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Abstract

Background: In recent years, lncRNAs (long-non-coding RNAs) have been proved to be closely related to the
occurrence and development of many serious diseases that are seriously harmful to human health. However, most
of the lncRNA-disease associations have not been found yet due to high costs and time complexity of traditional
bio-experiments. Hence, it is quite urgent and necessary to establish efficient and reasonable computational models
to predict potential associations between lncRNAs and diseases.

Results: In this manuscript, a novel prediction model called TCSRWRLD is proposed to predict potential lncRNA-
disease associations based on improved random walk with restart. In TCSRWRLD, a heterogeneous lncRNA-disease
network is constructed first by combining the integrated similarity of lncRNAs and the integrated similarity of
diseases. And then, for each lncRNA/disease node in the newly constructed heterogeneous lncRNA-disease
network, it will establish a node set called TCS (Target Convergence Set) consisting of top 100 disease/lncRNA
nodes with minimum average network distances to these disease/lncRNA nodes having known associations with
itself. Finally, an improved random walk with restart is implemented on the heterogeneous lncRNA-disease network
to infer potential lncRNA-disease associations. The major contribution of this manuscript lies in the introduction of
the concept of TCS, based on which, the velocity of convergence of TCSRWRLD can be quicken effectively, since
the walker can stop its random walk while the walking probability vectors obtained by it at the nodes in TCS
instead of all nodes in the whole network have reached stable state. And Simulation results show that TCSRWRLD
can achieve a reliable AUC of 0.8712 in the Leave-One-Out Cross Validation (LOOCV), which outperforms previous
state-of-the-art results apparently. Moreover, case studies of lung cancer and leukemia demonstrate the satisfactory
prediction performance of TCSRWRLD as well.

Conclusions: Both comparative results and case studies have demonstrated that TCSRWRLD can achieve excellent
performances in prediction of potential lncRNA-disease associations, which imply as well that TCSRWRLD may be a
good addition to the research of bioinformatics in the future.

Keywords: Potential lncRNA-disease association prediction, Heterogeneous network, Random walk with restart,
Target convergence set, Global set
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Background
For many years, the genetic information of organism is
considered to be stored only in genes used for protein
coding, and RNAs have always been thought to be an
intermediary in the process of encoding proteins by
DNAs [1, 2]. However, recent studies have shown that
the genes used to encode proteins only account for a
small part (less than 2%) of human genome and more
than 98% of human genome are not made up of genes
that encode proteins and yield a big mount of ncRNAs
(non-coding-RNAs) [3, 4]. In addition, as the complexity
of biological organisms increases, so does the import-
ance of ncRNAs in biological processes [5, 6]. Generally,
ncRNAs can be divided into two major categories such
as small ncRNAs and long ncRNAs (lncRNAs) according
to the length of nucleotides during transcription, where
small ncRNAs consist of less than 200 nucleotides and
include microRNAs and transfer RNAs etc. However,
lncRNAs consist of more than 200 nucleotides [7–9]. In
1990, the first two kinds of lncRNAs such as H19 and
Xist were discovered by researchers through gene map-
ping. Since gene mapping approach is extremely time-
consuming and labor-intensive, then researches in the
field of lncRNAs have been at a relatively slow pace for a
long time [10, 11]. In recent years, with the rapid devel-
opment of high-throughput technologies in gene se-
quencing, more and more lncRNAs have been found in
eukaryotes and other species [12, 13]. Moreover, simula-
tion results have shown as well that lncRNAs play im-
portant roles in various physiological processes such as
cell differentiation and death, regulation of epigenetic
shape and so on [8, 14, 15]. Simultaneously, growing evi-
dences have further illustrated that lncRNAs are closely
linked to diseases that pose a serious threat to human
health [16–18], which means that lncRNAs can be used
as potential biomarkers in the course of disease treat-
ment in the future [19].
With the discovery of a large number of new types of

lncRNAs, many databases related to lncRNAs such as
lncRNAdisease [20], lncRNAdb [21], NONCODE [22]
and Lnc2Cancer [23] have been established by re-
searchers successively, however, in these databases, the
number of known associations between lncRNAs and
diseases is still very limited due to high costs and time-
consumption of traditional biological experiments. Thus,
it is meaningful to develop mathematical models to pre-
dict potential lncRNA-disease associations quickly and
massively. Based on the assumption that similar diseases
tend to be more likely associated with similar lncRNAs
[24, 25], up to now, a good deal of computational
models for inferring potential lncRNA-disease associa-
tions have been proposed. For instance, Chen et al. pro-
posed a computational model called LRLSLDA [26] for
prediction of potential lncRNA-disease associations by

adopting the method of Laplacian regularized least
squares. Ping and Wang et al. constructed a prediction
model for extracting feature information from bipartite
interactive networks [27]. Zhao and Wang et al. devel-
oped a computational model based on Distance Correl-
ation Set to uncover potential lncRNA-disease
associations through integrating known associations
between three kinds of nodes such as disease nodes,
miRNA nodes and lncRNA nodes into a complex net-
work [28]. Chen et al. proposed an lncRNA-disease asso-
ciation prediction model based on a heterogeneous
network by considering the influence of path length be-
tween nodes on the similarity of nodes in the heteroge-
neous network [29–31]. However, for some time past, a
network traversal method called RWR (Random Walk
with Restart) has emerged in the field of computational
biology including prediction of potential miRNA-disease
associations [32, 33], drug-target associations [34] and
lncRNA-disease associations [35–37] etc.
Inspired by the thoughts illustrated in above state-of-

the-art literatures, in this paper, a computational model
called TCSRWRLD is proposed to discover potential
lncRNA-disease associations. In TCSRWRLD, a heteroge-
neous network is constructed first through combining
known lncRNA-disease associations with the lncRNA in-
tegrated similarity and the disease integrated similarity,
which can overcome a drawback of traditional RWR based
approaches that these approaches cannot start walking
process while there are no known lncRNA-disease associ-
ations. And then, each node in the heterogeneous network
will establish its own TCS according to the information of
network distance, which can reflect the specificity of
different nodes in the walking process and make the pre-
diction more accurate and less time-consuming. More-
over, considering that for a given walker, while its TCS
has reached the ultimate convergence state, there may be
still some nodes that are not included in its TCS but actu-
ally associated with it, then in order to ensure that there is
no omission in our prediction results, each node in the
heterogeneous network will further establish its own GS
as well. Finally, for evaluating the prediction performance
of our newly proposed model TCSRWRLD, cross valid-
ation are implemented based on known lncRNA-disease
associations downloaded from the lncRNAdisease data-
base (2017version), and as a result, TCSRWRLD can
achieve reliable AUCs of 0.8323, 0.8597, 0.8665 and
0.8712 under the frameworks of 2-folds CV, 5-folds CV,
10-folds CV and LOOCV respectively. In addition, simula-
tion results in case studies of leukemia and lung cancer
show that there are 5 and 7 out of the top 10 predicted
lncRNAs having been confirmed to be associated with
Leukemia and Lung cancer respectively by recent evi-
dences, which demonstrate as well that our model
TCSRWRLD has excellent prediction performance.
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Results
In order to verify the performance of TCSRWRLD in pre-
dicting potential lncRNA-disease associations, LOOCV, 2-
folds CV, 5-folds CV and 10-folds CV were implemented
on TCSRWRLD respectively. And then, based on the data-
set of 2017-version downloaded from the lncRNADisease
database, we obtained the Precision-Recall curve (P-R
curve) of TCSRWRLD. In addition, based on the dataset of
2017-version downloaded from the lncRNADisease data-
base and the dataset of 2016-version downloaded from the
lnc2Cancer database, we compared TCSRWRLD with
state-of-the-art prediction models such as KATZLDA,
PMFILDA [38] and Ping’s model separately. After that, we
further analyzed the influences of key parameters on the
prediction performance of TCSRWRLD. Finally, case stud-
ies of leukemia and lung cancer were performed to validate
the feasibility of TCSRWRLD as well.

Cross validation
In this section, ROC curve (Receiver Operating Characteris-
tic) and the score of AUC (Area Under ROC Curve) will be
adopted to measure the performance of TCSRWRLD in
different cross validations. Here, let TPR (True Positive
Rates or Sensitivity) represent the percentage of candidate
lncRNAs-disease associations with scores higher than a
given score cutoff, and FPR (False Positive Rates or 1-
Specificity) denote the ratio of predicted lncRNA-disease
associations with scores below the given threshold, then
ROC curves can be obtained by connecting the correspond-
ing pairs of TPR and FPR on the graph. As illustrated in

Fig. 1, simulation results show that TCSRWRLD can
achieve reliable AUCs of 0.8323, 0.8597, 0.8665 and 0.8712
in the frameworks of 2-folds CV, 5-folds CV, 10-folds and
LOOCV respectively, which implies that TCSRWRLD can
achieve excellent performance in predicting potential
lncRNA-disease associations.
Moreover, in order to further estimate the prediction

performance of TCSRWRLD, we will obtain the P-R
curve of TCSRWRLD as well. Unlike the AUC, the
AUPR (Area Under the Precision-Recall curve) repre-
sents the ratio of all true positives to all positive predic-
tions at every given recall rate. As illustrated in Fig. 2,
simulation results show that TCSRWRLD can achieve a
reliable AUPR of 0.5007.

Comparison with other related methods
From above descriptions, it is easy to know that
TCSRWRLD can achieve satisfactory prediction perform-
ance. In this section, we will compare TCSRWRLD with
some classical prediction models to further demonstrate
the performance of TCSRWRLD. Firstly, based on the data-
set of 2017-version downloaded from the lncRNAdisease
database, we will compare TCSRWRLD with the state-of-
the-art models such as KATZLDA, PMFILDA and Ping’s
model. As shown in Fig. 3, it is easy to see that
TCSRWRLD can achieve a reliable AUC of 0.8712 in
LOOCV, which is superior to the AUCs of 0.8257, 0.8702
and 0.8346 achieved by KATZLDA, Ping’s model and
PMFILDA in LOOCV respectively.

Fig. 1 AUCs achieved by TCSRWRLD under the frameworks of 2-folds CV, 5-folds CV, 10-folds CV and LOOCV respectively
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Moreover, in order to prove that TCSRWRLD can
perform well in different data backgrounds, we also
adopt the dataset of 2016-version downloaded from the
lnc2Cancer database, which consists of 98 human can-
cers, 668 lncRNAs and 1103 confirmed associations be-
tween them, to compare TCSRWRLD with KATZLDA,

PMFILDA and Ping’s model. As illustrated in Fig. 4, it is
easy to see that TCSRWRLD can achieve a reliable AUC
of 0.8475 in LOOCV, which is superior to the AUCs of
0.8204 and 0.8374 achieved by KATZLDA and
PMFILDA respectively, while is inferior to the AUC of
0.8663 achieved by Ping’s model.

Fig. 2 precision-recall curve achieved by TCSRWRLD

Fig. 3 The AUCs achieved by TCSRWRLD, KATZLDA, Ping’s model and PMFILDA in LOOCV based on the dataset of 2017-version downloaded
from the lncRNAdisease database
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Analysis on effects of parameters

In TCSRWRLD, there are some key parameters such as

γ
0
l , γ

0
d and ∂. As for γ

0
l and γ

0
d in the Equation (5) and

Equation (11), we have already known that the model
can achieve the best performance when the values of γ

0
l

and γ
0
d are both set to 1 [39]. Hence, in order to estimate

effect of the key parameter ∂ on the prediction perform-
ance of TCSRWRLD, we will set the value range of ∂
from 0.1 to 0.9 and select the value of AUC in LOOCV
as the basis of parameter selection in this section. As il-
lustrated in Table 1, It is easy to see that TCSRWRLD
can achieve the highest value of AUC in LOOCV while ∂
is set to 0.4. Moreover, it is also easy to see that
TCSRWRLD can maintain robustness for different
values of ∂, which means that TCSRWRLD is not sensi-
tive to the values of ∂ as well.

Case studies
Up to now, cancer is considered as one of the most dan-
gerous diseases to human health because it is hard to be
treated [40]. At present, the incidence of various cancers
has a high level not only in the developing countries
where medical development is relatively backward, but
also in the developed countries where the medical level

is already very high. Hence, in order to further evaluate
the performance of TCSRWRLD, case study of two
kinds of dangerous cancers such as lung cancer and
leukemia will be implemented in this section. As for
these two kinds of dangerous cancers, the incidence of
lung cancer has remained high in recent years, and the
number of lung cancer deaths per year is about 1.8 mil-
lion, which is the highest of any cancer types. However,
the survival rate within five years after the diagnosis of
lung cancer is only about 15%, which is much lower than
that of other cancers [41]. Recently, growing evidences
have shown that lncRNAs play crucial roles in the devel-
opment and occurrence of lung cancer [42]. As illus-
trated in Table 2, while implementing TCSRWRLD to
predict lung cancer related lncRNAs, there are 7 out of
the top 10 predicted candidate lung cancer related
lncRNAs having been confirmed by the latest experi-
mental evidences. Additionally, as a blood-related cancer
[43], Leukemia has also been found to be closely related
to a variety of lncRNAs in recent years. As illustrated in
Table 2, while implementing TCSRWRLD to predict
Leukemia related lncRNAs, there are 5 out of the top 10
predicted candidate Leukemia related lncRNAs having
been confirmed by state-of-the-art experiment results as
well. Thus, from above simulation results of case studies,
we can easily reach an agreement that TCSRWRLD may

Fig. 4 the AUCs achieved by TCSRWRLD, KATZLDA, Ping’s model and PMFILDA based on the dataset of 2016-version downloaded from the
Lnc2Cancer database

Table 1 AUCs achieved by TCSRWRLD in LOOCV while the parameter ∂ is set to different values from 0.1 to 0.9

∂ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

AUC 0.8418 0.8655 0.8707 0.8712 0.8700 0.8680 0.8700 0.8672 0.8660
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have great value in predicting potential lncRNA-disease
associations.

Discussion
Since it is very time-consuming and labor-intensive to
verify associations between lncRNAs and diseases
through traditional biological experiments, then it has
become a hot topic in bioinformatics to establish com-
putational models to infer potential lncRNA-disease as-
sociations, which can help researchers to have a deeper
understanding of diseases at the lncRNA level. In this
manuscript, a novel prediction model called TCSRWRLD
is proposed, in which, a heterogeneous network is con-
structed first through combining the disease integrated
similarity, the lncRNA integrated similarity and known
lncRNA-disease associations, which can guarantee that
TCSRWRLD is able to overcome the shortcomings of
traditional RWR based prediction models that the random
walk process cannot be started while there are no known
lncRNA-disease associations. And then, based on the
newly constructed heterogeneous network, a random walk
based prediction model is further designed based on the
concepts of TCS and GS. In addition, based on the dataset
of 2017-version downloaded from the lncRNAdisease
database, a variety of simulations have been implemented,
and simulation results show that TCSRWRLD can achieve
reliable AUCs of 0.8323, 0.8597 0.8665 and 0.8712 under
the frameworks of 2-fold CV, 5-fold CV, 10-fold CV and
LOOCV respectively. Additionally, simulation results of
case studies of lung cancer and leukemia show as well that
TCSRWRLD has a reliable diagnostic ability in predicting
potential lncRNA-disease associations. Certainly, the
current version of TCSRWRLD still has some shortages
and deficiencies. For example, the prediction performance
of TCSRWRLD can be further improved if more known
lncRNA-disease associations have been added into the

experimental datasets. In addition, more accurate estab-
lishment of Mesh database will help us obtain more accur-
ate disease semantic similarity scores, which is very
important for the calculation of lncRNA functional simi-
larity as well. Of course, all these above problems will be
the focus of our future researches.

Conclusion
In this paper, the main contributions are as follows: (1) A
heterogeneous lncRNA-disease network is constructed by
integrating three kinds of networks such as the known
lncRNA-disease association network, the disease-disease
similarity network and the lncRNA-lncRNA similarity net-
work. (2) Based on the newly constructed heterogeneous
lncRNA-disease network, the concept of network distance is
introduced to establish the TCS (Target Convergence Set)
and GS (Global Set) for each node in the heterogeneous
lncRNA-disease network. (3) Based on the concepts of TCS
and GS, a novel random walk model is proposed to infer
potential lncRNA-disease associations. (4) Through com-
parison with traditional state-of-the-art prediction models
and the simulation results of case studies, TCSRWRLD is
demonstrated to be of excellent prediction performance in
uncovering potential lncRNA-disease associations.

Methods and materials
Known disease-lncRNA associations
Firstly, we download the 2017-version of known
lncRNA-disease associations from the lncRNAdisease
database (http://www.cuilab.cn/ lncrnadisease). And
then, after removing duplicated associations and picking
out the lncRNA-disease associations from the raw data,
we finally obtain 1695 known lncRNA-disease associa-
tions (see Additional file 1) including 828 different
lncRNAs (see Additional file 2) and 314 different dis-
eases (see Additional file 3). Hence, we can construct a
314 × 828 dimensional lncRNA-disease association adja-
cency matrix A, in which, there is A(i, j) = 1, if and only
if there is an known association between the disease di
and the lncRNA lj in the LncRNADisease database,
otherwise there is A(i, j) = 0. In addition, for convenience
of description, let NL = 828 and ND = 314, then it is obvi-
ous that the dimension of the lncRNA-disease associ-
ation adjacency matrix A can be represented as ND ×NL.
And the like mentioned above, we can get a cancer-
disease associations adjacency matrix which dimension
is 98 × 668 (It comes from 2016-version of known
lncRNA-disease associations from the Lnc2Cancer data-
base) (see Additional file 4).

Similarity of diseases
Semantic similarity of diseases
In order to estimate the semantic similarity between dif-
ferent diseases, based on the concept of DAGs (Directed

Table 2 Evidences of top 10 potential leukemia-related lncRNAs
and lung cancer-related lncRNAs predicted by TCSRWRLD

Disease name LncRNA name RANK Evidence

Lung cancer YUG1 1 Lnc2Cancer

Lung cancer XIST 2 Lnc2Cancer

Lung cancer PVT1 4 Lnc2Cancer

Lung cancer PCAT29 5 MNDR

Lung cancer HOTAIRM1 7 MNDR

Lung cancer NEAT1 9 Lnc2Cancer

Lung cancer anti-NOS2A 10 Lnc2Cancer

Leukemia MALAT1 1 Lnc2Cancer

Leukemia HOTAIR 2 Lnc2Cancer

Leukemia H19 4 Lnc2Cancer

Leukemia MEG3 5 Lnc2Cancer

Leukemia PVT1 7 Lnc2Cancer
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Acyclic Graph) of different diseases proposed by Wang
et al. [44, 45], we can calculate the disease semantic
similarity through calculating the similarity between
compositions of DAGs of different diseases as follows:

Step 1 For all these 314 diseases newly obtained from
the lncRNAdisease database, their corresponding MESH
descriptors can be downloaded from the Mesh database
in the National Library of Medicine (http://www.nlm.
nih.gov/). As illustrated in Fig. 5, based on the informa-
tion of MESH descriptors, each disease can establish a
DAG of its own.

Step 2 For any given disease d, Let its DAG be
DAG(d) = (d, D(d), E(d)), where D(d) represents a set of
nodes consisting of the disease d itself and its ancestral
disease nodes, and E(d) denotes a set of directed edges
pointing from ancestral nodes to descendant nodes.

Step 3 For any given disease d and one of its ancestor
nodes t in DAG(d), the semantic contributions of the

ancestor node t to the disease d can be defined as
follows:

Dd tð Þ ¼
1

max Δ�Dd t0ð Þjt0∈children of tf g if t ¼ d
if t≠d

( )

ð1Þ
Where Δ is the attenuation factor with value between

0 and 1 to calculate the disease semantic contribution,
and according to the state-of-the-art experimental re-
sults, the most appropriate value forΔis 0.5 .

Step 4 For any given disease d, let its DAG be DAG(d),
then based on the concept of DAG, the semantic value
of d can be defined as follows:

D dð Þ ¼
X

ti∈DAG dð ÞDd tið Þ ð2Þ

Taking the disease DSN (Digestive Systems Neo-
plasms) illustrated in Fig. 5 for example, according to
the Equation (1), it is easy to know that the semantic
contribution of digestive systems neoplasms to itself is 1.
Besides, since the neoplasms by site and the digestive
system disease located in the second layer of the DAG of
DSN, then it is obvious that both of the semantic contri-
butions of these two kinds of diseases to DSN are
0.5*1 = 0.5. Moreover, since the neoplasms located in the
third layer of the DAG of DSN, then its semantic contri-
bution to DSN is 0.5*0.5 = 0.25. Hence, according to
above formula (2), it is easy to know the semantic value
of DSN will be 2.25 (=1 + 0.5 + 0.5 + 0.25).

Step 5 For any two given diseases di and dj, based on
the assumption that the more similar the structures of
their DAGs, the higher the semantic similarity between
them will be, the semantic similarity between di and dj
can be defined as follows:

DisSemSim i; jð Þ ¼ DisSemSim di; d j
� �

¼
P

t∈ DAG dið Þ∩DAG d jð Þð Þ Ddi tð Þ þ Dd j tð Þ
� �

D dið Þ þ D d j
� �

ð3Þ

Gaussian interaction profile kernel similarity of diseases
Based on the assumption that similar diseases tend to be
more likely associated with similar lncRNAs, according
to above newly constructed lncRNA-disease association
adjacency matrix A, for any two given diseases di and dj,
the Gaussian interaction profile kernel similarity be-
tween them can be obtained as follows:

GKD di; d j
� � ¼ exp −γd IP dið Þ−IP d j

� ��� ��2� �
ð4Þ

Fig. 5 DAG of the digestive system neoplasms and
breast neoplasms
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γd ¼ γ
0
d=

XND

k¼1
IP dkð Þk k2

� �
ð5Þ

Here, IP(dt) denotes the vector consisting of elements
in the tth row of the lncRNA-disease adjacency matrix
A. γd is the parameter to control the kernel bandwidth
based on the new bandwidth parameter γ

0
d by computing

the average number of lncRNAs-disease associations for
all the diseases. In addition, inspired by the thoughts of
former methods proposed by O. Vanunu et al. [46], we
will adopt a logistics function to optimize the Gaussian
interaction profile kernel similarity between diseases,
and based on above Equation (4), we can further obtain
a ND ×ND dimensional adjacency matrix FKD as follows:

FKD i; jð Þ ¼ 1
1þ e −12GKD i; jð Þþ log 9999ð Þð Þ ð6Þ

Integrated similarity of diseases
Based on the disease semantic similarity and disease
Gaussian interaction profile kernel similarity obtained
above, a ND ×ND dimensional integrated disease similar-
ity adjacency matrix KD (ND ×ND) can be obtained as
follows:

KD i; jð Þ ¼ DisSemSim i; jð Þ þ FKD i; jð Þ
2

ð7Þ

Similarity of LncRNAs
Functional similarity of LncRNAs
We can obtain corresponding disease groups of two
given lncRNAs li and lj from the known associations
of lncRNA-disease. Based on the assumption that
similar diseases tend to be more likely associated
with similar lncRNAs, We define the functional simi-
larity of two given lncRNAs li and lj as the semantic
similarity between the disease groups corresponding
to them. The specific calculation process is as
follows:
For any two given lncRNAs li and lj, let DS(i) = {dk |

A(k, i) = 1, k∈[1, ND]} and DS(j) = {dk | A(k, j) = 1, k∈[1,
ND]}, then the functional similarity between li and lj can
be calculated according to the following steps [31]:

Step 1 For any given disease group DS(k) and disease
dt∉DS(k), we first calculate the similarity between dt and
DS(k) as follows:

S dt ;DS kð Þð Þ ¼ maxds∈DS kð Þ DisSemSim dt ; dsð Þf g ð8Þ

Step 2 Therefore, based on above Equation (8), we de-
fine the functional similarity between li and lj as
FuncKL(i, j), which can be calculated as follows:

FuncKL i; jð Þ ¼
P

dt∈DS ið ÞS dt;DS jð Þð Þ þP
dt∈DS jð ÞS dt ;DS ið Þð Þ

j DS ið Þ j þ j DS ið Þ j
ð9Þ

Here, |D(i)| and |D(j)| represent the number of dis-
eases in DS(i) and DS(j) respectively. Thereafter, accord-
ing to above Equation (9), it is obvious that a NL ×NL

dimensional lncRNA functional similarity matrix
FuncKL can be obtained in final.

Gaussian interaction profile kernel similarity of lncRNAs
Based on the assumption that similar lncRNAs tend to
be more likely associated with similar diseases, according
to above newly constructed lncRNA-disease association
adjacency matrix A, for any two given lncRNAs li and lj,
the Gaussian interaction profile kernel similarity be-
tween them can be obtained as follows:

FKL li; l j
� � ¼ exp −γ l IP lið Þ−IP l j

� ��� ��2� �
ð10Þ

γl ¼ γ
0
l=

XNL

k¼1
IP lkð Þk k2

� �
ð11Þ

Here, IP(lt) denotes the vector consisting of elements
in the tth column of the lncRNA-disease adjacency
matrix A. γl is the parameter to control the kernel band-
width based on the new bandwidth parameter γ

0
l by

computing the average number of lncRNAs-disease as-
sociations for all the lncRNAs. So far, based on above
Equation (10), we can obtain a NL ×NL dimensional
lncRNA Gaussian interaction profile kernel similarity
matrix FKL as well.

Integrated similarity of lncRNAs
Based on the lncRNA functional similarity and lncRNA
Gaussian interaction profile kernel similarity obtained
above, a NL ×NL dimensional integrated lncRNA similar-
ity adjacency matrix KL (NL × NL) can be obtained as
follows:

KL i; jð Þ ¼ FuncKL i; jð Þ þ FKL i; jð Þ
2

ð12Þ

Construction of computational model TCSRWRLD
The establishment of heterogeneous network
Through combing the ND ×ND dimensional integrated
disease similarity adjacency matrix KD and the NL ×NL

dimensional integrated lncRNA similarity adjacency
matrix KL with the ND ×NL dimensional lncRNA-
disease association adjacency matrix A, we can construct
a new (NL +ND) × (NL +ND) dimensional integrated
matrix AA as follow:
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AA i; jð Þ ¼ KL i; jð Þ AT i; jð Þ
A i; jð Þ KD i; jð Þ

� �
ð13Þ

According to above Equation (13), we can construct a
corresponding heterogeneous lncRNA-disease network
consisting of ND different disease nodes and NL different
lncRNA nodes, in which, for any given pair of nodes i
and j, there is an edge existing between them, if and only
if there is AA(i, j) > 0.

Establishment of TCS (target convergence set)
Before the implementation of random walk, for each
node in above newly constructed heterogeneous
lncRNA-disease network, as illustrated in Fig. 6, it will
establish its own TCS first according to the following
steps:

Step 1 For any given lncRNA node lj, we define its ori-
ginal TCS as the set of all disease nodes that have known
associations with it, i.e., the original TCS of lj is
TCS0(lj) = {dk | A(k, j) = 1, k∈[1, ND]}. Similarly, for a
given disease node di, we can define its original TCS as
TCS0(di) = {lk | A(i, k) = 1, k∈[1, NL]}.

Step 2 After the original TCS has been established, for
any given lncRNA node lj, ∀dk∈TCS0(lj), and ∀t∈[1, ND],
then we can define the network distance ND(k, t) be-
tween dk and dt as follows:

ND k; tð Þ ¼ 1
KD k; tð Þ ð14Þ

According to above Equation (14), for any disease
nodes dk∈TCS0(lj) and ∀t∈[1, ND], obviously it is

reasonable to deduce that the smaller the value of ND(k,
t), the higher the similarity between dt and dk would be,
i.e., the higher the possibility that there is potential asso-
ciation between dt and lj will be.
Similarly, for any given disease node di, ∀lk∈TCS0(di)

and ∀t∈[1, NL], we can define the network distance
ND(k, t) between lk and lt as follows:

ND k; tð Þ ¼ 1
KL k; tð Þ ð15Þ

According to above Equation (15), for any lncRNA
nodes lk∈TCS0(di) and ∀t∈[1, NL], obviously it is reason-
able to deduce that the smaller the value of ND(k, t), the
higher the similarity between lt and lk will be, i.e., the
higher the possibility that there is potential association
between lt and di will be.

Step 3 According to above Equation (14) and Equation
(15), for any given disease node di or any given lncRNA
node lj, we define that the TCS of di as the set of top
100 lncRNA nodes in the heterogeneous lncRNA-
disease network that have minimum average network
distance to the lncRNA nodes in TCS0(di), and the TCS
of lj as the set of top 100 disease nodes in the heteroge-
neous lncRNA-disease network that have minimum
average network distance to the disease nodes in
TCS0(lj). Then, it is easy to know that these 100 lncRNA
nodes in TCS (di) may belong to TCS0(di) or may not
belong to TCS0(di), and these 100 disease nodess in TCS
(lj) may belong to TCS0(lj) or may not belong to
TCS0(lj).

Fig. 6 Flow chart of constructing TCS for an lncRNA node j
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Random walk in the heterogeneous LncRNA-disease
network
The method of random walk simulates the process of
random walker’s transition from one starting node to
other neighboring nodes in the network with given
probability. Based on the assumption that similar dis-
eases tend to be more likely associated with similar
lncRNAs, as illustrated in Fig. 7, the process of our pre-
diction model TCSRWRLD can be divided into the fol-
lowing major steps:

Step 1 For a walker, before it starts its random walk
across the heterogeneous lncRNA-disease network, it
will first construct a transition probability matrix W as
follows:

W i; jð Þ ¼ AA i; jð ÞPNDþNL
k¼1 AA i; kð Þ ð16Þ

Step 2 In addition, for any node £i in the heterogeneous
lncRNA-disease network, whether £i is a lncRNA node li
or a disease node di, it can obtain an initial probability
vector Pi (0) for itself as follows:

Pi 0ð Þ ¼ pi;1 0ð Þ; pi;2 0ð Þ;…; pi; j 0ð Þ;…pi;NDþNL
0ð Þ

� �T

ð17Þ
pi; j 0ð Þ ¼ W i; jð Þ j ¼ 1; 2;…;NDþNL ð18Þ

Step 3 Next, the walker will randomly select a node §i
in the heterogeneous lncRNA-disease network as the
starting node to initiate its random walk, where §i may
be an lncRNA node li or a disease node di. After the ini-
tiation of the random walk process, supposing that cur-
rently the walker has arrived at the node Γi from the
previous hop node Γj after t-1 hops during its random
walk across the heterogeneous lncRNA-disease network,
then here and now, whether Γi is a lncRNA node li or a
disease node di, and Γj is a lncRNA node lj or a disease
node dj, the walker can further obtain a walking prob-
ability vector Pi(t) as follows:

Pi tð Þ ¼ 1−∂ð Þ�WT�P j t−1ð Þ þ ∂�Pi 0ð Þ ð19Þ
Where ∂ (0< ∂< 1) is a parameter for the walker to ad-

just the value of walking probability vector at each hop.
Moreover, based on above newly obtained walking prob-
ability vector Pi(t), let Pi(t) =

ðpi;1ðtÞ; pi;2ðtÞ;…; pi; jðtÞ;…pi;NDþNL
ðtÞÞT , and for con-

Fig. 7 Flow chart of our prediction model TCSRWRLD
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venience, supposing that there is pi, k(k)=maximum{pi;1ðt
Þ; pi;2ðtÞ;…; pi;kðtÞ;…pi;NDþNL

ðtÞ }, then the walker will
choose the node ψk as its next hop node, where ψk may
be a lncRNA node lk or a disease node dk. Especially, as
for the starting node §i, since it can be regarded that the
walker has arrived at §i from §i after 0 hops, then it is
obvious that at the starting node §i, the walker will ob-
tain two kinds of probability vectors such as the initial
probability vector Pi (0) and the walking probability vec-
tor Pi (1). However, at each intermediate node Γi, the
walker will obtain two other kinds of probability vectors
such as the initial probability vector Pi (0) and the walk-
ing probability vector Pi(t).

Step 4 Based on above Equation (19), supposing that
currently the walker has arrived at the node Γi from the
previous hop node Γj after t-1 hops during its random
walk across the heterogeneous lncRNA-disease network,
let the walking probability vectors obtained by the
walker at the node Γi and Γj be Pi(t) and Pj(t-1) respect-
ively, if the L1 norm between Pi(t) and Pj(t-1) satisfies
‖Pi(t) − Pj(t − 1)‖1 ≤ 10

−6, then we will regard that the
walking probability vector Pi(t) has reached a stable state
at the node Γi. Thus, after the walking probability vec-
tors obtained by the walker at every disease node and
lncRNA node in the heterogeneous lncRNA-disease net-
work have reached stable state, and for convenience, let
these stable walking probability vectors be P1ð∞Þ; P2ð∞Þ;
…; PNDþNLð∞Þ, then based on these stable walking prob-
ability vectors, we can obtain a stable walking probability
matrix S(∞) as follows:

S ∞ð Þ ¼ S1
S3

S2
S4

� �
¼ P1 ∞ð Þ; P2 ∞ð Þ;…;PNDþNL ∞ð Þð ÞT ð20Þ

Where S1 is a NL×NL dimensional matrix, S2 is a
NL×ND dimensional matrix, S3 is a ND×NL dimensional
matrix, and S4 is a ND×ND dimensional matrix. And
moreover, from above descriptions, it is easy to infer
that the matrix S2 and the matrix S3 are the final result
matrices needed by us, and we can predict potential
lncRNA-disease associations based on the scores given
in these two final result matrices.
According to above described steps of the random walk

process based on our prediction model TCSRWRLD, it is
obvious that for each node Γi in the heterogeneous
lncRNA-disease network, the stable walking probability
vector obtained by the walker at Γi is Pi(∞) =

ðpi;1ð∞Þ; pi;2ð∞Þ;…; pi; jð∞Þ;…pi;NDþNL
ð∞ÞÞT . Moreover,

for convenience, we denote a node set consisting of all the
ND+NL nodes in the heterogeneous lncRNA-disease net-
work as a Global Set (GS), then it is obvious that we can

rewrite the stable walking probability vector Pi(∞) as PGS
i ð

∞Þ. Additionally, from observing the stable walking prob-
ability vector PGS

i ð∞Þ , it is easy to know that the walker
will not stop its random walk until the ND+NL dimen-
sional walking probability vector at each node in the het-
erogeneous lncRNA-disease network has reached a stable
state, which will obviously be very time-consuming while
the value of ND+NL is large to a certain extent. Hence, in
order to decrease the execution time and quicken the vel-
ocity of convergence of TCSRWRLD, based on the con-
cept of TCS proposed in above section, while constructing
the walking probability vector Pi(t)=(pi, 1(t), pi, 2(t), …, pi,
j(t), …; pi;NDþNL

ðtÞÞT at the node Γi, we will keep the pi, j(t)
unchanged if the jth node in these ND+NL nodes belongs
to the TCS of Γi, otherwise we will set pi, j(t)=0. Thus, the
walking probability vector obtained by the walker at Γi will
turn to be PTCS

i ðtÞ while the stable walking probability
vector obtained by the walker at Γi will turn to be PTCS

i ð∞Þ
. Obviously, comapred with PGS

i ð∞Þ , the stable state of

PTCS
i ð∞Þ can be reached by the walker much more quickly.

However, considering that there may be nodes that are
not in the TCS of Γi but actually associated with the target
node, therefore, in order to avoid omissions, during simu-
lation, we will construct a novel stable walking probability
vector PANS

i ð∞Þ through combining PGS
i ð∞Þ with PTCS

i ð∞Þ
to predict potential lncRNA-disease associations as

follows:

PANS
i ∞ð Þ ¼ PGS

i ∞ð Þ þ PTCS
i ∞ð Þ

2
ð21Þ
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