shape model using the temporary ribosome distributions
and then applies the shape model to transcript se-
quences to update instructive ribosome shape values. At
step 3, it updates a new set of ribosomal abundances ac-
cording to the read abundance on the transcripts. This
process iterates until the results are stabilized.

Design and training of shape model
In DeepShape, the shape model is a context-dependent
model which characterizes ribosome moving patterns
or distributions. We use a convolution neural network
(CNN) model to learn the association between the con-
text nucleotides and shape of ribosome profiles (Fig.
2c). The model was built by a Python deep learning
library Keras [33].
We used the encoded codon sequence, instead of nu-

cleotide sequence, to represent the surrounding context
of the ribosome. The input to the CNN model is the
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Dropout(0.2)

Dropout(0.2)
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A CIteration 1Initialization Iteration 2

Iteration 1Initialization Iteration 2

Fig. 2 Designing of DeepShape and the shape model. a pipeline of DeepShape-prime. After a uniform initiation of ribosome abundance
normalized by CDS length, in each iteration, reads are mapped proportional to normalized ribosome abundance, and then a new ribosome
abundance is updated. b pipeline of DeepShape. A shape model is introduced, and in each iteration, reads are mapped proportional to ribosome
abundance and an instructive ribosome shape together. Then the shape model is fitted to generate a new instructive ribosome shape which can
introduce heterogeneity because of different contexts. c structure of the shape model. The model contains an embedding layer which converts
the codons to ‘one-hot’ vectors, three convolutional layers and a full connection layer
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codon sequences of length 121 surrounding the pos-
ition of ribosome (60aa upstream and 60aa down-
stream). The model contains a layer encoding 64
different codons into 64-dimensional ‘one-hot’ vectors,
three convolutional layers, a full connecting layer, and
an output layer. The output is the predicted instructive
ribosome shape value at this site. The normalized
values of ribosome distribution along transcripts were
used here to train the deep learning model, which can
be calculated as

xi j ¼ ci jX
j∈½1;li�

ci j
� li;

where xij denotes the normalized ribosome distribution
of gene i at the position of its j-th codon, cij denotes the
number of ribosome reads at position j on transcript i,
and li denotes the length of the coding region of the
transcript. Data with extremely high or low values (out-
side [μ-3σ, μ + 3σ] in log scale, μ and σ are the mean and
standard deviation of all values in training data) or zeros
are discarded from the training dataset. Besides, the ori-
ginal data follows a log-normal-like distribution. We did
a data re-sampling to keep the data relatively balanced
in each distance from center. The region between [μ-3σ,
μ + 3σ] was divided into 10 bins, and in each bin, we re-
sampled 50,000 data points.
We train the shape model by minimizing the following

loss function:

L ¼
P

i¼ 1;N½ � log max 10−8; ypredict
� �� �

− log max 10−8; yground−truth
� �� �h i2

N
;

where N denotes the size of the training data. The train-
ing of the CNN model stops if the loss of the validation
set in current epoch is higher than that of the last
epoch.

Comparison of the shape model and DeepShape
We applied the shape model of DeepShape to datasets
from four different organisms downloaded from GWIPS:
the yeast dataset used in RiboShape [4], an E. coli dataset
[30], a mouse dataset [31] and a human dataset [32]. We
compared our performance with that of RiboShape.
We compared both DeepShape-prime and DeepShape

with Ribomap for accuracy of the predicted ribosome
distributions at the transcripts. Default parameters of
Ribomap were used in this study. We also included a
naive method which distributes the multiple-mapped
reads uniformly to all target transcripts. As the mapping
process was carried out by STAR [24], we call the naïve
method as “STAR-uniform” in this paper. In addition,
we tested an RNA-seq quantification tool, Salmon, using
the synthetic Ribo-seq data directly, in order to assess

the performance of the representative RNA-seq profiling
method.

Calculation of codon residence index
To study potential translation mechanisms, we investi-
gated the translation speed of codons. We defined
Codon Residence Index (CRI), which shows the relative
speed when a ribosome going through a codon com-
pared with its synonymous codons. This index is defined
in the following:

CRIij ¼
1
nij

Xnij

k¼1
x j
ik

1
#S j

X
j
0
∈S j

1
ni j0

Xn
i j
0

k¼1
x j

0

ik

−1;

where CRIij denotes the CRI value of codon j on a spe-
cific transcript i, x j

ik denotes the normalized ribosome
distribution value (see Section 2.3) at the position of the
k-th codon j on the i-th transcript, nij denotes the num-
ber of codon j on transcript i, and Sj denotes the set of
codon j’s synonymous codons on that transcript (includ-
ing j). If a codon has a CRI value above zero, it means
that a ribosome tends to pay more time on this codon
compared with its synonymous codons. On the contrary,
a CRI value below zero means that a ribosome tends to
move faster on the codon compared with its synonym-
ous codons.

Results
Performance of the shape model on benchmark datasets
To assess the accuracy of ribosome shape prediction, we
applied the aforementioned computational models to the
yeast dataset (see Methods). Table 1 shows the average
Pearson correlation coefficients (PCC) between pre-
dicted ribosome profiles and ground-truth profiles for
genes with different coding length. Our CNN model in
DeepShape can produce an average PCC of 0.60 in the
testing dataset (Additional file 1: Figure S2). Genes from
251 aa to 500 aa in length tend to have the most accur-
ate predictions. Liu et.al. showed that prediction on
lower wavelet transformation space can give higher
correlations using their method. Even so, our results
show a better performance (0.57~0.63 PCC) without any
smoothing procedure than that of RiboShape on
smoothed V7 space (0.46~0.52 PCC), and even on very
smoothed V4 space (0.49~0.62 PCC) (Table 1). These
results prove the advantage of our CNN model.
We also tested our shape model and RiboShape on

ribosome distribution datasets of E. coli, mouse and hu-
man (Methods and Additional file 1: Supplementary
Methods). In E. coli and human datasets, our shape
model outperforms RiboShape (Additional file 1: Table
S1). In the mouse dataset, the two methods gave similar
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results. However, the predicted ribosome shape that our
shape model provides is at the codon level resolution,
while RiboShape can only give smoothed prediction in
subspace. Moreover, our shape model has great advan-
tage in computational time. For example, on the E. coli
dataset, our shape model took less than 2 hours running
a 10-fold cross validation, while RiboShape took more
than 3 days.

Performance of ribosomal abundance estimation using
synthetic datasets
We simulated a pair of synthetic Ribo-seq/RNA-seq
dataset, both containing 20,000,000 reads with length 30
bps (Additional file 1: Supplementary Methods). The
read length and mRNA abundance were set following a
real dataset from human HeLa cells [34] (see Section
2.1), which was also used in the study of Ribomap [15].
We applied DeepShape, DeepShape-prime and Ribomap
to this dataset to show their performances in predicting
ribosome abundance. DeepShape and DeepShape-prime
used Ribo-seq data only, while Ribomap used both Ribo-
seq data and RNA-seq data. Both ribosome count abun-
dance and CDS-length-normalized abundance (see
Section 2.1) were evaluated and compared.
Figure 3 plots the PCC curves of ribosome count

abundance (measured in absolute counts of ribosome-
protected fragments on CDS regions) estimated by
DeepShape-prime, DeepShape and Ribomap, compared
with the “ground-truth” of preset ribosome abundance
in the synthetic dataset. DeepShape-prime was run for 1
to 1000 iterations (blue dots) and DeepShape was run
for 1 to 200 iterations. For DeepShape, two kinds of ini-
tialing ribosome abundance (see Section 2.2 in Methods)
were tested: uniform (red dots), or direct results from
the 200-th iteration of DeepShape-prime (purple dots).
We observe that the PCC value of DeepShape-prime

improves quickly at the first 30 iterations, becoming
stabilized, and then finally converging to values higher
than 0.99 after 100 iterations. The convergent speed of
DeepShape is a bit shower than that of DeepShape-
Prime at the beginning iterations because it has an
additional module for shape prediction, which at the
end leads to higher accuracy than DeepShape-prime

(0.9960 vs. 0.9949, in the 200-th iteration). Both Deep-
Shape and DeepShape-prime outperform Ribomap
(PCC 0.9342, blue dots-dashed line) after about 10 iter-
ations. Starting from ribosome abundance exported
from DeepShape-prime can help DeepShape get better
performance compared with uniform initialization
(0.9982 vs 0.9960, both in the 200-th iteration). To test
the accuracy of existing isoform-level RNA-seq quanti-
fication algorithms on Ribo-seq data, we applied Sal-
mon, a widely used program, to the same dataset, and
obtained a PCC value of only 0.8923, much worse than
existing Ribo-seq programs. This shows that designing
computational tools specifically for Ribo-seq data ana-
lysis is necessary. The performances of estimating
length-normalized ribosome abundances by Deep-
Shape-prime, DeepShape and Ribomap show similar re-
sults (Additional file 1: Figure S3). In practice, as
DeepShape-prime runs much faster because it does not
need to calculate the shape, and since the distinction
between DeepShape and DeepShape-prime is quite
small, user can choose DeepShape-prime for efficient
estimation for ribosome abundance information.
Additional tests were conducted to evaluate the ro-

bustness of DeepShape-prime. We tested DeepShape-
prime with 200 iterations against Ribomap on three
randomly generated synthetic datasets using several
measures. Table 2 shows that DeepShape-prime out-
performs Ribomap in all three datasets. The perform-
ance of DeepShape-prime stabilizes at values higher
than 0.99 for ribosome abundance PCC, yet the per-
formance of Ribomap floats from around 0.87 to 0.93.
The ribosome loading MSE values of DeepShape-
prime are about one magnitude smaller than those of
Ribomap. Moreover, from the aspect of CDS-length-
normalized ribosome abundance, we observe that the
performance of Ribomap relies a lot on the extent of
similarity between mRNA abundance and ribosome
abundance (last three lines in Table 2). The results
show that DeepShape is more robust than Ribomap.

Performance of ribosomal shape prediction
To evaluate the performance of ribosome shape predic-
tion, we compared the mean shape Pearson correlations

Table 1 Performance of shape model on genes with different lengths

Length (codons) RiboShape V3a RiboShape V4a RiboShape V7a Shape model (DeepShape)

<=250 0.61 0.53 0.45 0.61

251–500 0.67 0.62 0.52 0.63

501–750 0.61 0.58 0.50 0.59

751–1000 0.52 0.49 0.46 0.57

> 1001 0.54 0.51 0.46 0.58
aReported in RiboShape study [4]. The V3 and V4 spaces are highly smoothed subspaces of the original ribosome distribution profile after wavelet transformation.
V3 is smoother than V4. The V7 space is also smoothed, but most similar to the original space. RiboShape performs better in a lower subspace
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of the following four models: DeepShape-prime, Deep-
Shape, Ribomap, and a simple model, called STAR-
uniform, which allocates multiple-mapped reads ran-
domly to their mapped genes. The methods were applied
and evaluated in our synthetic dataset (see Section 2.1).
Figure 4a shows the PCC curves of the ribosome shape

predictions for both DeepShape-prime and DeepShape
from iterations 1 to 400, as well as the PCC values by
Ribomap and STAR-uniform. DeepShape has the best
average shape PCC of 0.900, followed by DeepShape-
prime with 0.891. The result of the STAR-uniform is
0.849, but better than that of Ribomap (0.814). This is
because of the misleading information by using RNA-
seq abundance, which may be very different from ribo-
some abundance because of variation of translation effi-
ciency. It should be noted that DeepShape first obtained
the ribosome abundance results of the 200th iteration of
DeepShape-prime and then estimated the ribosome

profiles, which improved the PCC value from 0.891 to
0.899 after about 10 iterations.
We observed a noticeable improvement of ribosome

shape predictions for many genes. For example, from
STAR-uniform to DeepShape, more than 3405 genes have
a better profile with improved PCC value > 0.1. The
“small” improvement from DeepShape-prime (0.891) to
DeepShape (0.900) means that 421 genes have a better
profile with improved PCC value > 0.1.
Figure 4b shows an example of reconstructed ribo-

some profiles by DeepShape, DeepShape-prime, Ribomap
and STAR-uniform. The three transcripts come from
gene RPLP1 (ribosomal protein, large, P1. Gene ID:
ENSG00000137818). This gene contains four exons, and
because the length of Exon 3 is not a multiple of three, a
frame shift on Exon 4 occurs in transcript RPLP1–006
compared with transcripts RPLP1–001 and RPLP1–002;
hence, the ribosome distribution at this exon varies by

Table 2 Ribosome abundance estimation performance in three replicate synthetic datasets

Evaluation Method Dataset 1 Dataset 2 Dataset 3

Ribosome count PCC DeepShape-prime 0.9931 0.9947 0.9932

Ribomap 0.8952 0.9253 0.8680

Ribosome count MSE DeepShape-prime 87,546 70,815 157,187

Ribomap 1,216,917 854,546 2,213,367

CDS-Length-normalized ribosome abundance PCC DeepShape-prime 0.9990 0.9991 0.9981

Ribomap 0.9158 0.9381 0.9616

Ground-truth mRNA vs ribosome abundance PCC (both normalized by length) 0. 6775 0.7162 0.8252

PCC: Pearson correlation coefficient between prediction and ground-truth.
MSE: Mean square error between prediction and ground-truth.

Ribomap: 0.9342

0.850

0.875

0.900

0.925

0.950

0.975

1.000

0.990

0 50 100 150 200 250

Iteration

P
C

C

Group
DeepShape−prime
DeepShape (starts from uniform)
DeepShape (starts from DeepShape-Prime iteration 200)

10
0095
0

90
0

85
0

80
0

75
0

70
0

65
0

60
0

55
0

50
0

45
0

40
0

35
0

30
0

0.9977

0.9960 0.9982

0.9949
0.9970

Fig. 3 PCC curves for prediction of ribosome abundance at each iteration of DeepShape and DeepShape-prime. For comparison, the PCC value of
Ribomap is shown

Cui et al. BMC Bioinformatics 2019, 20(Suppl 24):678 Page 7 of 13



transcripts. After introducing the shape model, we ob-
serve that the ribosome distribution of RPLP1–001 and
RPLP1–002 improves significantly compared to the
“ground-truth” when generating the synthetic data
(Fig. 4b, light green bars) from DeepShape-prime (Fig.
4b, blue line) to DeepShape (Fig. 4b, red line) by the in-
crease of PCC value of RPLP1–001 from 0.828 to 0.966
and the increase of PCC value of RPLP1–002 from 0.795
to 0.961. The improvement solely results from better
ribosome distribution prediction. DeepShape-prime allo-
cates multiple-mapped reads proportionally according to
ribosome abundance; therefore, in its results, the ribo-
some distribution shapes on exon 4 are similar among
the three transcripts, as the proportions are dominated
by the one with highest abundance (the third transcript
here). In contrast, the DeepShape model catches the
frame shift in computing the ribosome profile.

Figure 4c shows the distributions of Pearson correla-
tions between predicted gene profiles and the ground-
truth. Results show that DeepShape has significantly
higher PCC values compared to those of both Ribo-
map and STAR-uniform. Ribosome profiles of more
than 68.9% (13,823 out of 20,073) of isoforms can be
reconstructed with Pearson correlation > 0.9 by Deep-
Shape-prime.

Translation process revealed by DeepShape
Discovery of ribosomal stalling using synthetic datasets
We demonstrate that DeepShape can be used to discover
ribosomal stalling events, defined as the positions at
which ribosome profiles are higher than μ + 2σ, where μ
and σ are the mean and standard deviation of the nor-
malized ribosome distribution. We first annotated stal-
ling events in the ground-truth ribosome profiles of the
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synthetic dataset. We then applied DeepShape, Deep-
Shape-prime, Ribomap and STAR-uniform to the syn-
thetic data, respectively, obtaining the ribosome profiles,
followed by annotation of stalling events on the recon-
structed profiles. Additional file 1: Figure S4 shows the
results. Out of the 134,137 stalling events annotated as
the ground-truth, DeepShape could identify 87.7% (117,
647), higher than Ribomap (65.5%), STAR-uniform
(74.4%) and DeepShape-prime (87.1%), showing the high
sensitivity of DeepShape. Moreover, DeepShape has the
highest precision (84.1%), compared to Ribomap
(64.3%), STAR-uniform (68.3%) and DeepShape-prime
(83.6%). All these results validate that DeepShape can ac-
curately identify more translation events.

Calculating translation efficiency with Ribo-seq
We re-analyzed a Ribo-seq dataset of human prostate
cancer cells (PC3 dataset) [23]. In cancer development,
mammalian target of rapamycin (mTOR) kinase is a very
important factor [35, 36], and an mTOR ATP site inhibi-
tor, PP242, can inhibit the downstream pathway of
mTOR. The effectiveness of PP242 (an mTOR ATP site
inhibitor) on downregulating the translation of mTOR
sensitive genes in PC3 cells was proved in gene level
[23]. Here using DeepShape, we analyzed the transla-
tional response to PP242 treatment in transcript level.
We first computed the mRNA and ribosome abun-

dance correlations (evaluated in PCC) for samples at
the same condition and between treatments (Fig. 5b
and c). High consistency was observed between two
replicates under the same condition (control or PP242
treatment). Interestingly, for mRNA abundance, the
correlation between treatments are even higher than
that in the same condition (Fig. 5a), indicating that the
treatment did not significantly alter expression of tran-
scripts. On the other hand, for ribosome abundance,
the correlation between the two conditions is higher
(Fig. 5b). After PP242 treatment, these observations
show that the change of translating ribosome abun-
dance is higher than the change of gene expression.
We analyzed the translation efficiencies (TE) in each

experiment. In previous works, TE was mainly calculated
by ribosome reads/RNA-seq reads [9, 23], or with some
self-defined normalization method [15]. Although these
approaches can reveal the relative efficiency when com-
paring different isoforms, the results are easily affected
by sequencing depth. Here we use the length-normalized
ratio (of ribosome abundance/mRNA abundance) to de-
fine TE (see Section 2.1), which follows a log-normal
distribution (Fig. 5c). About a quarter of transcripts
(5311 out of 19,522) have a translation efficiency value
higher than 4 or lower than 0.25. It is obvious that
mRNA abundance is very different from ribosome abun-
dance (Fig. 5d). This also confirms that allocating

multiple-mapped reads by RNA-seq transcript abun-
dance is not suitable.
In the original paper of the PC3 dataset, four cell in-

vasion/metastasis genes were reported to be signifi-
cantly regulated in translation by PP242 treatment:
VIM, YB1, MTA1, and CD44. This gene level observa-
tion is confirmed in our study on transcript level
(Table 3). Meanwhile, we found that isoforms of the
same gene may have very different TE or TE regulation
patterns (Table 3). For example, four isoforms were
found in VIM: VIM-001, VIM-002, VIM-003 and VIM-
201 (Additional file 1: Figure S5). Among them, VIM-
001 and VIM-201 have the same protein coding region,
and we therefore combined them into one. VIM-002
and VIM-003 are alternatively spliced transcripts and
annotated as nonsense-mediated decay (NMD), which
is regarded as erroneous splicing and will be decayed
under normal circumstances. In the two replicates of
experiments, VIM-001 (VIM-201) shows similar TEs
and TE regulation patterns after PP242 treatment, and
the two NMD transcripts show very different TEs but
similar TE regulation patterns (Table 3). Both NMD
transcripts of VIM genes show lower TEs in replicate
2, and the effect of down-regulation by PP242 is more
obvious than that of replicate 1 (Additional file 1:
Table S2). The MTA1 gene also have similar
phenomenon. The isoform switching also occurs in
other cell types (Additional file 1: Table S3). Because
of the lack of isoform-level translation studies in the
past, in-depth study on the difference of TE among
isoforms from the same gene is absent from the litera-
ture. In view of this, the analysis here may provide a
new paradigm for the study of translation.

Translation process analyzed by combining RNC-seq with
Ribo-seq
Codon usage is one of the main factors related to the
speed of ribosome movement along transcripts [37]. The
speed of translating a codon is supposed to be related to
the current cellular concentration of its corresponding
tRNA [38, 39]. As outer environmental stress may affect
tRNA concentration [40], it may also affect codon-
specific ribosome movement speed. Here we designed
an index, named “Codon Residence Index” (CRI, see
Section 2.5), which stands for the relative time usage
when a ribosome passing by a codon comparing with its
synonymous codons. Using CRIs calculated from the
ribosome distribution reported by DeepShape, we ana-
lyzed the association of PP242 treatment and ribosomes’
movement in codon-resolution.
To avoid inaccurate ribosome distribution estimation

per codon on isoforms with low abundance, we only
considered isoforms with both length-normalized ribo-
some and mRNA abundance higher than 10. Figure 5e
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shows the 64 codons’ average CRI values among all fil-
tered transcripts. The four PC3 experiments show very
similar CRI patterns (Fig. 5e). It’s common that a codon
shows obvious speed up (lower CRI) or pause (higher
CRI) compared with its synonymous codons. For ex-
ample, the ribosome’s resident times on GCC, GGC,
CGC and AGC are at least 20% shorter than on their
synonymous codons (CRI ≤ − 0.2), in all the four

experiments. On the contrary, the ribosomes averagely
stay at least 20% longer on GCA, TTA and CGA than
on their synonymous codons (CRI ≥ 0.2).
CRI patterns of the same replicate are more similar

compared with that of the same condition (treat/con-
trol), which imply that each cell has their relatively char-
acterized CRI pattern. However, after PP242 treatment,
the trend of CRI shifts of the two replicates shows some
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interesting phenomenon: five codons show significant
ribosome speed up in both replicates, and on the con-
trary, seven codons show significant ribosome slowing
down. For all the four codons with CRI lower than −0.2
(GCC, GGC, CGC and AGC), the ribosome resident
time on three of them (GGC, CGC and AGC) were sig-
nificantly increased (Fig. 5, red stars) in both replicates.
The other codon, GCC, also has increased average CRI
values in both replicates after PP242 treatment. This im-
plies potential regulatory mechanism of outer environ-
ment stress on codon-specific translation.

Discussion
In this paper, we developed a computational method,
DeepShape, which not only accurately estimates ribo-
some abundance at isoform level, but also provides pre-
cise ribosome distribution profiles along transcripts.
DeepShape uses Ribo-seq reads only, making full use of
multiple-mapped reads.
Many excellent RNA-seq quantification tools for

isoform-level abundance estimation are available, such
as cufflinks [41], RSEM [42], Salmon [25] and eXpress
[43]. However, Ribo-seq data have characteristics that
are very different from those of RNA-seq data. For ex-
ample, the location of Ribo-seq reads is actually in the
upstream of real ribosome binding site, and most Ribo-
seq reads are targeted to the CDS region. The main
source of bias of Ribo-seq reads comes from the move-
ment of ribosomes, not RNA-seq sequence bias. For all
these reasons, existing RNA-seq tools cannot be directly
applied to Ribo-seq data analysis.
The movement of ribosome is highly non-uniform, but

at exon-level, the overall non-uniformity of coverage can
be smoothed. Compared with allocating multiple
mapped reads according to mRNA abundance, Deep-
Shape is a more accurate approach to making use of all
mapped reads. Results on synthetic data proved its su-
periority over the state-of-the-art methods, and the ana-
lytic results for a published human prostate cancer cell

dataset show many novel observations of cancer-related,
isoform-level translational regulation events, which may
point to new biological discoveries.
DeepShape was developed for model organisms that

have complete and accurate transcript annotations. For
non-model organisms with incomplete or erroneous
transcript annotations, the accuracy of our model will be
affected. We hope to investigate this topic in the future.
Some parameters in DeepShape can be adjusted by

users. For example, the input length of the shape model
used in this study is 121 codons. However, users can
manually set this number to other lengths. According to
the sequence depth of Ribo-seq dataset, users can also ad-
just the bin number and data number in the re-sampling
step when training the shape model. The number of itera-
tions in running DeepShape-prime and DeepShape can
also be defined by users. For faster computation, user can
set a smaller number.
In this study, we also proposed a codon-resolution

index, Codon Residence Index (CRI) to study the
relative ribosome moving speed on each codon com-
pared with its synonymous codons. Using the ribo-
some distribution given by DeepShape, we found
some interesting CRI pattern in human PC3 cells, in-
cluding potential regulation pattern that related with
PP242 treatment. However, the mechanisms of CRI
patterns need to be further investigated. For example,
we’ve also calculated the CRI patterns of a human
A549 cell and a human HBE cell [20, 22]. Results
show that the two cell-lines has very similar CRI pat-
tern, yet distinct from the patterns of the PC3 cells
in this study (Additional file 1: Figure S6). This im-
plies that the CRI pattern may not be cell-line-
specific, but rather related to different experimental
protocols. The suggestion also reminds us to think
about the necessity of considering and eliminating the
experiment-specific bias when reading the underlying
translation regulation mechanisms from ribosome dis-
tribution data.

Table 3 mRNA and ribosome abundance in the four cell invasion/metastasis genes

Gene Transcript mRNA (TPM) Ribosome (CDS-length-normalized)

control1 control2 treat1 treat2 control1 control2 treat1 treat2

VIM ENST00000544301.6 (VIM-001) 1268.151 1079.626 1864.131 1606.06 1530.699 1432.324 655.713 491.6958

ENST00000487938.5 (VIM-002) 1.19409 5.19589 4.60853 6.37172 3.314905 1.386528 2.49548 1.02E-20

ENST00000469543.5 (VIM-003) 8.6292 9.6432 5.48475 4.47247 189.396 13.71204 42.24884 0.044353

YBX1 ENST00000321358.11 (YBX1–201) 932.746 837.964 1007.04 921.105 641.5486 579.1333 228.5892 145.99

MTA1 ENST00000331320.11 (MTA1–001) 7.72171 0 9.44299 7.80098 3.139666 0.0147 0.012351 1.39E-13

ENST00000405646.5 (MTA1–003) 49.2963 38.3313 43.2853 35.8685 16.53584 18.04329 18.76716 7.94493

ENST00000438610.5 (MTA1–004) 10.3167 7.68285 14.4819 14.1276 6.170347 5.191197 8.055225 6.377454

CD44 ENST00000263398.10 (CD44–003) 68.0735 74.2861 77.4636 74.5578 241.7872 311.4829 187.2566 177.6087

ENST00000434472.6 (CD44–008) 3.81167 5.32514 8.42678 10.1775 9.713445 13.79658 7.088849 13.68229
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Conclusion
We propose DeepShape to analyze Ribo-seq data, and
estimate ribosome abundance and distribution at iso-
form level. DeepShape makes full use of multiple-
mapped reads. Compared with another state-of-art
method, Ribomap, DeepShape needs only Ribo-seq data,
without any RNA-seq data. DeepShape can help re-
searchers to understand translation mechanisms.
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